
9
Regge poles in perturbation theory

9.1 Reggeons, ladder graphs, and multiparticle production

We have studied two-particle reactions and introduced objects of ‘vari-
able spin’ – reggeons as a generalization of usual particles. The reggeon
amplitude,

A±
regg(s, q

2) ∝ ξαs
α, ξα =

e−iπα ± 1
−sinπα

, α = α(q2),

differs essentially from the particle-exchange amplitude,

Aσ(q2, s) ∝ sσ

μ2 − q2 − iε
,

by a non-trivial complexity, even at q2 < 0 where particle exchange is
real. As the s-channel unitarity tells us, the imaginary part of the elas-
tic amplitude is determined by real processes, mostly by many-particle
production since s is very large:

ImAel(s, q2) � sσtot = 1
2

∑
n n

.

This means that the reggeon, having a large imaginary part,

ImA±
regg ∝ Im

[
i− cosπα± 1

sinπα

]
sα = sα,

is not an elementary object but is ‘composed’ of certain inelastic s-channel
processes. We have to understand what these processes are.

As we have discussed before, from the point of view of t-channel dy-
namics, the Regge pole is a bound state of non-relativistic particles. But
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220 Regge poles in perturbation theory

the interaction of slow particles can be described in terms of a potential:

+ + . . .+  . . .= + (9.1)

The potential acts without retardation, therefore the dashed lines do not
cross. If it turns out that indeed, the reggeon corresponds to potential
scattering in the t-channel, this would answer the question which inelastic
processes are important at high energies. Cutting through the diagrams
on the r.h.s. of (9.1) we obtain ladders as an image of inelastic processes
‘describing’ the reggeon.

ImAregg ∼
∑

. (9.2)

These are processes of production of a large number of particles, those
very particles that play the rôle of the binding potential in the crossing
channel.

9.2 Reggeization in gφ3 theory

In order to verify that the sum of the diagrams (9.1) gives rise to a Regge
behaviour,

A = b(t) sα(t), (9.3)

we will address the problem perturbatively and employ the simplest gφ3

theory with a small coupling. Although this quantum field theory is far
from realistic, this academic exercise will teach us important lessons about
the phenomenon of reggeization. Later we will try to generalize the results
beyond the perturbation theory.

9.2.1 Qualitative analysis of higher order diagrams

We are going to construct perturbation theory for the elastic amplitude
in the relevant region of the Mandelstam plane:

s � −u → ∞, |t| ∼ m2.
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9.2 Reggeization in gφ3 theory 221
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Fig. 9.1 Born diagrams for A(1, 2 → 3, 4) in gφ3 theory.

We start from the Born approximation. Of the Born graphs Fig. 9.1, the
first one is O

(
g2/m2

)
and dominates the asymptotics, while the graphs

Fig. 9.1(b) and (c) are much smaller at high energies, O
(
g2/s

)
. Since the

coupling has a dimension of mass, in higher orders of the perturbative
expansion each extra power of g2 is accompanied by m2, or t ∼ m2, or
s � −u in the denominator. To build up the characteristic behaviour (9.3),
we need to search for large perturbative corrections of the relative size

A(n+1)/A(n) ∝ g2

m2
ln s. (9.4)

It is clear that self-energy and vertex
insertions into the Born graphs cannot
lead to the Regge structure (9.3), since
corrections of this type are functions
of only one invariant, either t, or s.

δG = δΓ =

The theory is convergent in the ultraviolet region, and no corrections
may come from the region of large virtual momenta. Therefore only spe-
cific diagrams (and for a special reason) may contain the large logarithmic
factor (9.4).

In the next order we have three topologically new diagrams of Fig. 9.2.
In the last graph, Fig. 9.2(c), all four propagators are large, |k2

i | ∼ s, mak-
ing its contributions negligibly small, O

(
g4/s2

)
. The first two diagrams

u

(b) (c)

s

2

1 3

4

t

s

2

1 3

4

t

s

2 3

41

(a)

Fig. 9.2 Second-order diagrams.

https://doi.org/10.1017/9781009290227.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290227.010


222 Regge poles in perturbation theory

k

s12

p1

x1 x   ′1

x   ′2x2

p2

p1− k

Fig. 9.3 Long-living fluctuation in the rest frame of p2.

are much larger and can be considered as g2/m2 corrections to the Born
graphs Fig. 9.1(b) and (c). It is these two which will interest us. Let us
show that they contain the ln s enhancement indeed.

9.2.2 Dominance of ladder graphs: space–time picture

In fact we have already considered the diagram Fig. 9.2(a) when we dis-
cussed how to make the interaction radius increasing with energy. In Sec-
tion 5.6 we observed that in the rest frame of the particle p2 the pro-
jectile p1, having a very large energy p10 � s/2m, may fluctuate into a
pair of particles. We saw that if virtualities of the offspring are limited,
|k2| ∼ |(p1 − k)2| ∼ m2, the energy uncertainty turns out to be very small,
see (5.60):

ΔE ∼ m2

x(1 − x)p10
∼ m3

s
� m, x =

k0

p10
.

At high energies large longitudinal distances become important,

|x′1 − x1| <∼ Δt ∼ 1
ΔE

∼ x(1 − x)s
m3

� m−1, (9.5)

and the fluctuation may occur long before the projectile hits the target.
The origin of the logarithmic growth of our diagram is precisely the inte-
gration over large longitudinal distances:∫

eiΔE(x′
1−x1)

|x′1 − x1|
dx′1 ∼ ln

m

ΔE
∼ ln

s

m2
.

(The distance between x2 and x′2 in Fig. 9.3 stays small.) In order to have
a long-living fluctuation, see (9.5), both particles k and (p1 − k) in the
decay vertex must be relativistic: x, (1 − x) � m2/s. At the same time,
the target prefers to interact with a slower particle, since in the lower
vertex in Fig. 9.3 two point-like particles interact in the S-wave state
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9.2 Reggeization in gφ3 theory 223

with the cross section

σ ∼ πλ2
c ∼

1
s12

� 1
2mk0

=
1
xs

.

As a result of the interplay of these two tendencies, the amplitude remains
small, A ∼ s−1, but acquires a logarithmic enhancement in the next order,

A(0)[Fig. 9.1b] � g2

−s
, A(1)[Fig. 9.2a] ∼ g2

−s
× g2

m2
ln

s

m2
.

We have a rather curious situation here. We chose a superconvergent the-
ory with a small coupling constant g2/m2 � 1 and expected that we could
rely on the perturbation theory. However, with s increasing, the incident
particle gets more and more time to decay; eventually it will always do
so, even if the interaction constant is small. But this means that the per-
turbation theory must fail! And this is exactly what happens: with the
increase of s the true expansion parameter (9.4) sooner or later becomes of
the order of unity so that all orders of the perturbative expansion become
equally important.

The virtual particle k in Fig. 9.3 will decay in its turn, and the process
will continue until a relatively slow particle with a momentum kn ∼ m
appears, which interacts with the target with a ‘normal’ cross section
σ ∼ m−2.

p1

p
2

pnsn, 2 ∼ m2

In such a process with n virtual particles along the decay chain, there are
n independent integrations over the longitudinal distances. Hence, it is
natural to expect that the nth-order correction to the Born graph will be
enhanced as (ln s)n. Our hope is that summing up all ladder graphs we
will obtain just the Regge amplitude (9.3):

+ . . . s→∞� b(t)sα(t).
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224 Regge poles in perturbation theory

9.2.3 Calculation of the box diagram

Let us demonstrate how this happens. We begin with the calculation
of the behaviour of the diagram of Fig. 9.3 in the kinematical region
s � −q2 ∼ m2. This is the shortest ladder, with two rungs only, so we
call it J2:

J2(s, q2) ≡

p
2

q2

s (1)

(3)

(2)

(4)

k k − q

p3

p4

p
1

(9.6)

We define the light-like Sudakov momenta

(p′1)
2 = (p′2)

2 = 0; p′1 � p1 − γp2, p
′
2 � p2 − γp1; γ =

m2

s
; s = 2(p′1p

′
2),

to cast the four-vector of the momentum transfer q = p1 − p3 as

q = βqp
′
1 + αqp

′
2 + q⊥; αq =

q2

s
, βq = −q2

s
. (9.7)

Recall that in our high-energy kinematics momentum transfer is ‘transver-
sal’ in the sense of

q2 � (q⊥)2 ·
(
1 + O

(
s−1

))
.

By construction, the four-vector qμ⊥ is orthogonal to pμ1 and pμ2 ; in the ref-
erence frames where p1 and p2 lie on the same line, qμ becomes the usual
three-vector perpendicular to this line (collision axis), q⊥ = (0; 0,q⊥),

q2 � −q2
⊥.

Finite-state particles have finite transverse components, p4⊥ = −p3⊥ =
q⊥, i.e. particles scatter at a small angle. Then we write

k = βp′1 + αp′2 + k⊥.
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9.2 Reggeization in gφ3 theory 225

Transverse momentum integrals in the gφ3 theory converge, |k⊥| ∼ m, so
we will have to look for the logarithmic enhancement in the α–β sector.

Our amplitude reads

J2(s, q2) = g4

∫
d4k

(2π)4i
1

(1)(2)(3)(4)
, (9.8)

where the Feynman denominators are

(1) ≡ m2 − k2 − iε, (2) ≡ m2 − (k−q)2 − iε,

(3) ≡ m2 − (k − p1)2 − iε, (4) ≡ m2 − (k + p2)2 − iε.

We obtain

(1) = −αβs + m2 + k2
⊥ − iε, (9.9a)

(2) = −(α− αq)(β − βq)s + m2 + (k−q)2⊥ − iε, (9.9b)

(3) = −(α− γ)(β − 1)s + m2 + k2
⊥ − iε, (9.9c)

(4) = −(α + 1)(β + γ)s + m2 + k2
⊥ − iε. (9.9d)

Loop integration in terms of Sudakov variables has the structure∫
d4k =

s

2

∫ ∞

−∞
dα

∫ ∞

−∞
dβ

∫
d2k⊥.

Let us start from a rough estimate of the magnitude of the answer to get
a feeling what we should expect. Dimension-wise, the answer may turn
out to be very small if all the virtualities happen to be of the order of
s, the biggest invariant: d4k/(k2)4 ∼ s−2. So we better try to keep all
the denominators as small as possible. Given k⊥ = O(m), from (9.9c, d)
follows an estimate for the virtualities of the ‘horizontal’ lines,

(3) ∼αs, (4) ∼−βs. (9.10)

β is the fraction of the incoming momentum p1 transferred to the bottom
of the diagram (9.6) and, vice versa, (−α) measures the fraction of p2

that flows into the top. It looks natural to have β, (−α) � 1; in this case
an incident particle passes its large momentum almost entirely to the
neighbouring ‘horizontal’ line, (p1 − k) � p1, (p2 + k) � p2.

Wanting to keep virtualities (3) and (4) finite, we demand

β ∼ m2

s
, −α ∼ m2

s
, (9.11a)

in which case the ‘longitudinal parts’ of the ‘vertical’ propagators (9.9a,
b) are negligibly small, αβs ∼ m2/s, and (1) and (2) become purely
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226 Regge poles in perturbation theory

transversal. Then from the kinematical region (9.11a) we get

J2 ∼ g4

s

∫
d2k⊥
(1)(2)

∫∫
dα dβ

(3)(4)
∼ −g4

sm2

∫
d(αs)
αs

∫
d(βs)
βs

∼ −g4

sm2
. (9.11b)

This is almost the correct answer. We can get more if we release the strong
restrictions (9.11a) and allow α and β to vary broader:

m2

s
� β � 1,

m2

s
� −α � 1. (9.11c)

The virtual propagators (9.10) then become relatively large but we gain
a logarithmic enhancement by integrating over the β/α ratio along the
hyperbola αβs = const.

We are now ready to calculate the amplitude exactly. Take first, e.g.
the integral over α. Since it converges at infinity (as dα/α4), the contour
can be closed either in the upper or the lower half-plane, whichever we
find more convenient. This simplifies the calculation of the integral by
residues. The poles in α of the integrand are due to four denominators:

α(1) =
m2 + k2

⊥ − iε

β s
, α(2) = αq +

m2 + (q − k)2⊥ − iε

(β − βq) s
,

α(3) = γ − m2 + k2
⊥ − iε

(1 − β) s
, α(4) = −1 +

m2 + k2
⊥ − iε

(β + γ) s
.

(9.12)

In order to choose the best strategy, we have to look at the imaginary
parts of the poles α(i) due to Feynman’s iε. The configuration of the poles
depends on the value of β. First we observe that if β < −γ all four poles
are situated above the real axis. In this case we close the contour in the
lower half-plane to get zero. Analogously, if β > 1 we get the same result
by closing the contour upwards and leaving all the poles outside the loop,
below the real axis.

α

β < − γ
α

β > 1

Next, we have two intervals of β where we close the contour on the lower
half-plane around one pole, α = α(4), and two poles, (2) and (4), corre-
spondingly:
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9.2 Reggeization in gφ3 theory 227

α

α(4)−γ  < β < 0

α

α(4)α(2)0 < β < β
q

Since both γ = m2/s and βq = −q2/s are very small, these integration
intervals in β are tiny and do not produce the ln s enhancement we are
looking for (cf. (9.11b)). We are left with the large interval βq < β < 1:

α α(3)

βq < β < 1

(9.13)

This interval gives the main contribution due to the logarithmic inte-
gration over β under the conditions

m2

s
� β � 1. (9.14)

Given these strong inequalities, we estimate α = α(3) = O
(
m2/s

)
, the re-

maining denominators simplify,

(1) � m2 + k2
⊥, (9.15a)

(2) � m2 + (k − q)2⊥, (9.15b)

(4) � m2 + k2
⊥ − βs− iε, (9.15c)

and we obtain

J2 �
∫

d2k⊥
2(2π)3

g4

[m2 + k2
⊥][m2 + (k − q)2⊥]

∫ 1

m2/s

dβ

m2 + k2
⊥ − βs− iε

.

(9.16)
It is the last denominator,

dβ

m2 + k2
⊥ − βs− iε

� −1
s

dβ

β
,
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228 Regge poles in perturbation theory

that gives rise to the logarithm in the integration region (9.14):

J2 � −g2

s
ln

s

m2
× β(q2

⊥). (9.17a)

Here we have introduced a convenient notation for the characteristic trans-
verse momentum integral,

β(q⊥) ≡
∫

d2k⊥
2(2π)3

g2

[m2 + k2
⊥] [m2 + (k − q)2⊥]

. (9.17b)

The horizontal lines (3), (4) with large virtual momenta dropped out in
the calculation of the asymptotic behaviour of the amplitude (9.6) and
we have obtained a reduced diagram which contains only transverse mo-
menta, and reminds of a Feynman diagram of a two-dimensional quantum
field theory:

p
2

k − qk

(3)

(4)

p
1

=⇒ −g2

s
ln

s

m2
×

g

g

k (9.18)

Here comes a final refinement before we move to higher orders. The r.h.s.
of (9.18) is real, while we know that the box diagram on the l.h.s. has
an imaginary part when (and only when) s is positive. Can we find ImJ2

without performing any calculations? It is actually very simple. Once we
know Re J2, in order to restore ImJ2 it suffices to replace in (9.18)

ln s → ln(−[s− ıε]) = ln s− iπ. (9.19)

This does not invalidate our asymptotic analysis since we have kept only
the leading contribution ∝ ln s and systematically omitted all constant
corrections, |iπ| � ln s being one of them. On the contrary, to keep this
‘special constant’ is legitimate, since it promotes our approximate expres-
sion to a true amplitude with proper analyticity.

It is time to guess the full answer. Let us try to add up the Born
amplitude Fig. 9.1(b) and the next order correction (9.17) we have just
derived:

+ + . . . = −g2

s
− g2

s
β(q⊥) · ln(−s) + · · ·

?= −g2

s
· eβ(q⊥) ln(−s) = g2(−s)−1+β(q⊥).

(9.20)
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9.2 Reggeization in gφ3 theory 229

If this guess is right, our two terms would be simply the first terms of the
perturbative series expansion in β(q⊥) = O

(
g2/m2

)
� 1 for the Regge

pole amplitude.

9.2.4 Ladders in the leading logarithmic approximation

What will happen in higher orders? Take the third perturbative order,
A ∝ g6, and imagine that we found a contribution A = O

(
g6 ln s

)
. In spite

of looking enhanced, this one is insignificant since when g2 ln s ∼ 1, it
constitutes but a small correction to the previous order,

A = ABorn

(
1 + g2 ln s + g2 · g2 ln s + · · ·

)
. (9.21)

Now we have to look for A = O
(
g6 ln2 s

)
. In each order of the pertur-

bation theory, with adding new internal momentum integration, we need
to pick up an additional ln s enhancement factor. In spite of an immense
number of Feynman graphs in high orders, each can be analysed (and if
necessary evaluated) approximately, in a search for (g2 ln s)n terms. It is
clear that not many diagrams will yield such a strong enhancement. Ex-
tracting and assembling such contributions in all orders constitutes the
so-called ‘leading logarithmic approximation’,

ALLA = ABorn

(
1 +

∞∑
n=1

fn · (g2 ln s)n
)

; g2 � 1, g2 ln s ∼ 1. (9.22)

There is something important to stress. If we want the approximate ampli-
tude ALLA to represent the high-energy behaviour of the true scattering
amplitude, the condition g2 � 1 is absolutely crucial. Only under this
condition may we ignore a plethora of subleading corrections, like the one
underlined in (9.21).

Let us draw the diagrams that do contribute in the LL approximation;
we will check later that others do not. These are the n-particle ladders.

Note that a ladder with a given number of rungs can be constructed by
adding the Born amplitude on top of the ladder of the previous order,

n n − 1= =
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230 Regge poles in perturbation theory

Π
n−1

i=1
qi − q

kn
p

2

p1

q1

qi

qi +1

qn −1

k1

k i

k i+1

p3

p4
p2 p4

q
i+1

− q

qi − q qi

ki

kn

Fig. 9.4 Structure of the ladder diagram.

One can use this t-channel iterative nature of ladder graphs to derive the
high energy behaviour of the amplitude A2ton→2 by induction. However, to
gain a better understanding of the kinematics of ladder-type processes we
shall proceed with a direct analysis of the structure of ladder amplitudes.

Consider an n-particle ladder shown in Fig. 9.4.
We have n− 1 internal momentum integrals, and the amplitude

Jn(s, q2) can be written as

J2 = g2n
n−1∏
i=1

(∫
d4qi

(2π)4i
1

[m2 − q2
i ][m2 − (qi − q)2][m2 − (qi−1 − qi)2]

)

× 1
m2 − (p2 + qn−1)2

, (9.23)

where in all propagators the Feynman shift is implied, m2 → m2 − iε.
We have (n− 1) ‘blocks’, each containing two vertical, qi and (qi − q),
and one horizontal propagator, ki = qi−1 − qi (q0 ≡ p1). The bottom rung,
kn = p2 + qn−1, closes the chain.

For the sake of convenience we will slightly modify the definition of the
Sudakov variables as compared to (9.7) and write

q = βqp
′
1 − αqp

′
2 + q⊥, βq = αq = −q2

s
=

q2
⊥
s

(
1 + O

(
m2

s

))
;

qi = βip
′
1 − αip

′
2 + qi⊥, q2

i = −αiβis− q2
i⊥.

(9.24)

Thus αi and βi enter in a more symmetric way: both positive, they de-
scribe the fraction of p2 transferred up the ladder and the fraction of p1

descending the ladder, respectively.
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9.2 Reggeization in gφ3 theory 231

Have a look at the propagators of the horizontal lines, the ladder rungs:

k2
1 = (p1 − q1)2 = (α1 + γ)(1 − β1)s + · · · , (9.25a)

k2
2 = (q1 − q2)2 = (α2 − α1)(β1 − β2)s + · · · , (9.25b)

k2
i = (qi−1 − qi)2 = (αi − αi−1)(βi−1 − βi)s + · · · , (9.25c)

where we singled out the α dependence. Suppose now that we evaluate
the αi integrals by putting the rungs, one by one, on the mass shell as
we did before in the n = 2 case when we closed the contour around the
pole (3), see (9.13). The residue in α1 equals 1/(1 − β1)s; then α2 gives
1/(β1 − β2)s, etc. The bottom rung will produce one more factor,

m2 − k2
n = m2 − (qn−1 + p2)2 = m2 + k2

n⊥ − (1 − αn−1)(βn−1 + γ)s,
(9.25d)

in the denominator. Combining all β-dependent factors, the following
structure of the βi integrals emerges:

Jn ∼ 1
1 − β1

dβ1

β1 − β2

dβ2

β2 − β3
· · · dβn−2

βn−2 − βn−1

dβn−1

βn−1 + γ
. (9.26)

How can we get many logarithms? We need to gain one logarithm per each
integration. One can easily prove that it is necessary to arrange successive
βis as follows:

1 � β1 � β2 � · · · � βi � · · · � βn−1 � γ =
m2

s
. (9.27a)

What about the αs? They, too, turn out to be strongly ordered. Indeed,
applying (9.27a) to (9.25) leads to the following pattern:

α1∼
m2

1⊥
s

, α2∼
m2

⊥
β1s

, · · · αi∼
m2

i⊥
βi−1s

, · · · αn−1∼
m2

n−1,⊥
βn−2s

,

where m2
i⊥ ≡ m2 + k2

i⊥ = O
(
m2

)
. Combining with (9.27a), we get

m2
1⊥
s

∼ α1 � α2 � · · · � αi � · · · � αn−1 � 1; (9.27b)

αiβi−1s ∼ m2
i⊥, i = 1, . . . , n− 1 (β0 ≡ 1). (9.27c)

Inequalities (9.27) show that the flows of p1 and p2 momenta along the
ladder are opposite and strongly ordered: ascending the ladder, the frac-
tions of p2 (αi) successively decrease, in accord with the strong increase
of βi (fraction of p1).
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Given the strong ordering of βs, (9.26) reduces to

Jn ∼
∫ 1 dβ1

β1

∫ β1 dβ2

β2
· · ·

∫ βn−3 dβn−2

βn−2

∫ βn−2

γ

dβn−1

βn−1
,

giving

Jn ∼ 1
(n− 1)!

(∫ 1

γ

dβ

β

)n−1

.

Now we can complete the calculation of Jn. Due to the estimate (9.27c),
a crucial simplification emerges: the longitudinal variables drop out from
all vertical lines. Indeed,

m2 − q2
i = m2 + q2

i⊥ + αiβis = m2
i⊥ + αiβi−1s ·

βi
βi−1

� m2
i⊥,

where we have used (9.27c) and the strong β-ordering, βi/βi−1 � 1. Thus
in the logarithmic region (9.27) the dependences on qi⊥ and βi fully sepa-
rate and leave us with n− 1 identical transverse momentum loop integrals
(9.17b) resulting in

Jn = −g2

s

1
(n− 1)!

lnn−1

(−s

m2

)
·
[
β(q⊥)

]n−1
. (9.28)

We changed the sign of s under the logarithm to restore analyticity of the
amplitude properly, as we have discussed before, when we analysed J2.
Summing over n we obtain the Regge-like expression (9.20) that we have
guessed above.

Before discussing the final result, let us verify that the ladder diagrams
in the kinematical region (9.27) are indeed the only ones to contribute.

First of all, it is clear from (9.26) that a decision to swap βs in the
ordering condition (9.27a) immediately results in a loss of (at least) one
logarithmic factor. To have βs strongly ordered is also essential. If we
keep two neighbouring momenta of the same order, βk ∼ βk+1, such a
pair can be treated as a single rung with the effective ‘mean’ momentum
β̄ =

√
βkβk+1, effectively reducing the ladder Jn to Jn−1 and thus losing

one ln s,

∫ ∫
dβk dβk+1

βkβk+1
=

∫
dβ̄

β̄
·
∫

d ln
(

βk
βk+1

)
=⇒ ln s · O(1) .
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n

β̄k,k+1

n −1

βk

βk+1

The same thing happens if we allow any rungs to cross.

qi − 1

qi

qi +1

ki +1

ki

Q

The momentum Q, which used to be Q = qi − q
in the plain ladder, becomes in the crossed config-
uration

Q = [qi+1 + qi−1 − qi] − q. (9.29)

It inherits the largest α-component from qi+1, and
the β-component from qi−1, so that the new virtual
denominator becomes

m2 −Q2 � αi+1βi−1s + m2 + Q2
⊥.

Invoking (9.27c) we see that the ‘longitudinal’ part of the virtuality is no
longer negligible; on the contrary, the new denominator is very large,

m2 −Q2 ∼ m2
⊥ · βi−1

βi
� m2

Q⊥;

its presence spoils the logarithmic integration over βi,∫
dβi−1

βi−1

∫ βi−1 dβi
βi

·
(
βi−1

βi

)−1

∼
∫

dβi−1

βi−1
× 1,

and we have βi+1 ∼ βi, i.e. the situation that we have just discussed. The
appearance of a large virtuality has a transparent physical explanation.
Momenta of the ladder rungs, ki, are very different in scale. For example,
in the rest frame of p2 we have

ki � (βi−1 − βi)p1 ≈ βi−1p1, ki+1 � (βi − βi+1)p1 ≈ βip1,

so that the successive particle is much softer than its predecessor,

ki+1

ki
� βi

βi−1
� 1.

This is favourable for the production of particles ki, ki+1 (the left side of
the graph). However, on the absorption side (the right half of the graph),
the natural ordering is just opposite. In the lower vertex a hard particle
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234 Regge poles in perturbation theory

has to be absorbed where there used to be a soft one, causing a large
recoil.

9.2.5 Reggeon as a sum of ladder graphs

Up to now we were dealing with the high-order amplitudes that one ob-
tains iterating in the t-channel the ‘s-channel’ Born graph Fig. 9.1b. Ex-
actly the same considerations can be carried out for the ‘u-channel’ am-
plitude (9.1c), which differs from the graph that we have iterated by the
crossing transformation s ↔ u.

t

2

1 3

4

=
1

2

3

4

s u

t
g2

m2 −u .

Under the crossing the second-order amplitude of Fig. 9.2 turns into the
familiar box,

4

t t

s u=

1 3

4 2

3 1

2

,

etc. Thus, in order to obtain the second series of contributions, we simply
have to substitute s → u � −s in our answer (9.28).

The final answer for the high-energy behaviour of the amplitude reads

A(s, t) �
∞∑
n=1

Jn =
g2

m2

[(−s

m2

)−1+β(t)

+
( s

m2

)−1+β(t)
]
, (9.30a)

β(t) =
∫

d2k⊥
2(2π)3

g2

[m2 + k2
⊥][m2 + (k − q)2⊥]

; t � −q2
⊥. (9.30b)

Strictly speaking, we cannot claim that (9.30) describes the true asymp-
totics s → ∞, since our leading logarithmic approximation (9.22) applies
to very large but finite energies,

s <∼ m2 exp
{
m2

g2

}
.

Nevertheless, let us compare our result (9.30a) with the Regge pole am-
plitude,

A±
pole(s, t) = − r(t)

sinπα(t)

[(−s

m2

)α(t)

±
( s

m2

)α(t)
]
.
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We conclude that we have, indeed, obtained a Regge pole with a positive
signature,

Σ
n

,

the trajectory

α(t) = −1 + β(t), (9.31a)

and the residue

r(t) = − g2

m2
sinπα(t) � g2

m2
β(t). (9.31b)

We have expanded the sinus near −1 since, perturbatively, β is small,
β(t) = O

(
g2/m2

)
� 1. The residue is therefore of the second order in the

coupling, r = O
(
(g2/m2)2

)
.

Did we get a bound state? To get a spin zero particle on the Regge
trajectory, we have to have in (9.31a) β(m2

0) = 1. We cannot go as far
as that: our perturbative β ∝ g2/m2 is small. So in the perturbation gφ3

theory the scalar particle φ remains elementary: the partial-wave ampli-
tude  = 0 corresponding to the t-channel scalar particle exchange does
not reggeize,

f0(t) ∼ s

t

.

What we did get moving instead is another fixed pole, that at  = −1,

f−1(t) ∼

t

s .
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236 Regge poles in perturbation theory

Indeed, let us calculate the partial wave corresponding to the s-channel
exchange amplitude. Substituting

A1(s, t) = Im

g 2

= g2 · πδ(m2 − s)

in the general expression (7.27b),

f�(t) =
2
π

∫ ∞

z0

dzs A1(t, s)Q�(zs)

=
4

π(t− 4m2)

∫ ∞

s0

ds A1(t, s)Q�

(
1 +

2s
t− 4m2

)
,

we obtain

f�(t) =
4g2

t− 4m2
Q�

(
1 +

2m2

t− 4m2

)
�→−1∼ 4g2

t− 4m2
· 1
 + 1

. (9.32a)

Comparing with the partial wave of the amplitude (9.30a),

f�(t) ∼
1

 + 1 − β(t)
, (9.32b)

we conclude that since β(t) � 1, generically our reggeon is connected to
the fixed pole (9.32a) at  = −1.

One has to remember that the results of this section are valid only for
g2/m2 � 1. The Regge trajectory which we got under this condition,

α = −1 + β(t) ,

has no relation to the observed trajectories with hadron resonances placed
on them. Nevertheless, the example of the gϕ3 theory is rather instructive,
as it demonstrates what kind of s-channel processes may correspond to
real Regge poles. But before turning to the s-channel structure of the
reggeon exchange, let us briefly discuss what happens in other theories.

9.2.6 Reggeization in other theories

Thus, the scalar meson representing the φ field of the gφ3 quantum field
theory remained an elementary particle. At the same time, a Regge tra-
jectory appeared that corresponds in fact to a two-particle bound state
(sort of ‘positronium’).
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9.2 Reggeization in gφ3 theory 237

As for other theories, there are not many since we can operate only
with renormalizable ones.

Fermion + scalar. If we take a renormalizable field theory based on
spin 1

2 fermions interacting with a scalar field, Lint ∼ ψ̄ψφ, the answer
is similar: the input objects stay elementary, while their bound states do
reggeize.

Fermion + vector. A field theory of the type of quantum electrodynamics
provides a more telling example. Once again, we take spin-1

2 ‘electrons’
and couple them to a vector field,

m

1
2σ = σ=1

= γμ
μ

.

In this theory a curious thing happens. Look at the Compton process
in the region of fixed u (backward scattering). Summing up perturbative
radiative corrections in the approximation e2 � 1, e2 ln s ∼ 1 (LLA),

= rξαS
α (9.33)

a reggeon emerges. What is even better, its trajectory satisfies the relation
α(m2

e) = 1
2 . A remarkable phenomenon: in QED with a massive photon,

the fermion reggeizes! How did it occur? In the Born approximation we
have a fixed pole in the partial wave,

fBorn
j ∝ e2

m2 − u
δj, 1

2
. (9.34)

Analogously to the scalar case, see (9.31b), the reggeon residue r in (9.33)
is of the second order in the squared coupling, r = O

(
e4

)
. How can the

first-order expression (9.34) be a part of it? What happens in higher orders
is that (9.34) becomes a limiting value of the function

fj = const
e4

j − 1
2 − β(u)

, β ∝ e2, β(m2) = 0. (9.35)

For angular momenta j = 1
2 , the specific contribution (9.35) to the partial

wave is O
(
e4

)
and can be neglected. At the same time, if we take the
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angular momentum (very close to) j = 1
2 ,

fj→ 1
2

= const
e4

−β(u)
=

e2

m2 − u
,

the magnitude of the partial wave becomes normal, and reproduces the
Born amplitude (9.34).

In the usual electrodynamics where the photon is massless, μ = 0, a
complication emerges due to the standard infrared divergence.

In the μ → 0 limit, the one-particle pole collides with thresholds due to
additional photons: m + n · μ → m. As a result, the electron Green func-
tion at p2 = m2 does not have a pole anymore but develops a more tricky
singularity. Nevertheless, in QED one can also claim that the electron lies
on the Regge trajectory in the following sense. Whatever the nature of
the singularity, the position of this whole thing reggeizes, that is moves
with j, m2

e → m2(j).
Formally speaking, α(t) describing the elastic eγ scattering amplitude

(9.33) diverges in the infrared region and becomes undefined. This is nat-
ural: purely elastic processes do not exist in QED; taking into account the
infrared radiative corrections, elastic amplitudes vanish. However, if one
considers observables that are insensitive to the emission of undetectable,
infinitely soft photons, the physical cross sections become finite, and the
electron trajectory can be properly defined,

dσ

dΩ
∝ s2(α(u)−1), α(m2

e) = 1
2 . (9.36)

A QED photon does not reggeize.

Yang–Mills fields. Recently∗ a new class of very interesting renormaliz-
able field theories was found, the Yang–Mills theories. The scheme in-
cludes self-interacting massless vector fields and fermions, as well as some
additional scalars (‘ghost’). In this theory both fermions and vector par-
ticles reggeize.

9.2.7 Non-pole singularities in perturbation theory

We have a couple of questions more to ask to the perturbation theory:

(1) are there singularities other than poles?

(2) any hints about the pomeron that we need for σtot → const?

∗ The lecture was in 1975 (ed.)
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The gφ3 field theory contains nothing but Regge poles. In all other
theories, however, there are non-pole singularities too. Take QED as an
example and consider once again the Compton scattering, but this time
in the forward kinematics, |t| ∼ m2 � s � −u. Interesting contributions
will be the following:

+ + + . . .

e2 e4 ln2s e6 ln4s

The analysis of the ladder diagrams of this type follows the steps
of the scalar case, and in the leading approximation one arrives at
the exponential of the reduced two-dimensional diagram describing the
trajectory,

k−q

e

e

k =
e2

4π

∫
d2k⊥
(2π)2

1[
m− k̂

][
m− (q̂ − k̂)

] . (9.37)

Contrary to the scalar loop, this integral diverges in the large momentum
region! What does this mean? Our initial diagrams were convergent in
the ultraviolet. So this must be not a real divergence but an artefact of
the approximations made.

Indeed, we carried out the analysis of the ladder kinematics, estimated
the virtualities etc. having supposed that transverse momenta are limited,
k2
⊥ � s. In the scalar theory this working hypothesis found its confirma-

tion in the end of the calculation: the integral for β(q⊥) converged at
k2
⊥ ∼ m2. In QED, in a contrast to the super-convergent gφ3 theory, the

coupling constant is dimensionless, and the k⊥ integration produces an-
other logarithm,

k−q

e

e

k ∼ e2

∫ s

m2

dk2
⊥

k2
⊥

= e2 ln
s

m2
. (9.38)
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So, in the second order, e.g. the ‘box’ diagram acquires two logs, e4 ln2 s,
instead of one, e4 ln s. Such a series corresponds in the angular momentum
plane not to a Regge pole but to a different singularity.

From the t-channel point of view this problem
resembles a non-relativistic system with a singular
potential. You may remember that we have dis-
cussed how in non-relativistic quantum mechanics
an interaction singular at small distances gave rise
to fixed poles. We considered a non-relativistic
potential V ∝ −c/r2 which corresponds to the
‘falling on the centre’ phenomenon. We noted that
if the parameter c is not too large, c < 1

4 , then

t

physically there is no catastrophic ‘falling on the centre’, but a fixed pole
in the partial wave appears near zero, j0 = ce2. This is what happens in
the forward Compton scattering problem.

Another interesting question: is there not a singularity at j=1 in
QED? Look at the Feynman graphs with many electron loops inserted in
the two photon exchange diagram.

Cutting through such diagrams one gets the total
cross section increasing with energy,

ImA ∼ e4s1+γ , γ ∼ e4; σ ∝ sγ . (9.39)

Such a behaviour corresponds to a fixed singularity at
j0 > 1. This high-energy behaviour is valid as long as
e4 ln s <∼ 1. At yet higher energies the power increase
(9.39) must stop, according to the Froissart theorem,
and the true position of the singularity should move to
the left. A theoretical analysis of how this happens is
lacking.

Theoretical studies of the high-energy behaviour of various QED
processes left a number of unanswered questions. At the same time, they
provided a certain experience which allows one to make conclusions about
what can happen beyond the perturbation theory.

9.3 Inelastic processes at high energies

We embark on a discussion of a very important issue, namely what in-
elastic processes a Regge pole corresponds to.

https://doi.org/10.1017/9781009290227.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290227.010


9.3 Inelastic processes at high energies 241

We have seen that in the gϕ3 theory the Regge pole appears as a sum
of multi-particle ladders:

A(s, t) =

t

=Σ =
g2

m2

[(−s

m2

)−1+β(t)

+
( s

m2

)−1+β(t)
]
.

Evaluating the imaginary part of the forward elastic amplitude we obtain,
due to the optical theorem, the total cross section:

σtot � s−1 ImA(s, 0) � g2

s2

[
πβ(0)

( s

m2

)β(0)
]
, (9.40a)

where we invoked (9.19) to fix the phase of the complex factor (−s)β

and expanded perturbatively sinπ(1 − β) � πβ. Since β(0) > 0, the total
cross section (9.40a) decreases slower with s and is therefore much larger
at high energies than the Born elastic cross section,

σel
Born ∝

∫
dΩ
4π

∣∣∣∣A(s, t)
s

∣∣∣∣2 ∼ g4

s2
. (9.40b)

This means that inelastic channels dominate.

9.3.1 Topological cross sections 2 → 2 + n

Having our ladder pictures, it is straightforward to find not only total but
all partial inelastic cross sections as well. Indeed, since σtot is determined
by the sum

ImA(s, 0) =
∑
k=2

Im Jk(s, 0),

where Jk is one of the ladder graphs, we have

σn+2 = s−1 Im Jn+2(s, 0) = −g2

s
Im

[
β(0)(ln s− iπ)

]n+1

(n + 1)!

� πg2

s2

[β(0)]n+1

n!
lnn s ∼ σel

Born ·
[β(0) ln s]n

n!
;

(9.41)

here σn+2 (the so-called ‘topological cross sections’) is the cross section
of the process 2 → 2 + n with the production of n additional particles.
What is the characteristic number of produced particles in the sub-
processes that have made σtot increase with respect to the elastic one?
The expression (9.41) is nothing but a Poisson distribution in multiplicity

https://doi.org/10.1017/9781009290227.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290227.010


242 Regge poles in perturbation theory

n

n

n

σ

Fig. 9.5 Poisson multiplicity distribution of topological cross sections.

which we can represent invoking (9.40) as

σn+2

σtot

=
n̄n

n!
e−n̄, σtot =

∞∑
n=0

σn+2. (9.42a)

Here n̄(s) is the logarithmically increasing average particle multiplicity,

n̄ = n̄(s) � β(0) ln
s

m2
. (9.42b)

So it is inelastic sub-processes with the number of particles increasing
with energy, n ∼ n̄, that dominate the total cross section as shown in
Fig. 9.5.

9.3.2 Multiperipheral kinematics

Another interesting question is how the produced particles are distributed.
To answer it, we need to look into the internal structure of the ladders.
Recall how we calculated above the ladder diagram Jn.
We have introduced n− 1 momenta of the vertical
lines, qi, and took the residues in αi putting on the
mass shell all the rungs but the very bottom one.
This last particle also becomes real when we take
the imaginary part of Jn, see (9.25d),∫

dβn−1 Im
1

m2
n⊥−iε− (1−αn−1)(βn−1 + γ)s

=
π

s
,

fixing the value of βn−1.

α2

α1

α

Since we are interested in the distribution of the produced particles, it
is natural to express the ladder in terms of the final-state momenta, ki.
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k

2k
1k

p
1

n+1k

nk

p
2

k

0 Let us take Jn+2. The top and bottom particles are
‘leaders’: the top one has a large β-component,

β
(k)
0 = 1 − β1 � 1, k0 � p1 +

m2
0⊥
s

p2 + k0⊥,

and the bottom particle, correspondingly, carries away
practically all the momentum of p2,

β
(k)
n+1 �

m2
n+1,⊥
s

, kn+1 � p2 +
m2

n+1,⊥
s

p1 + kn+1,⊥.

At the same time, the longitudinal momenta of all
‘new’ particles, i = 1, 2, . . . , n, change freely, and it is

these variations that enhance the cross section. Translating qi into the
rung momenta ki = qi − qi+1, see (9.27),

β
(k)
i = βi − βi+1 � βi, (9.43a)

α
(k)
i = αi+1 − αi � αi+1; (9.43b)

for Jn+2 we have

Im Jn+2 =
πg2

s

n+1∏
i=1

{∫
d2ki⊥
2(2π)3

g2

(i⊥)2

} ∫ 1 dβ1

β1
· · ·

∫ βn−1

γ

dβn
βn

. (9.44)

Evaluating the integrals results in the multiplicity distribution (9.41). The
integrand itself gives us the momentum spectra of final-state particles in
the process 2 → 2 + n. We observe two important properties.

(1) Dependences on transverse and longitudinal variables of final-state
particles, ki⊥ and kiz ∝ βi, factorized.

(2) The distribution is uniform in

dβi

βi
= d

(
lnβi

)
. (9.45)

Such a pattern of multi-particle production (not to forget the limited
transverse momenta) is often referred to as ‘multiperipheral kinematics’.

In the laboratory frame, with the target at rest, p2 = 0, and the pro-
jectile very fast, p10 � s/2m, ki � βip1, so that one may speak of the
uniformity in ln ki0. This means that, descending the ladder, we will typ-
ically meet particles with energies

k10 ∼ λ · p10, k20 ∼ λ2 · p10, . . . , kn0 ∼ λn · p10, (9.46)
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all the way down to the target, kn+1,0 ∼ λn+1 · p10 = m. The energy frac-
tion λ is a measure of the invariant mass squared of the neighbouring
particles:

s12 = (k1 + k2)2 ∼ 2(k1k2) = (β1α2 + β2α1)s

= β1
m2

2⊥
β2

+ β2
m2

1⊥
β1

∼
(
λ−1 + λ

)
m2

⊥ � m2
⊥
λ

,
(9.47)

where we substituted α1, α2 from the on-mass-shell conditions,

αiβis = m2 + k2
i⊥ ≡ m2

i⊥. (9.48)

We have

(n + 1) · lnλ−1 � ln
P

m
� ln

s

m2
;

substituting the average multiplicity (9.42b), we get an estimate

lnλ−1 � ln
〈si,i+1〉〈
m2

i⊥
〉 � 1

β(0)
∝ 1

ḡ2

(
ḡ2 ≡ g2

m2

)
, (9.49)

with ḡ the dimensionless coupling constant. We see that the pair masses
of the neighbours are very large in the perturbation theory where the
coupling constant is small. It is worthwhile to mention here a kinematical
relation linked to this observation. Let us construct the product of all pair
invariants along the multiperipheral chain:

s01s12s23 · · · sn−1,nsn,n+1.

Using si,i+1 � βiαi+1s (cf. (9.47)),

(β0α1s)(β1α2s) · · · (βn−1αns)(βnαn+1s),

and assembling the products (9.48), we get

n∏
i=0

si,i+1 = β0 ·
n∏

i=1

(αiβis) · αn+1s = s ·
n∏

i=1

m2
i⊥, (9.50)

where we have used β0 � αn+1 � 1 for the leading particles. The substi-
tution of the average characteristics gives

〈si,i+1〉n̄ = 〈s〉β(0) ln s = sβ(0) ln〈s〉 = s, =⇒ β(0) ln〈s〉 = 1,

reproducing (9.49).
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9.3.3 Inclusive particle spectrum

What sort of observables should we measure in the case of a large mul-
tiplicity? It is interesting to study the average characteristics of particle
production, for example, to plot a histogram for the longitudinal momen-
tum distribution. Let us introduce an important observable which is well
suited for characterizing multi-particle production. Consider the density
of particles per unit cell of the momentum phase space,

d3σincl(k) = f(k)
d3k
k0

.

To measure this quantity, one has to register one particle with a given
momentum k and ignore the number, and momenta, of other particles
produced in the collision. Take for an example a pp collision and trigger
one meson.

π

k1

k

−
p

p

k 2

n
Σ dΓn−1 = dσ(k).

We square the n-particle production amplitude A, integrate indiscrimi-
nately over the momenta of all final-state particles but one π− with mo-
mentum k and sum over all ‘topologies’ n. This quantity is called the
‘inclusive spectrum’, in contrast to ‘exclusive’ processes (like elastic scat-
tering) where characteristics of all final-state particles are measured.

One should be aware of the fact that f is not a differential cross section
in a sense, because its integral does not yield σtot. Write down the general
expression for the inclusive one-particle spectrum,

d3σ =
1
j

∑
n

d3k

2(2π)3k0
· 1
(n−1)!

∫
· · ·

∫
d3k1 · · · d3kn−1

(2π)3(n−1)2k10 · · · 2kn−1,0

×
∣∣An(k; k1, . . . , kn−1)

∣∣2(2π)4δ(p1 + p2 − k −
∑

ki).

(9.51)

Essential here is the combinatorial factor 1/(n− 1)! which takes care of
multiple counting in the integration over the full phase space of n− 1 iden-
tical particles. If we wanted to calculate σtot, we would have to integrate
over all particle momenta, including k, with the factor 1/n!. Therefore,
integrating (9.51) over the momentum of the selected particle we will ob-
tain not the total cross section σtot =

∑
n σn, but

∑
n nσn ≡ n̄σtot, with

n̄ the average multiplicity.
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9.3.4 Rapidity variable

How to examine inclusive cross sections? It makes little sense to plot it
in the bins in kz since, because of the strong ordering (9.27), (9.46), the
bulk of particles is soft, |kz| � pz, and will fall into the single bin around
kz � 0, in any reference frame. For example, in the cms we will not see
anything but a huge peak in the centre of the distribution,

λ pλ2λ3zp−

dn
kzd

z

Uniformity of multiperipheral particle production in dβ/β means constant
particle density per unit of phase space,

dΓ(k) =
d3k
k0

= d2k⊥
dkz
k0

,
dkz
k0

=
dβ

β
.

To characterize this key feature of multi-particle production in a Lorentz-
covariant manner, one introduces a convenient variable called ‘rapidity’,

η =
1
2

ln
k0 + kz
k0 − kz

. (9.52a)

Using the on-mass-shell relation (kμ)2 = m2, we may rewrite (9.52a) as

η =
1
2

ln
(k0 + kz)2

k2
0 − k2

z

= ln
k0 + kz
m⊥

. (9.52b)

In the frame where k is fast, |η| � ln(2k0/m⊥) (the sign being that of kz).
This variable is special in the sense that it transforms additively under
Lorentz boosts along the collision axis z,

η → η + Δη, Δη =
1
2

ln
1 + v

1 − v
.

The relative rapidity of two particles is therefore invariant under such a
change of the reference frame. Observing that the energy and the longi-
tudinal momentum can be expressed in terms of the rapidity (9.52) as

k0 = m⊥ cosh η, kz = m⊥ sinh η,
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we have for the invariant two-particle energy s12 ≡ (k1 + k2)2

s12 −m2
1 −m2

2 = 2k1k2 = 2(k10k20 − k1zk2z) − 2(k1k2)⊥.

Transverse momenta do not change under the longitudinal Lorentz boost;
the longitudinal part of the product of four-momenta depends on the
difference of two rapidities (also an invariant)

(k10k20 − k1zk2z) = m1⊥m2⊥ cosh(η1 − η2). (9.53)

In terms of the rapidity, the particle phase space reads

d3k
k0

= d2k⊥
dkz
k0

= d2k⊥ dη. (9.54)

The property (9.45) translates then into homogeneity in rapidity. Let us
introduce rapidities of the colliding particles,

η+ = ln
p10 + p1z

m
� ln

2p10

m
,

η− = ln
p20 + p2z

m
= − ln

p20 − p2z

m
� − ln

2p20

m
.

(9.55)

Each of them depends, obviously, on the frame. For example, in the lab-
oratory frame η− = 0, η+ = ln(s/m2); in the centre-of-mass frame of the
collision η+ = −η− = 1

2 ln(s/m2), etc. preserving the invariant difference

η+ − η− � ln
4p10p20

m2
= ln

s

m2
.

The Sudakov variables are invariants too and are linked to the rapidity
as follows

k = β p′1 + αp′2 + k⊥;

β =

√
k2 + k2

⊥
s

exp
{
η − 1

2(η+ + η−)
}
,

α =

√
k2 + k2

⊥
s

exp
{
−η + 1

2(η+ + η−)
}
.

(9.56)

In terms of rapidities (9.44) simplifies. Introducing an additional k⊥ in-
tegration, we can represent the particle distribution in an exceptionally
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simple symmetric form:

σn+2 =
σ2(s)
β(0)

n+1∏
i=0

(∫
d2ki⊥
2(2π)3

∫
dηi

)
·
n+1∏
i=1

g2

[m2 + q2
i⊥]2

× 2(2π)3δ(2)

( n+1∑
i=0

ki⊥

)
δ(η0 − η+)δ(ηn+1 − η−),

(9.57a)

where the ordering of rapidities is implied,

η+ = η0 > η1 > η2 > · · · > ηn > ηn+1 = η−. (9.57b)

In (9.57a) q⊥ are transverse momenta of the vertical lines,

qi⊥ =
i−1∑
m=0

ki⊥. (9.57c)

The only dependence on rapidities is contained in the ordering condition
(9.57b); otherwise, the multi-particle distribution given by the integrand
of (9.57a) depends only on the transverse momenta.

9.3.5 Rapidity plateau in the inclusive spectrum

The homogeneity of the particle distribution in rapidity is of extreme
importance for the Regge-pole picture. How to verify this property ex-
perimentally? Let us look at the inclusive production cross section of a
particle with momentum η, k⊥. We need to integrate the cumbersome
expression (9.57a) over the variables of all particles but one,

σn+2 ≡
∫

d2k⊥ dη fn(k⊥, η), (9.58a)

and construct the sum

dσ

d2k⊥ dη
= f(k⊥, η) ≡

∑
n

fn(k⊥, η). (9.58b)

As we have just discussed above, it is normalized as follows,∑
n

∫
d2k⊥ dη fn(k⊥, η) =

∑
n

nσn+2 = n̄ · σtot, (9.59)

where n̄ is the average number of particles produced in addition to the
two leading ones. If one includes the end points η = η± in the rapidity
integration in (9.59), then n̄ will be by two units bigger and count all the
particles in the event.
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We calculate now the inclusive cross section in perturbation theory.
We take the imaginary part of the forward

scattering amplitude and choose one particle
somewhere in the middle of the ladder, not too
close in rapidity to the leaders. Above and be-
low the selected rung there will be two shorter
ladders again. Integrating over loop momenta
inside these two ladders and summing over n1

and n2 results in the appearance of the prod-
uct of the imaginary parts of two new forward
amplitudes, and we get

n1,n2

k

1

p2

s1 

s2

n1

n

ki

k 0 

kn+1

ki+1

p

22

2(2π)3f(k) =
1
j

∫
d4q

(2π)3
1

[m2 − q2]2
1

[m2 − (q − k)]2

· 2 ImA((p1 − q)2, q2) · 2 ImA((p2 + q − k)2, (q − k)2).

(9.60)

Let us evaluate the invariants entering the two blocks. Casting the mo-
menta in the Sudakov basis as

2
p

1p

qk

Im A

1

(s  )

Im A(s  )

2

q = βqp
′
1 − αqp

′
2 + q⊥,

k = β p′1 + αp′2 + k⊥, αβs = m2 + k2
⊥ ≡ m2

⊥,

we have

s1 = (p1 − q)2 = q2 + αqs + O
(
m2

)
,

s2 = (p2 + q − k)2 = (q−k)2 + (βq−β)s + O
(
m2

)
.

Let us express the longitudinal integration variables αq and βq in units of
α, β by introducing the fractions z1, z2 > 0,

αq ≡ z1 · α, (βq − β) ≡ z2 · β
(
βq = (1 + z2)β

)
;

dαq dβq
s

2
= dz1 dz2

m2
⊥

2
. (9.61)

Then the momenta squared read

−q2 ∼ αqβqs = z1(1 + z2)m2
⊥,

−(q − k)2 ∼ (αq + α)(βq − β)s = (1 + z1)z2m
2
⊥,

(9.62)

where we have combined the product αβ into the transverse mass.
The virtualities in (9.60) are limited. Therefore from (9.62) follows that

zi cannot run large. This tells us that the invariant energies of the two
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blocks are practically fixed by the parameters of the registered particle k,

s1 � αq s ≡ αs · z1, z1 ∼ 1;

s2 � (βq−β)s ≡ βs · z2, z2 ∼ 1.
(9.63)

We conclude that both blocks are in the asymptotic regime, s1, s2 � m2,
so that we can substitute the Regge pole amplitudes, see (9.40a),

p1

p2

αs

βs

k

ImApole(p1, q) = g2πβ(0)
( s1

m2

)α(0)
,

ImApole(p2, q − k) = g2πβ(0)
( s2

m2

)α(0)
.

In these blocks the s-dependence of the inclusive
cross section is hidden; neither the propagators in
(9.60) nor the phase space (9.61) contain s. The
partial energies s1 and s2 in (9.63) obviously depend
on the particle rapidity,

s1 ∼ αs = m⊥
√
s e−(η−η̄), s2 ∼ βs = m⊥

√
s eη−η̄; η̄ ≡ 1

2(η+ + η−),

but in their product this dependence disappears,

( s1

m2

s2

m2

)α(0)
=

( s

m2

)α(0)
·
(
z1z2

m2
⊥

m2

)α(0)

.

Taken together with the flux factor, j−1 � s−1, we reproduce the s-
behaviour of σtot(s) (9.40a). This being the only s-dependent ingredient
of (9.60), for the inclusive cross section we finally obtain

f(k⊥, η) = σtot(s) · φ(k2
⊥), (9.64)

where the normalized inclusive spectrum φ depends neither on s nor on
the rapidity η of the triggered particle. The spectrum density φ has the
following structure

φ(k2
⊥) ∝ (m2

⊥)α(0)+1

∫
d2q⊥

∫ ∞

0
dz1 z

α(0)
1

∫ ∞

0
dz2 z

α(0)
2

· 1
[m2+q2

⊥ + z1(1+z2)m2
⊥]2[m2+(q−k)2⊥ + (1+z1)z2m2

⊥]2
.

(9.65)

Its normalization is easy to fix using the general relation (9.59),∫ η+

η−

dη

∫
d2k⊥ f(k⊥, η) = n̄(s) · σtot = β(0) ln

s

m2
· σtot,

=⇒
∫

d2k⊥ φ(k2
⊥) = β(0).

(9.66)
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In the spirit of the Regge pole picture, the inclusive spectrum f(k⊥, η)
can be represented graphically as

f(k⊥, η) = k

2

p
1

(k )2φ

g
1
r

g
2
r

p

(9.67)

where φ plays the rôle of a new reggeon–reggeon vertex with the produc-
tion of the particle with a given k.

One can study multi-particle observables as well. Consider, for exam-
ple, the double inclusive cross section, f(k1, k2), which characterizes the
production of two particles with fixed momenta in the same event. The
consideration analogous to (9.51) which has led us to the normalization
of the one-particle inclusive cross section,

1
σtot

∫
f(k1) dΓ(k1) = n̄, (9.68a)

yields in the case of two registered particles

1
σtot

∫
dΓ(k1)dΓ(k2)f(k1, k2) = 〈n(n− 1)〉 =

〈
n2

〉
− n̄. (9.68b)

To see whether particles are correlated, one constructs the difference

C2(k1, k2) =
f(k1, k2)

σtot

− f(k1)
σtot

f(k2)
σtot

.

The phase space integral of the correlation function,∫
dΓ(k1) dΓ(k2)C2(k1, k2) =

(〈
n2

〉
− n̄2

)
− n̄,

is zero for the Poisson distribution.
We take the ladders and assemble the intermediate lines into three

Regge pole amplitudes, provided the pair energies are large. Invoking the
kinematical relation (9.50),

(s1s2s3)α(0) = sα(0)
(
m2 + k2

1⊥
)α(0)(

m2 + k2
2⊥

)α(0)
,
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we arrive at

f(k1, k2) = f(k1⊥, η1;k2⊥, η2) = sα(0)−1 gr1 φ(k2
1⊥)φ(k2

2⊥)gr2. (9.69)

In a full analogy with (9.67) the double inclusive cross section does not
depend on particle rapidities. In perturbation theory particles (with large
relative rapidity) are produced independently, C2(k2, k2) ≡ 0.

∑
n1,n2,n3

3

1

p2

s1

s2

s3

k

k

1

2

n

n1

2

n

p

=⇒
)2

g
1
r

φ(k 2k 2

φ(k 2 )1

p
1

g
2
rp2

k1

.

The fact that the inclusive cross sections do not depend on rapidity
looks very natural; in the first place, there was no ηi dependence in the
underlying multi-particle distribution (9.57) either. On the other hand, if
we have indeed a Regge pole, it could not possibly be otherwise.

We have said before that the pole is factorized. This means that after
a few steps away from the leading particle (say, descending the ladder)
the system goes over into a definite state which no longer ‘remembers’
about the initial state, about the quantum numbers of the projectile
and, in particular, about the initial momentum. But how can this be
possible?

Let us change the reference frame by moving along the collision axis
with some velocity v corresponding to Δη in rapidity. Then the distribu-
tion f(η) will shift as a whole, f → f(η + Δη). But if the particle deep
inside the ‘ladder’ has forgotten about the energies of the colliding par-
ticles p1 and p2 (factorization!), then the probability to observe the par-
ticle should not change. (We cannot say much about the edges of the
distribution, η � η±, at the moment. We will discuss this issue in what
follows.)

Thus the uniformity in rapidity – the so-called rapidity plateau – is just
the consequence of the factorization. We shall see later that homogeneity
in rapidity follows from the factorization also beyond the perturbation
theory, if the average transverse momentum of hadrons does not increase
with the energy s.
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h−h +h

Δh
dσ
dh

Fig. 9.6 Plateau in the inclusive cross section. Changing the reference frame
does not affect particle density inside the ladder.

The mean particle multiplicity increases with the width of the distri-
bution, η+ − η− = ln(s/m2), in Fig. 9.6. The height equals β(0) ∝ ḡ2; in
the perturbation theory it is small.

9.3.6 Particle distribution in the impact parameter space

The impact parameters of colliding particles do not change in the course
of the high-energy scattering. And how are the newly produced particles
distributed in the impact parameter space? Answering this question will
allow us to understand the origin of the impact parameter structure of
the pomeron amplitude (8.22):

ImApole(s,ρ12) =
1

4πα′ξ
exp

{
−(ρ1 − ρ2)2

4α′ξ

}
, ξ = ln

s

m2
. (9.70)

In Lecture 5 we speculated about the possibility of having the interaction
radius growing with energy. We saw that the random walk in the im-
pact parameter, due to long-living multi-particle fluctuations, is capable
of generating the growth of the radius characteristic for the Regge pole
exchange (9.70), namely ρ ∝ √

ξ. Now we are in a position to verify this
expectation within our perturbative model.

Take the ladder amplitude,

f(k0;k1, . . . ,kn;kn+1) = gn+2 1
m2+k2

0⊥

1
m2+(k0+k1)2⊥

· · ·

· · · 1
m2+(k1+ · · · +kn−1)2⊥

1
m2+(k1+ · · · +kn)2⊥

= gn
1

m2 + q2
1⊥

1
m2 + q2

2⊥
· · · 1

m2 + q2
n,⊥

1
m2 + q2

n+1,⊥
, (9.71)
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and Fourier-transform it to the impact parameter space,

f(ρ0,ρ1, . . . ,ρn+1) =
∫

d2k1⊥
(2π)2

· · · d
2kn⊥

(2π)2
ei

∑n+1
i=0 (ki·ρi)f(k0, . . . ,kn+1),

where the integral over the last transverse momentum, kn+1,⊥ was traded
for the momentum-conservation condition, δ2

(∑n+1
i=0 ki⊥

)
. The Fourier

exponent can be cast in terms of the transferred momenta qi,

n+1∑
i=0

ki · ρi = q1 · (ρ0−ρ1) + q2 · (ρ1−ρ2) + · · · + qn+1 · (ρn−ρn+1).

Then, given the factorized structure of (9.71) in qi, the transformed am-
plitude comes out very simple,

f(ρ0, . . .ρn+1) = gn+2ϕ(ρ0−ρ1)ϕ(ρ1−ρ2) · · ·ϕ(ρn−ρn+1), (9.72a)

ϕ(ρ) =
∫

d2q
(2π)2

eiq·ρ

m2 + q2
. (9.72b)

The probability of a given configuration will be given by |f(ρ1, . . . ,ρn)|2.
Integration of the squared amplitude over all impact parameters ρi will
obviously produce the ladder cross section σn.

Consider the probability wτ,τ ′(ρ) of finding two particles, labelled τ
and τ ′ at some distance |ρ|. This is a typical inclusive characteristic:
we don’t restrict other particles and integrate over their position in the
transverse plane. The chain structure of the amplitude (9.72a) makes it
clear that the positions of the ladder rungs with numbers i outside the
interval between the triggered particles, i /∈ [τ, τ ′], will be integrated out
freely without affecting the answer.

We can pick, for example, the last rung, τ ′ = n + 1, and since the answer
depends only on the difference of the coordinates, set ρn+1 = 0. This way
we will be studying the distance of the particle τ from the target p2.

The normalized probability takes the form

wΔ(ρ) =
1

NΔ

∫
d2ρτ+1 · · · d2ρn ϕ

2(ρ−ρτ+1)ϕ
2(ρτ+1−ρτ+2) · · ·ϕ2(ρn),

Δ = n + 1−τ ;
∫

d2ρwΔ(ρ) = 1, N ≡
∫

d2ρϕ2(ρ). (9.73)

The integrand of wΔ contains Δ factors ϕ; the number of integrations
is Δ−1. In one step from the target, τ = n, we have the probability
w1(ρ) = ϕ2(ρ) given by (9.72b). At distances larger than the characteristic
radius r0 = m−1 it falls exponentially, ϕ(ρ) ∼ exp(−|ρ|/r0). It is natural
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to expect that with the number of steps Δ increasing, the probability of
finding the particle will spread.

Indeed, (9.73) is a typical diffusion problem with ϕ2(ρ) the probability
distribution of ‘jumping’ at a distance ∼r0; the convolution (9.73) de-
scribes the result after Δ independent jumps. Whatever the form of the
initial distribution w1, after a few jumps wΔ(ρ) becomes a Gaussian. Let
us find its dispersion σΔ,

wΔ(ρ) � 1
πσ2

Δ

exp
{
− ρ2

σ2
Δ

}
, (9.74a)

which measures the average squared distance from the target,

σ2
Δ =

〈
ρ2

〉
Δ

=
∫

d2ρτ

∫
dwΔ(ρτ )

(
Δ∑

k=1

[
ρτ+k−1 − ρτ+k

])2

. (9.74b)

Since the directions of individual jump are uncorrelated, averaging the
squared sum yields simply〈

ρ2
〉
Δ

= Δ ·
〈
ρ2

〉
1
, (9.75a)〈

ρ2
〉
1

=
∫

dw1(ρ)ρ2 =
1
N

∫
d2ρϕ2(ρ) · ρ2. (9.75b)

To calculate the concrete number is of little interest. We will, instead,
relate (9.75) directly to the Regge pole trajectory.

To do that, we go back for a moment to the momentum representa-
tion. From (9.72b) it immediately follows that the Fourier image of the
probability distribution is nothing but the Regge trajectory,∫

d2ρϕ2(ρ) e−iq·ρ =
∫

d2q′

(2π)2
1

[m2 + q′2][m2 + (q′ − q)2]
= c β(q2),

so that ∫
dw1(ρ) e−iq·ρ =

β(q2)
β(0)

. (9.76a)

Now the calculation of (9.75b) is very simple:

〈
ρ2

〉
1

=
{

(i∇q)2
∫

dw1(ρ) e−iq·ρ
}

q=0

= − 4
β(0)

d

dq2
β(q2)

∣∣∣∣
q=0

= 4
α′(0)
β(0)

,

(9.76b)

where α′ = β′ denotes the derivative of the trajectory over t = −q2.
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Finally, what is the meaning of Δ in (9.75a)? The number of particles
we can evaluate as the size of the rapidity interval between the triggered
particles, the particle τ , and the target, multiplied by the average density
of the plateau:

σ2
Δ = Δ ·

〈
ρ2

〉
1

=
[
(η − η−) × β(0)

]
· 4 α′

β(0)
.

Substituting this dispersion into (9.75) and setting η = η+ we obtain ex-
actly the impact parameter profile of the vacuum pole (9.70):

wΔ(ρ12) � 1
4πα′ξ

exp
{
− ρ2

12

4α′ξ

}
= Apole(s,ρ12). (9.77)

9.3.7 Perturbative conclusions

Here we summarize the characteristic features of the inelastic processes
which determine the Regge pole in perturbation theory.

(1) Topological cross sections follow the Poisson distribution

σn(s) = σtot(s)
[n̄(s)]n

n!
e−n̄(s). (9.78a)

(2) The mean particle multiplicity grows logarithmically with energy,

n̄(s) = β(0)ξ, ξ = η+ − η− = ln
s

m2
. (9.78b)

(3) The inclusive particle spectrum is flat in rapidity (plateau) and does
not depend on the total energy,

d3n

d2k⊥dη
=

f(k2
⊥, η; s)

σtot(s)
= = φ(k2

⊥). (9.78c)

(4) The production of particles with large rapidity intervals between
them is uncorrelated,

d6n

d2k1⊥ dη1 d2k2⊥ dη2
= = φ(k2

1⊥)φ(k2
2⊥). (9.78d)
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(5) The particle density in the plateau is small,

dn

dη
=

∫
d2k⊥ φ(k2

⊥) = β(0) ∼ g2

m2
� 1. (9.78e)

(6) The energy increase of the interaction radius characteristic for the
Regge-pole exchange is due to diffusion in the impact parameter
space,

ρ0(s) ∼
√
β′(0) ξ. (9.78f)
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