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Abstract

Pontryagin's maximum principle is derived by elementary mathematical
techniques. The conditions on the functions which enter are generally some-
what more stringent than in Pontryagin's derivation, but one (practically very
awkward) condition of Pontryagin can be relaxed: continuity in the time
variable can be replaced by a much weaker condition.

1. Introduction

In Pontryagin's work [8], his maximum principle is derived using the apparatus
of Lebesgue theory of functions of real variables. Ever since, it has been generally
accepted that such techniques are essential for modern control theory. Some
possible exceptions to this may be found in Halkin [6], Bryant and Mayne [3], and
Halkin and Neustadt [7], where the principle is derived through a non-linear
programming problem in an infinite dimensional space. Regardless, when even
simpler derivations are presented in textbooks [5] they are generally labelled
"heuristic" and the reader is referred back to Pontryagin for a rigorous derivation.

In this paper, we give a rigorous derivation of one form of Pontryagin's maximum
principle by use of elementary techniques only (for example, the mean value
theorem, Taylor's theorem with remainder term, the Picard existence theorem for
differential equations). We do not use Lebesgue theory at all. Our derivation is
essentially the same as the "heuristic derivation" of Hadley and Kemp [5] but
enough details are filled in to show that it can be made quite rigorous.

It is necessary, of course, to put conditions on the functions more stringent than
those postulated by Pontryagin. However, our conditions are satisfied in most
practical cases. The use of elementary techniques gives a much better intuitive

142

https://doi.org/10.1017/S0334270000001521 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000001521


[2] Derivation of Pontryagin's principle 143

understanding of what is really going on. And, last but not least, one of Pontryagin's
conditions (continuity of the functions fix, v, t) and fo(x, v, t) as functions of t)
can be relaxed considerably: we can replace continuity by piecewise continuity.
In practice, this is a very desirable relaxation of conditions.

The purpose of this paper is didactic, to show how one can gain insight. For this
reason, we concentrate on the simplest control problem which exhibits the essential
features of interest to us. The only serious simplification is (2) below. The
simplifications we adopt are:

(1) There is a fixed planning horizon T, that is, the quantity to be minimized is

xo=^fo[x(t),v(t),t]dt, (1.1)

where T> 0 is given once and for all.
(2) The endpoint is "free", that is, there is no condition on the final value x(T)

of the state variable.
(3) There is only one degree of freedom, that is, the state variable x(t) is a

real-valued function of t, not a vector-valued function of t. However, much
of what follows can readily be extended to the vector-valued case.

(4) The control variable v(t) takes only real values (that is, it is not a vector
with more than one component), and these values lie within a control set Q.
which is some subset of the real numbers. We permit Q, to be a finite discrete
set or a finite set of non-overlapping closed intervals of type ut < v < wit or
any combination of these two; but nothing more complicated. Furthermore,
the admissible controls v(t) are piece-wise continuous functions of t, with at
most a finite number of points of discontinuity in the interval Q^t^T.
We take v(t) to be continuous to the left at a point of discontinuity, that is,
lim^0+v(t—e) = v(t) for all t.

(5) The time-development of x(t) is governed by

^=Ax,v,t) (1.2)

together with the initial condition

x(0) = b, (1.3)
where b is a given constant.

(6) We now impose conditions on fo(x, v, t) and f(x, v, i), designed to ensure
the existence and good behaviour of x(t) and xo(t) for all O^t^T and all
admissible controls. Our conditions (which are more stringent than those of
Pontryagin [1]) enable us to prove existence of our solutions (though not
of an optimal solution). We shall assume the following: There exist numbers
ot.jS.y, 8, satisfying

S, (1.4)
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144 J. M. Blatt and J. D. Gray [3]

such that f(x, v, t) and fo(x, v, t) are real-valued functions denned on the
region

R:<x^x^8, veil, O^t^T. (1.5)

We note that the region R is closed and compact. The functions/and f0 are
assumed to be twice differentiable with respect to x everywhere in R, with
bounded second derivatives

a2/
8x2 onR. (1.6)

Furthermore, the first derivatives and the functions themselves are bounded:

>/o
dx

\/\<M,

on R,

onR.

(1.7a)

(1.7b)

The functions f(-,v, •) and fo(-,v, •) are continuous; and the functions
f(-,-,t) and/0(-, -,t) are piecewise continuous with at most a finite number
of points of discontinuity in [0,2"]. At points of discontinuity / ( • , •,*) and
/0(-, • ,t) are left-hand continuous:

f(-,v, •) and/0(-,i>, •) are continuous on Q, (1.7c)

/ ( • , • ,t) and/0(-, -,t) are piecewise continuous on [0,T]. (1.7d)

2. Existence and properties of trajectories

In this section, we prove the existence and uniqueness of the solution x(t)of
(1.2) and (1.3) for every admissible control v(t).

First we impose two further restrictions on/(but not oaf0), with the intention
of ensuring that x(t) remains bounded: /?<x{t)^y, for all t in O^t^T. These
restrictions are :

f(x,v,t)>0 for

/(JC,I ; ,0<0 for , veQ.,

(2.1)

(2.2)

Intuitively, (2.1) and (2.2) ensure that x(t) can never "penetrate" the region
«<*</?. At time t = 0, x(0) = b satisfies j3<x(0)^y, by (1.4). As soon as x(t)
falls down to j8 or below it, the differential equation (1.2) implies a positive derivative
dxjdt which forces x to move upwards with increasing t. Similarly, should x(t) ̂  y
for some /, the combination of (1.2) and (2.2) implies dx/dt<0, so x is forced
downwards again, back into the region

(2.3)
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[4] Derivation of Pontryagin's principle 145

This heuristic discussion will be replaced by a proper derivation subsequently; but
it should serve to motivate the conditions (2.1) and (2.2). An alternative condition
known to guarantee that x(t) does not excape is \f(x,v,t)\^M(l+\x\) for some
constant M [3]. (This condition is meaningful in the vector-valued case too.)

Such conditions are often, indeed usually, satisfied in practical situations. The
uncontrolled system is often naturally stable, that is, x(t) remains within some
"region of stability" (fi < x ̂  y) in any case, no matter what control v(t) we impose.
There is no suggestion that j8 < x < y is a narrow region of the x-axis, merely that
x(t) cannot go off to infinity. Of course, there are some occasions when we are
faced with the prospect of having to control a naturally unstable system; but such
control is much more difficult to achieve.

If one is prepared to assume existence of a solution [8] then this section can be
skipped. Also, in that case conditions (2.1) and (2.2) need not be imposed.

We start from the identity

f(x',v,t)-f(x",v,t) = ("jf-dx.
Jx'i OX

We take the absolute value on both sides, and use (1.7a) to obtain the bound

\f{x',v,t)-f(x",v,t)\^B\x'-x"\ onR. (2.5)

Now let v(t) be any admissible control, that is, for each /, v(t) e Q, and v(t) is a
piecewise continuous function of t with at most finitely many points of disconti-
nuity within [0, T]. Define

g(x,t)=f[x,v(t),t], a^x^S, O^t^T. (2.6)

Since / is twice differentiate with respect to x, continuous in v, and piecewise
continuous in t, g(x, t) is twice differentiable in x and piecewise continuous in t.
The points of discontinuity, if any, of g(-,t) may arise from two sources: (i) dis-
continuities in / ( - , - , r ) ; or (ii) discontinuities in v(t). But there are at most a
finite number of such values of t, from either cause.

Clearly (1.7ft) implies

\g(x,t)\^M on S, (2.7)
where S is the region

(2.8)

Furthermore, (2.5) implies a Lipschitz condition:

\g{x,t)-g{x',t)\^B\x-x'\ on S, (2.9)

where the constant B is the one which appears in (1.7a), and is independent of
x, x' and t.
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146 J. M. Blatt and J. D. Gray [5]

We shall make use of the Picard existence proof of solutions of

with initial condition
x(0) = b, (2.11)

in the form in which this proof is given in Agnew's book [1]. In this proof, an
important roie is assigned to the triangular region f:

T:to^t^tlt \x-b\^M\t\. (2.12)

The point x = b, t = 0 must be within T, and the Lipschitz condition (2.9) must be
satisfied everywhere within f.

Since we are interested in the forward solution (positive t) only, we put t0 = 0,
and t± = At, where At is defined by

By (1.4), we know that At is not zero; it also follows from (1.4) that the region f,
(2.12), with to = O a n d h = A/, lies entirely inside the region S, (2.8). Hence (2.9)
ensures that the Lipschitz condition is satisfied in the form postulated by Agnew [1].

The one point where we fail to meet Angew's conditions is continuity: g(x, i),
(2.6), is only piecewise continuous in t, not continuous.

However, g{x, t) is bounded in R and (being piecewise continuous) is integrable
in the Riemann sense. This implies that Agnew's lemma 15-81 (p. 312) goes
through with only one, obvious, modification: if g{x, i) has a discontinuity at
t = 8, say, then the integral formulation of (2.10) and (2.11),

= b+\ig[x(t'),t']dt' (2.14)
Jo

may not be equivalent to (2.10) at t= 6. The same remark applies to the iteration
scheme based on (2.14)

*n+i(O = °+ S{xn{t'),t']dt'. (2.15)
Jo

With this proviso, the entire proof in Agnew [1] goes through. We do not reproduce
this proof here, but we remark that the proof is thoroughly elementary, establishing
explicit bounds to prove the uniform and absolute convergence of the sequence
xn(t) to a unique function x(t) which satisfies (2.14) and hence satisfies (2.10) and
(2.11) everywhere except at a finite set of points t for which g(x, i) is discontinuous.

All this is restricted to the interval [0, At], where At is given by (2.13). We now
proceed to extend the solution so obtained to the entire planning period [0, T] using
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[6] Derivation of Pontryagin's principle 147

the following notation:

tn=nkt, xn=x(tn), n = 0,1,2,..., (2.16)

LEMMA. Let x(t) be defined on fn_i<f<fn and satisfy the differential equation
(2.10) with initial condition x(tn_j) = *„_! everywhere in [tn-i,tn] except at points
of discontinuity ofg(-,t); let xn^ satisfy

^ x n . ^ Y - (2-18)

Then x(t) exists, is unique on fn_i<*<fn, and satisfies the inequality (2.3) over
this interval.

PROOF. By our assumptions on / , all but one of the conditions of the Picard
theorem are satisfied for equation (2.10). The missing condition (continuity of
g{x, i) as a function of i) has been shown to be inessential. Thus an x(t) exists
which satisfies the integral equation

\ g[x(t'),t']dt' (2.19)

for all t in ?n_i^'<fn; furthermore, the points (t,x(t)) lie entirely within A5n,
(2.17). Thus, in particular, a^x(t)^8 for all < e [*n_i, *„]•

The essential assertion of the lemma is (2.3), which is stronger (in general) than
the condition that [t,x(t)]eASn.

Suppose there exists a T, tn-1 < T < tn, such that X(T) > y, thereby contradicting
(2.3). *(*n_i) = *„_!=* y by assumption (2.18). Since x(t) satisfies (2.19), it is a
continuous function of t. Hence there exists at least one value T', tn_Y < T' < T, such
that X(T') = y.

Let r be the last such value; then we have:

x(r') = y and x(t)>y for r'<t^T. (2.20)

Furthermore ^(0 < 8 for all t in [tn_ly tn], by the Picard proof. Now substitute
t = T and / = T into (2.19) and subtract. This gives:

(T)-X(T')= jTg[x(t),t]dt

(2.21)

By our assumptions, x(j) > y and X(T') = y hence the left-hand side is positive.
But by (2.20) and (2.2) the right-hand side is the integral of a negative function
over a non-zero interval and is therefore negative.
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148 J M. Blatt and J. D. Gray |7]

This contradiction destroys our assumption x(j)>y, and thus we conclude
x(t) < y for all tn^ ^t^.tn. A similar reductio adabsurdum establishes the inequality
x(t)^fi. This complete the proof.

THEOREM. Under the conditions stated, the integral equation (2.14) has a unique
solution for all t in [0, T], and this solution x(t) satisfies (2.3).

PROOF. The proof is constructive; proceeding by constructing the solution x(t)
in successive intervals tn_1 ^t^tn, until we reach t = T.

At the first step, n = 1, the initial value xn_x = xo = x(0) = b satisfies (2.18), by
(1.4). Hence we can construct x(t) for 0 < f < tx and the lemma ensures that x1 = x(t^)
also satisfies (2.18).

We now reapply the lemma, with ever-increasing n, until we get to

n = N= integer part of (T/At) + 1.

The value t = T lies within this final interval, and the lemma ensures that x(t)
exists up to / = T and satisfies the inequality (2.3).

3. Pulse variation of control

In Section 2, we proved the existence, uniqueness and bounded nature of the
solution x(t) of the integral equation

x(t) = b+\tf[x(tl),iit'),t']dtl (3.1)
'o

for all 0 < t < T and all admissible controls v(t).
This does not prove the existence of an optimal control, v*(t), which satisfies
(ii) v*(t) is admissible,

(ii) for all admissible v(t), XO(T)^X'Q{T), where xo(T) is defined by (1.1).
Optimal controls may fail to exist in apparently quite ordinary conditions [2].
One can often exhibit sequences of admissible controls vjt), with uniformly
decreasing cost XQJT), for which the limit as a ->oo either fails to exist as a function
v(t), or fails to be admissible. For instance, vjt) may be a piecewise continuous
function with a points of discontinuity in [0, T). Then the limiting function (if it
exists) has infinitely many points of discontinuity, and is therefore no longer
admissible.

In optimal control theory, the usual procedure is to look for necessary conditions.
The existence of an optimal control v*(t) is assumed, and one deduces conditions
which the function v*(t) must satisfy.
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[8] Derivation of Pontryagin's principle 149

Let v*(t) be an optimal control, and x*(t) be the corresponding trajectory
which satisfies

*•(/) = b + \'f[x*(t'), »*(O, t'] dt'. (3.2)
.'o

Following Pontryagin [8], we now consider a different control function v(t), which
equals v*(t) everywhere except within a short time interval r—e<t^r, where

e>0, 0<Ts;r , O^r-e<T. (3.3)

Furthermore, e is to be chosen small enough so that the interval [T—e, T) contains
no discontinuity of / ( • , -,t) or / 0 (- , -,t) or v*(t). Since these functions have at
most finite numbers of points of discontinuity, e can always be so chosen, even if
T is a point of discontinuity. Futhermore, / ( - , - , i), /0(•, •, 0 and v*(t) are left-hand
continuous everywhere (by assumption) hence these functions are then continuous
in the closed interval [T—E,T] as well.

The varied control is obtained by choosing any member veQ, of the control set,
and setting

( for r — ^

(3.4)
v*(t) for all other (in [0,T].

The work of Section 2 ensures that (3.1) has a solution x(t) with this v(t). We
expect that x(t) differs only little from x*(t) if £ is sufficiently small. In the remainder
of this section, we shall make this statement more precise.

Before doing so, however, let us make a qualitative observation concerning the
essential difference between optimal control theory and the classical calculus of
variations.

In the calculus of variations, the minimization of xo(T), (1.1), subject to (3.1) is
quite a reasonable sort of problem. To tackle it, one starts by assuming that an
optimal v*if) exists, and one then considers a "varied control"

v(t) = v*(t) + 8v(t) (3.5)

where | 8v(t) | is everywhere small and has other "nice" properties like being
differentiable, being zero at t = 0 and/or t = T, etc. The expansion is then
essentially in powers of 8v(t).

In optimal control theory, however, we cannot guarantee that 8v(t) in (3 5) may
be chosen arbitrarily small. To take an extreme but very practical example, assume
the control set Q is discrete with just two elements: Q = {0,1}. That is, the control
is "on-off"; at any given time /, the control is either "on", v(t) = 1, or "off",
v(t) = 0. There is nothing in between. (A common example is the thermostat
control on a house-heating furnace [2].)
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150 J. M. Blatt and J. D. Gray [9]

With (3.5), it is apparent that 8v(t) can take exactly three values

8v(t) = 0, 1, or - 1 .

There is no way in which 8v(t) can be "uniformly small" unless 8v(t)=0, all t, a
most uninformative "variation of control".

Thus the basic approach of the calculus of variations appears to break down
because v(t) is restricted to values within some control set Q. (This apparent
breakdown is less obvious, but stiil occurs, if il contains closed intervals M< «< w).f

To make any progress at all, it is necessary not only to have "varied controls",
but varied controls containing a small parameter e > 0 of some sort, so that we
can use expansions. In our view, the "pulse variation of control", equation (3.4),
is the essential idea of modern control theory. The variation itself is not small;
there is no reason to expect | v- v*(t) | to be small for any t in [T—e, r], and nothing
like that is assumed in (3.4). There is a small parameter e, however: it is the time
interval during which v(f) differs from the optimal control v*(t).

The idea of a pulse variation, not the use of Lebesgue theory, is the essential
contribution of Pontryagin [8]. Lebesgue theory, far from helping one's under-
standing, rather tends to obscure the elegant simplicity of the theory, drowning
beautifully clear and powerful ideas in a mass of technicalities from the theory of
functions of real variables.

After this digression, let us return to (3.1) and (3.2). Since v(t) = v*(t) for
0 < t < T — e, and since the solution is unique we conclude

x(t) = x*(t) f o r O ^ ^ r - e . (3.6)

We expect x(t) to differ from x*(t) for t>T—e, but not by much. Let us define:

m=f[x*(t),v,t]-f[x*(t),v*(t),t] fo r r -e^ r . (3.7)

Then (3.1), (3.2) and (3.6) imply

*(T)-**(T) = T «*)<*+ P [f(x(t),v,t)-f(x*(t),v,t)]dt
J T—e J T—s

= h+h. (3.8)

LEMMA. IX = e£(r) + o(e) and J2 = O(e2) as e->0+.

PROOF.

t There are general theories of the first variation [4] containing both the calculus of variations
and optimal control theory as particular instances. Such unifications involve conceptual and
technical difficulties which make them unsuitable for an elementary treatment.
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[10] Derivation of Pontryagin's principle 151

The absolute value of this last expression is

< max | « 0 - £ ( T ) |

which, because £(0 is continuous for r—e^t^r, tends to 0 as £-*0+. Thus the
first estimate is verified. As for the second,

if *r
I J r-s Ji'(l

dx \
8x\

dx-B

dt-2Me

= 2MBe\

where we have used (1.7a) in step 3, and the second inequality of (2.17) in step 5
of the proof (with tn_x replaced by r—e).

Intuitively, this lemma can be interpreted as follows: The difference x(r)—x*(r)
is caused by a number of separate effects within the "active interval" [T—S,T];

for example,
(1) v differs from v*(r),
(2) v*(t) differs from V*(T),

(3) x(t) as an argument off[x(t),v,t] differs from x*(t) inf[x*(t),v*(t),t],
and so on. According to our lemma, the first of the effects listed above is the
dominant one for small e, everything else is of higher order in e. The net result is
(this serves also as a definition of £(T)) :

X(T)-X*(T) = e\fix*(r),v,r)-f{x*(T),v*(j)

= eX?)+o(e). (3.9)

Now let us establish a result for times t ^ T , in the interval r^t <J . Define
by

7 (3.10)

By subtracting the differential equations for x and x* from each other, we get
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152 J. M. Blatt and J. D. Gray [11]

(except at a finite number of possible points of discontinuity)

f = -e{f[x(t),v*0),t)]-f[x*(t),v*(t),t]}. (3.11)

By assumption, f(x, •, •) is twice differentiable with a bounded second derivative.
We use Taylor's theorem with remainder term to get

fix, v*, t)-f(x*, v*, t) = ( | T (x-x*) + k, (3.12)

where (df/dx)* is evaluated at (x*(t),v*(t),t) and the remainder A is bounded by
using (1.6) and (3.10):

(x-x*?

We therefore obtain from (3.11), (3.12), (3.13)

(3.13)

where

I X(t)\^AxKt). (3.15)

If we ignore the remainder term X(t) for the moment, we get a linear differential
equation. We shall call the dependent variable £(f). The equation is

We note that (8/1dx)* is a known function oft, call it f(0,

E= ( |Q* (evaluated at x*(t), v*(t), t). (3.17)

But then (3.16) has an explicit solution in the interval under consideration (every-
where except at points of discontinuity of F(t)):

£(0=£(T)exp(ffXOdf') f o r r ^ r . (3.18)

We take as our initial condition the value £(T) defined by (3.9). We note that
is bounded (see (3.17) and (1.7a)), and is zero only if £(T) = 0 (an uninteresting case).

With this preparation, we can state the

LEMMA. For T < / < T " , it is true that

x(t) = x*(.t) + e&t) + o(e) (3.19)

where £(t) is defined by (3.9), (3.17) and (3.18).
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PROOF. Define xQ) by (3.19) and put

X(O = Ut)pif) with p(r) = 1 +o(l). (3.20)

(This second equation above is a consequence of (3.10) and (3.9).) Substitute this
into (3.14) to get

(3.21)

Use (3.15) and (3.20) to get

1 dp
P\t) dt

Since (l/p2)(dp/dt) = -(d/dt)(l/p), we obtain the bound:

_ _
W) Pit)

= A'e.

This bound together with (3.20) means that, for sufficiently small e,

/>(*)= l+o(l),

and thus (3.19) follows from (3.29) and (3.10). This completes the lemma.
To sum up: the essential step is the introduction of the varied control v(t), (3.4).

This control results in a state function x(t) which is related to the optimal x*(t)
by (3.19), with

£(t) = 0 for 0 ̂  t < T - e, (3.22a)

(3.22b)= / [ * * ( T ) . v, T] -f[x*(r), »*(T), T],

-ir £ < forT«^ (3.22c)

In this form, the result generalizes well. The explicit solution (3.18) of (3.22c) does
not generalize to control problems in which x(/) is a vector variable with «>2
components; but an alternative proof of (3.19), based on the Gronwall-Bellman
inequality, can be given for that case.

For later work, we note that an entirely similar argument goes through for
xo(t), defined by

= ('Mx(O,v(t'),t']dt'.
Jo

(3.23)
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We note that, for t = T, xo(T) is the quantity to be minimized in (1.1). For 0 s£ t < T,
at all but at most a finite number of points, xo(t) satisfies the differential equation

^=Mx(t),v(t),t] (3.24)

with the initial condition
*0(0 = 0. (3.25)

No existence proof is necessary here: (3.23) is the explicit solution, known as soon
as v(t) and x(r) are known. Let x$(t) be the function

tf (0 = f/0[**(O, »*(O. t'] dt' (3.26)
Jo

obtained from the optimal control v*(t), and let x(t) in (3.23) be obtained from
the varied control (3.4).

It is then easy to show, by arguments completely similar to the ones before, that

(3.27)

£„(/) = 0 for 0 < t< T - e, (3.28a)

£O(T) =fo[x*(r), v, T] - / 0 [X*(T) , »*(T), T], (3.28b)

(3.28c)

There is one essential thing to notice about (3.28c): the right-hand side of (3.28c)
is proportional to £(/), not to £0(0- This arises from (3.23)—the right-hand side
of (3.23) depends on x(t), not on xo(t). Except for this, (3.28) is very similar to
(3.22).

4. The maximum principle

Following Pontryagin [8] we introduce the Hamiltonian^

H=H(K x, v, t) = Xf{x, v, t) -/0(x, v, t) (4.1)

t Pontryagin defines the Hamiltonian by H — hf+\>fo, with two co-state variables A and
Subsequently AQ turns out to be constant in time; its value is determined in the Pontryagin
theory as follows:

A,, = — 1 if v(t) is feasible and xo(T), (1.1), is to be minimized;
Afl = + 1 if u(0 is feasible and xo(T), (1.1), is to be maximized;
Ao = 0 if v(t) is unfeasible.
For our simplified problem with its free end-point, Section 2 showed that all admissible

controls are feasible, and we have agreed to look for a minimum of xo(T). Thus A,, = — 1,
and there is no need to introduce AQ at all.

The signs in (4.1) are chosen so as to obtain a maximum principle in the final inequality (4.12).
If one thinks of A(/) as a Lagrange multiplier, a more conventional form should be H' = f0—A/,
but this reverses the inequality in (4.12) and thus gives a minimum principle. We follow
Pontryagin's choice of signs.
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and we observe that the differential equation (1.2) is then the first of the two
canonical equations

dt ~ dX ' dt ~ dx * l ' }

The second of these equations determines the time development of the "co-state
variable" A(f):t

We now define:

Z(0 = A(0«0-W0, (4-4)

where X(t) satisfies (4.3), £(*) is given by (3.22) and £,(/) by (3.28).
Except at a finite number of isolated points of discontinuity in t, the differential

equations (3.22c), (3.28c) and (4.3) are satisfied for all r^t^T. In that region,
straightforward differentiation gives

^ (4.5)

so that, in particular,
Z(r) = Z(T) (4.6)

(the functions entering (4.4) are continuous, so (4.6) follows even if (4.5) fails to
hold at isolated points).

By assumption, v*(t) is an optimal control, and any varied control, such as v{t),
gives a result which is no better than x$(T):

xQ(T)^x$(T) for all variations of control. (4.7)

Now put t = T in (3.27) and assume s is small enough so that terms of o(e) can
be ignored. We get from (4.7)

yX) = Hm *oCO-*?(r) > 0 (4 8)

We can relate this result to Z(T) if we impose the following end-point condition
on the function A(f):

A(r) = 0 (4.9)
for then

Z(T) = X(T) £(D - UT) = - UT) ^ 0. (4.10)

t For a geometric interpretation of the co-state variable see Halkin [6].
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But by (4.6) it follows thatZ(r)<0, also. Hence we have, using (3.22b) and (3.28b),

and then (4.1):

Z(T) = A(TK(T) -C 0 (T)

= A(T) [f(x*(r), v, T) - / ( * * ( T ) , V*(T), T)] - lfo(x*(T), v, r) -/o(**M, »*(T), T)]

= H[\(T),X*(T),V,T]-H[\(T),X*(T),V*(T),T]^O. (4.11)

The final inequality is equivalent to the Pontryagin maximum principle:

), X*(T), »*(T), T]>H [A(r), x*(r), v, r] (4.12)

the inequality holding for all T in 0 < T < T and for all veQ, the control set. The

inequality asserts that the optimal control v*(r) at any time r is such as to maximize

the Hamiltonian.

This concludes our elementary derivation of the Pontryagin maximum principle.
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