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CLASS NUMBERS OF QUADRATIC FORMS OVER
REAL QUADRATIC FIELDS

YOSHIYUKI KITAOKA

Let k£ be an algebraic number field, let K be a Galois extension of
k of finite degree, and let Og, O, be the maximal orders of K, k, re-
spectively. We congider the conjugate operation: for a given quadratic
lattice M over Oy equipped with a bilinear form B and for an auto-
morphism oe G(K/k), we define a new quadratic lattice M° over Og.
Here M’ has the same underlying abelian group as M, but a new Og-
action axv = o(a)v (@€ Og,ve M); the new bilinear form B° on M° is
defined by B°(u,v) = ¢ *(B(u, v)) (u,v € M). Then the Og-linearity of B°
is checked as follows:

B(axu, v) = o (B(e(a)u, v))
= aB°(u, v) (aeOg,u,veM) .

If M has an Og-basis, i.e., M = Oglv,, v,, - - -, v,], then M° is a quadratic
lattice corresponding to the matrix (¢7'(B(v;,v,))). In this paper we say
that a quadratic lattice M is symmetric if M° is isometric to M for any
g in G(K/k). There are some tools to know class numbers of positive
definite quadratic forms over the ring Z of rational integers, and they
are effective in principle in case of definite quadratic lattices over the
maximal order of an algebraic number field. But they do not seem to
be useful to know the class numbers of symmetric quadratic lattices
apart from the cases of small class numbers. By using the theory of
quaternions we prove

THEOREM. Let K be a real quadratic field Q(v'q) where q is a
rational prime =1 (mod4), and let V be a quaternary quadratic space
over K with bilinear form B and quadratic form Q (Q(x) = B(x, x)) which
satisfies
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(i) the discriminant dV of V is a square, that is, det (B(v;,v,))
s a square, where {v;} is a basis of V,

(ii) V 1is positive definite at each infinite prime of K,

(iii) there is a lattice M over the maximal order O of K in V such
that M is a unimodular quadratic lattice at each finite prime of K, and
Q) = 0 (mod 2) for any x <€ M.

Furthermore, let G denote the genus of the quadratic lattice M. Then,
for q + 5, the class number of isometry classes of quadratic lattices in
G 1is

LH(H + 1), where H is B,,/2"-3 + (¥ —¢)/8 + h(v=39)/6 ,

and the class number of isometry classes of symmetric® quadratic lattices

n G is
llore=o(3))/2 (0= (3))/4
{Ch g /24 + : /
+ B,,/2°-3 + (v —q)/16 + (v —3¢)/12,
where B,, is a generalized Bernoulli number with y(n) = (ﬁ), <_73)
q q

stands for the quadratic residue symbol, and h(v'—m) is the class num-
ber of an imaginary quadratic field Q(v—m). If q =5, then both class
numbers are one.

Remork 1. Theorem in case of ¢ = 5 is proved by Maass [3].

Remark 2. Every quadratic lattice in the genus G in Theorem has
an Ogx-basis (appendix). Hence G can be regarded as a set of matrices
A in SL(4, Og) such that diagonal entries are divisible by 2, and A, ¢4
are positive definite, where ¢ is a non-trivial automorphism of K.

Remark 3. Since a conjugate quadratic lattice L’ of L is not unique
up to rotations, it seems to be difficult to consider our problems within
the category of rotations in general. However there are some exceptional
cases which can be treated as follows:

Let K/k be a Galois extension and V, be a quadratic space over k,
and put V=K@®,V,. For cec GK/k) and an element v = > a,v;, where
a; €K and {v;} is a basis of V, over &, we define ¢(v) by > a(a;)v;.

* We consider the rational number field Q as k in the introduction.
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Then, for a given quadratic lattice L in V and oce G(K/k), we have
L° = ¢ '(L). Suppose that two lattices L, M are isometric by a rotation
0, (L) =M. Put ¢, =07'¢o; then ¢, (¢7'L) = ¢7'M. Next we show that
o, is a rotation. Let ¢(v,,:-+,v,) = (v, --+,v,)T. Then ¢,(v,, :-+,v,) =
@y, +++,v,)07(T) implies det g, =det o™ (T) =07'det T =o' detp =1, and
B, (vy), 9,(v,))) = a7 T)(B Wy, )0 (T) = a7 (T (B, v)T) = a7 (B(v;, v;))
= (B(v;, v;)), where B is the bilinear form associated with V,. Thus ¢, is
a rotation. Hence by taking ¢7'(L) as a realization in V of L° we can
consider our problems in the category of rotations.

§1. In this section we summarize our necessities without proofs
from the theory of Tamagawa which was lectured in the Summer Insti-
tute at Tokyo in 1970 (for details and more see [6]).

Let ¢ be a prime = 1 (mod4), and D, be a quaternion algebra over
the rational number field @ which is ramified at and only at ¢ and oo,
and K be Q(v/q). We denote the maximal order of K by Og. D denotes
K ®qD,; then D is a quaternion algebra over K which is ramified at
two infinite primes only. Moreover we denote the non-trivial automor-
phism of K by the bar, x — Z, and the main involution of D, by the
star, x — x*. These two linear mappings are cannonically extended to D
and the idele group DX of D, and we denote them by the bar and the
star again. For an Og-module M in D we denote the p-adic closure of
M in D, =D ®xK, by M,. The two linear mappings are locally as fol-
lows :

Let p be a prime of K (pfoo); then D, is isomorphic to M,(K,) and
the main involution * is given by

(“ b)*:.(d —b) (@, b,¢c,deK,) .
¢ d —Cc a

Let p be a rational prime.

1) In case that p splits in K, (p) = 99, p; # P,y We have D, ®D,, =
ML(Q,) ® M,Q,) and the non-trivial automorphism of K operates as the
permutation on it.

If » does not split in K and p|p, then K, is a quadratic extension
of @, and the non-trivial automorphism of K induces one of K,, and it
operates on D, = M,K,):

2) (Cc‘ Z)=(§ g)ifp;Eq,
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a b d e'c) .
3) (c d)z(eE d)lfp:q’

where a,b,¢,de K,, and e is a unit of @, which is not the norm of an
element of K,.

Now it is obvious that there is a maximal order © in D such that
O =0* =90 and O, = M,(Ox,) by the correspondence D, = M,(K,), where
Ok, is the maximal order of K,. We fix it hereafter.

Put H={xeD;Z=2* and H,=H N O, and we consider the
quaternion algebra D as a quadratic space with @Q(z) = 2n(x) = 2xx* over
K; then for xe H, Q(x) is a rational number since Q(z) = 2zxx* = 22%.
Hence we can regard H, as a quaternary positive definite quadratic
lattice over the ring Z of rational integers.

If p splits in K, (p) = pip, (p; # ), then the closure of H, in D, ®

*
Dz =~ Mz(Qp) &) MZ(Qp) is {( 11 gi) @ (Z: Zz) s Qg bi, Ciy di € Zp, ((CLII ZI)
= <(g2 ZZ)} If (p) =9 is a prime in K, then the closure of H, in D, is
2 2,
{(g 2); a,b,ce O, b= —b,c= —C}~

If p = g, then the closure of H, in D, (p|q) is {( . d) beOx,

a,deZq}. Hence the norm of H, is 2Z and the discriminant |B(x;, x,)|

is q, where {z;} is a Z-basis of H, and B(w;, z;) = tr (x,x¥) = x,2¥ + x,;xf.

Denote the idele group of K, Q by KX, @ respectively and put
N = {(4, ¢) e (DX, QF) ; cADA* = O}, where cAOA* means D, ¢,4,0,(4%),
(@Q% is embedded in DJ). Then D* x Q*\D} X Q%/N is bijectively cor-
responding to the equivalence classes of ideals of form cAQA*(ce QF,
A € DY) where the equivalence relation is defined as follows: I, N are
equivalent if and only if M = bBNB*, where b e Q%, Be D*. Since D is
unramified for any finite prime of K and £ is a maximal order,
A0B, =9, (4, B, D)) implies 4,0, = ,0,, O,B, = ¢;,'O, for any finite
prime p, where @, is in K,. Hence we get N = Z(U X Uy), where Z is
{(a, N K550 DiaeKj}, U is the group of unit ideles of O, and U, is
the group of unit ideles of @. Hence the number of double cosets
D> x @\Ds X Qf/N is equal to #{D*\D3/K3U}. Let A, a and « be an
element of D%, an ideal of K and an element of D* respectively. Then
DAaq = OAwx implies o’ = (n(e)) and so a is a principlal ideal since the
class number of K is odd. Hence we have #{D* X @*\DX X QX/N} =
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h(D)/h(K), where h(D), i(K) are the class numbers of D and K respec-
tively.

Let o be an element of K% ; then a defines cannonically an ideal of
K. We denote the ideal by id (¢). From the oddness of the class num-
ber of K and the fact that the norm of a fundamental unit of K is —1
follows that there is an element ae KX for a given A ¢ D¥ such that
id (n(Aaw)) = id (e*n(4)) is a principal ideal (x) with totally positive z ¢ K.
Then there is an element « in D such that #n(e) = . Thus cADA*(c e Q%)
is equivalent to A,OA¥, where A, = a 'aA, and id (n(4,) is the maximal
order O of K. Now we consider H N A QA = A,(H N O)A} as a
quadratic lattice over Z with quadratic form Q(x) = 2n(x). Then H N
A, OAF is in the genus of H,. A main result of Tamagawa is as fol-
lows:

The above correspondence gives a bijection from the equivalence
classes of cADA*(ce Q%, A € DY) to the equivalence classes in the narrow
sense, namely, by the group of rotations, of even quaternary positive
definite quadratic lattices with discriminant q.

§2. Keeping all in §1, let L be an Og-lattice of D; then L is by
definition a normal ideal if and only if the right or left order of L is a
maximal order; then L = AOB = D (M, A,0,B,(A, B € DY), where O is the
maximal order of D in §1 satisfying © = O* =D and O N H is an even
quaternary positive definite quadratic lattice with discriminant q. Two
normal ideals L, M are said to be equivalent, L ~ M, if there exist «,
B e D* such that M = «Lp. This equivalence relation is different from
one in §1. Let G be the genus of the maximal order © with quadratic
form Q(x) = 2n(x), that is, G consists of quaternary positive definite
unimodular quadratic lattices N over O such that Q(x) = 0 (mod 2) for
each # in N and the quadratic space K ®,, N is of discriminant 1, and
so it is the same genus as G in Theorem. Regarding D as a quadratic
space over K with quadratic form Q(x) = 2n(x), the rotations of D are
all the mappings of the form z— axzf, where «, e D and n(ef) =1, and
a non-rotational isometry is given by x — x*.

LEMMA 1. The class number of isometry classes, by the group of
rotations, of quadratic lattices in G is equal to

"R(K)! X the class number of normal ideals = h(D)*/ h(K)?,
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where WD), M(K) is the class number of D, K, respectively.

Proof. Let L=A9OB (A, B ¢ D¥) be a normal ideal such that id (n(4B))
is a principal ideal (a); then we may assume a is totally positive and
then there is an element aweD such that n(e) =a. Put M =a 'L =
aAOB. Since id (n(ae~*AB)) is the maximal order O of K, M is in the
genus of O as a quadratic lattice with quadratic form 2n(x), i.e., M ¢ G.
This correspondence gives a bijection from the equivalence classes of
normal ideals L = AOB (4, B e D¥) such that id (n(AB)) is principal to
the equivalence classes by rotations of quadratic lattices in G. It is ob-
vious that the class number of normal ideals equals R(K) X the class
number of normal ideals L = AOB (4, B e D%) such that id (n(AB)) is
principal, since A(K) is odd. For a normal ideal L = AOB (A,B e D})
we put o(L) = (ADA™', B-'OB), where the underline means the equivalence
class of maximal orders, namely, AOA™ = {0ADQA 'a™'; e D*}. Then
¢ gives a bijection from the equivalence classes of normal ideals L =
AOB (4, B € D¥%) such that id(n(4AB)) is principal to the direct product
of two copies of equivalence classes of maximal orders, noting ¢ 'Qa = O
(@ € K¥). The number of equivalence classes of maximal orders is, by
definition of equivalence, #{{A eD}; A7'QA = O}\DX/D*} and it is
D)/ MK) since {AeD}; A"0OA = O} = K5 x U as in §1. This com-
pletes the proof.

By the correspondence in the proof of Lemma 1 we regard a quad-
ratic lattice L in G as a normal ideal AOB (4,B e DX) such that
id (n(AB)) is principal. Then for quadratic lattices L,,L, in G corres-
ponding normal ideals A,OB,, A,0B,, L,, L, are rotationally isometric if
and only if A,OB, ~ A,0OB,, and L, is isometric to L, if and only if
AOB, ~ A,OB, or A, OB, ~ (A,0B,)*.

Let L be a quadratic lattice; then L has an isometry which is not
a rotation if and only if any quadratic lattice M which is isometric to
L is always rotationally isometric to L. Hence denoting the number of
isometry classes of quadratic lattices in G and the number of isometry
classes by rotations of them by %k and h* respectively, 2h — h* equals
the number of quadratic lattices in G which have a non-rotational iso-
metry.

LEMMA 2. 2h — h* = K(D)/h(K).
Proof. The idea of the proof is essentially due to H. Hijikata. By
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the above remark it suffices to prove that the class number of normal
ideals L = AOB (A, B € DY) such that L ~ L* and id (n(AB)) is principal
equals h(D)/MK). Put L = AOB (A,BeD}). If L* =aLB (a,feD),
then B*QA* = «AOBB. Hence ¢(L) (in the proof of Lemma 1) =
(ADA-Y, B-'OB) = (¢ 'B*O(a"'B*)"!, B-'OB) = (B~©OB, B~ *OB). If, con-
versely, B e DX is given, then we put A = w(B)"'B*. Then ¢(AOB) =
(B*OB, B*OB) and (AOB)* = AOB and moreover id (n(AB)) is principal.
This completes the proof.

From Lemma 1 and 2 we have h = }(h(D)*/ n(K)* + WD)/ MK)), and
MD)=1q=5. If ¢>5, then W(D)/MK) is B,,/2'-3 + h(v—q)/8 +
h(v¥'—3¢)/6, where B,, is a generalized Bernoulli number with y(n) =

(%) (the quadratic residue symbol) and k(v —m) denotes the class num-

ber of an imaginary quadratic field Q(v—m) ([11, [5], and [2] combining
with §1). This completes the proof of the former part of Theorem.

Hereafter we calculate the class number & of quadratic lattices L in G
such that L is isometric to L° where o is a non-trivial automorphism

of K and L~ is defined in the introduction. Here we introduce a mnew
equivalence relation = for mormal ideals:

L =~ M if and only if L ~ M or L ~ M*.

Then % is the class number by the new equivalence ~ of normal ideals
L = AOB such that L =~ L and id (n(AB)) is principal. Let L = AOB
stand for normal ideals such that id (n(AB)) is principal; then we have

24{{L; L ~ L}/ =~} = 4{{L; L ~ L}/ ~} + ${{L; L ~ L ~ L*}/ ~},
B{L: L # L,L ~ [¥)/ =} = ${{L; L ~ L%/ =} — H{L; L ~ L* ~ [}/ =)
= 4${{L; L ~ L¥}/=} — ${{L; L ~ L* ~ L/ ~},

24{{L; L ~ L*}/ =} = ${{L; L ~ L*}/ ~} + ${{L; L ~ L* ~ L*}/ ~} .

Hence we have
h=4{L; L ~ L}/ =} + ${{L; L # L,L ~ L*}/ =}
= #{L; L ~ L}/ ~} + $4{{L; L ~ L*}/ ~} .

Denote #{{L; L ~ L}/ ~}, #{{L; L ~ L*}/ ~} by h,, h, respectively.

LEMMA 3. h, is the square of the number h, of equivalence classes
of maximal orders AOA™' (A € D) such that AQA™' = ADA™.
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Proof. Let L = AOB (A, B e D) be a normal ideal such that L =
aLlp, «, pc D; then AOB = «¢AOBB implies (L) = (ADA~!, B~'OB) =
(ADA, B-*OB). If, conversely, ADA™' = ADA™!, B'OB = B~*OB hold
for A, B e D%, then taking A,, B, € D% such that id (n(4)) = id ((B,)) = O
and A,04;! = ACA™!, B{'OB, = B~'OB, we have (L) = (AQA™!, B-'OB)
for L = A OB,, and o(L) = o(L). Hence we get L ~ L. This completes
the proof.

o & b=o-3 43 /¢ (1 (3) /o whr ()

stands for the quadratic residue symbol.

Proof. Let AOA™'(A e DY) be a maximal order. Then the equiv-
alence class of AOA* where the equivalence relation is one defined in
§1 is uniquely determined by AQOA™. The correspondence is bijective
from equivalence classes of maximal orders to the equivalence classes of
ideals of form cAQA* (ce Qf,AeD%). Let ADA ' (A e D) be a maxi-
mal order such that ADA! = AOQA". We may assume that id (n(4))
= O without changing the class of the given maximal order AOA™,
ADA™ = ADA™ implies AD = afAD (ae KX, e D). Since id (n(4)) =
id (@*n()n(A)) = O, id (@) is principal. Hence we have AO = yAD (y e D)
and id (n(y)) = Ox. Now we define a linear mapping 5 by () = ra*p*
for xeD. Then y(ADA*) = yADA** = AQA*, and p(AQA* N H) =
AOA* N H. Moreover n(p®x) = nGa*r*) = Ng,m(p)n(x) = n(z) since
n(y) is a totally positive unit of K. Therefore an even positive definite
quadratic lattice AOA* N H with discriminant ¢ has a non-trivial iso-
metry. Then there exists an element e in AQA* N H with n(e) =1 by
2.5 in [2]. Conversely assume that AOA* N H has an element e with
n(e) = 1, where id (n(4)) = Og. Put e = A,¢,(4%), (¢,€D,); then n(e,) is
a unit since n(e) = n(4,)n(e)n((4*),) =1 and n(4,), n((A%),) are units of
K, from our assumption. Hence we get ¢, OF. Take an element f in
D% such that f,=e, for any finite prime. Then we have ADA™! =
(fA e)*O(f 1A e ) = e P ADA e = ADA™. By virtue of Tamagawa’s
bijection in §1 and the above bijection %, is equal to the class number
by rotations of even positive definite quaternary lattices with discriminant

q which have an element with length 2, and it is (q + 3 — 4(—2-» / 24

+ (1 — <—2_)> / 4 (§1in[2]) since for such quadratic lattices the equivalence
q
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by rotations is the same as the equivalence by isometries (a vector of
length 2 gives a symmetry).

LEMMA 5. &, = MD)/MK).

Proof. Let L = AOB (A, B e DY) be a normal ideal such that L =
aL*p (e, e D) and id (n(AB)) is principal. Then AOB = aB*QA*8 im-
plies o(L) = (ADA™!, B'OB) = (B*OB*!, B'OB) = (B~'OB, B~'OB).
Conversely take an order B'OB (B e DY); then there is some C in D3
such that C-'OC = B~'OB and id (n(C)) is principal. L = C*QC satisfies
L* = L and ¢*(L) =(B'OB, B"OB). This completes the proof of Lemma
5 and of our Theorem.

Appendix

PROPOSITION. Let k be an algebraic number field with the maximal
order o, and V be a regular quadratic space over k with bilinear form
B and we denote det (B(v;,v;)) by dV, where {v;} is a basis of V over k.
Then, o lattice L in V has an o-basis, t.e., L = ou, + -+ + ou, if and
only if there is an element a in k* such that the discriminant dL, of
L, is equal to a’dV (mod o)®) for any prime p in k.

Proof. Suppose that L has an o-basis, L = ou, + --- 4+ ou,. We
define a matrix 4 by (4, -+-,%,) = (v, - -+, v,)4, and put ¢ = [A|. Then
dL, = |(B(u;, uy))| = |AF|(B(v;, v))| = a*dV. Conversely suppose that dL, =
a’dV for an element o in k* and any prime p in k. Put L, =ov,+ ---
+ 0v,, M = oav, + 0¥, + -+ + 0v,, and L = oe, + --- + 0e,_, + ae, where
a is an ideal in k; then dM, = dM = *dV, and dL,0, = |(B(e;, €,))| a; =
a’dVo,. Thus we have o’dV |(B(e;e;))|™ o = a’. Since dV [(B(e;, e,)|™" is
a square in k, a is principal. This completes the proof.

COROLLARY. Keeping the notations of Proposition, we assume fur-
ther that there is a lattice L in V such that L, is unimodular for any
prime p in k. Then, L has an o-basis if and only if dV is a unit of k
up to a square of k.

Proof. If L has an o-basis, then dL is a unit at any prime in k.
Hence dL is a unit of k. If, conversely, dV is a unit, then dL,/dV is
a square of unit of %,, Hence dL, = dV (dL, is uniquely determined up
to squares of units of %, by definition). Taking 1 as a in Proposition,
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we get Corollary,
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