
Adv. Appl. Prob. 21, 475-478 (1989)
Printed in N. Ireland

© Applied Probability Trust 1989

ON LITTLEWOOD'S ESTIMATE FOR THE BINOMIAL DISTRIBUTION

BRENDAN D. McKAY,* The Australian National University

Abstract

We correct a theorem of J. E. Littlewood which gives an approximation
for the tail of the binomial distribution. We also present several new
approximations which are less accurate but have wider scope. One of them
gives an estimate with relative error uniformly 0(11 a) over all values of all
the parameters, where a is the standard deviation.

For some types of probability calculations, the familiar DeMoivre-Laplace approximation
to the binomial distribution (see Feller [2] for example), is insufficiently accurate. The most
serious attack on this problem seems to have been that of Littlewood [3]. Unfortunately,
Littlewood's Theorem 2 contains two typographic errors as well as an incorrect sign which can
be traced to a clerical error in the proof. The main purpose of this note is to state
Littlewood's theorem correctly. We also take the opportunity to give some other approxima-
tions which may be more convenient, though lesser in accuracy and scope in some cases.

For the normal distribution, define ljJ(x) = ex 2
/
21Viir, Q(x) = f: ljJ(u) du, and Y(x) =

Q(x)1 ljJ(x). For the binomial distribution, define

b(k) = b(k; n; p) = (:)pkqn-k
and

n

B(k) = B(k; n, p) = 2: b(j; n, p),
j=k

where q = 1 - p. The mean of this distribution is f.l = pn and the variance is a2 = npq.
We begin with Littlewood's Theorem 2. With the errors corrected, we can state that

theorem as follows.

Theorem 1. Let p, 0 < p < 1, be fixed. Let t = t(n) be such that pn + t is an integer and
o~ t ~ ~qn. Define x = t1a and p = q - tin. Then

B(pn + t; n, p) = Q(x) exp (AI +A 2 / v'p (1 - p)n + O(n- I)),
where

t
2

I ( t ) I ( t )Al = -- - (pn + t - 2) log 1 + - - (qn - t + 2) log 1--
2pqn pn qn

and
A 2 = ~(1 - 2p)«1 - x 2)IY(x) + x 3

) + ~(lIY(x) - x).

Proof. Littlewood's statement of this theorem has three errors:
(i) The coefficient ~ should be ~ (it comes from c3 ) .

(ii) The definition of p should be as in (his) Theorem 1.
(iii) The sign of the O(n -112) term is wrong.
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where

Errors (i) and (ii) are merely typos. Error (iii) can be traced to an incorrect sign change in
passing from (22.5) to (22.6). Apart from this, Littlewood's proof appears valid. To guard
against other gross errors, we have succesfully checked the theorem numerically for a wide
range of values of the parameters.

Since Y(x) has an asymptotic expansion of the form l/x - 1/x3 + 0(1/x 5
) , the coefficient

A z is uniformly bounded over the range of validity of Theorem 1. In fact, 0 < A z < 0·532 and
0< (1 + x )A z < 1·084 for x ~ 0 and 0 ~ p ~ 1. Also, as Littlewood makes clear in his paper,
the choice of ~qn as the upper limit for t is arbitrary; in fact the theorem and its proof are
equally valid for 0 ~ t ~ aqn, where (X is any constant with (X < 1. Subject to this bound on t,
the error term in Theorem 1 is uniform over nand t. However, it is not uniform over p or a.

We note here that the slip leading to error (iii) also invalidates Littlewood's Theorem 1, but
in that case we have not determined the correct form.

Littlewood's method (but not his theorem) would doubtless work if p was not constant but
instead decreased as some function of n. We have not attempted to modify his proof in this
way, but have instead taken several alternative approaches.

The first approach is suggested by Littlewood's theorem. The second and third terms of Al
strongly suggest Stirling's approximation to log b(pn + t). Applying this approximation in
reverse, and dropping A z, gives the estimate B(pn + t):::::: ab(pn + t)Y(x)(1 + t/(pn)).
Amazingly, the error in this approximation turns out to be uniformly 0(1/ a) for all n, p and
t~O.

Theorem 2. Let 0 <p < 1, n ~ 1, and pn ~ k ~ n. Define x = (k - pn)/ a. Then

B(k; n, p) = ab(k - 1; n -1, p)Y(x) exp (E(k; n, p)/a),

o~ E(k; n, p) ~ min tvn/8, l/x}.

Proof. Define B*(k) = ab(k -1; n -1, p)Y(x) and b*(k) = B*(k) - B*(k + 1). We bound
E(k) = E(k; n, p) by comparing B*(n) with B(n) and b*(k) with b(k) for k < n.

We begin by recalling some standard properties of the function Y(x). For any x ~ 0, the
sequence Y(x), Y'(x), Y"(x), .. " alternates in sign. With the help of the identity Y'(x) =
xY(x) - 1, this fact yields many inequalities for Y(x) and its derivatives. For example, the
inequalities Y' < 0 and Y" > 0 imply that x / (1 + X

z
) < Y(x) < 1/x for x > O.

First consider the case k = n. From the definitions, we find that B*(n) = B(n)xY(x), where
x = v'qn/p. Thus, E(n) = -x In (xY(x)), from which standard methods yield the inequalities
O~E(n)~min {!, l/x}.

Next, consider 0 ~ k ~ n - 1. Define e(k) = e(k; n, p) by b(k) = b*(k) exp (e(k)/ a). After
a little algebra, we find that b*(k) = b(k)f(x), where

f(x) = (a + qx)Y(x) - (a - px)Y(x + l/a).

Since k<n, we have a-px>O. Also, since Y">O, Y(x+l/a»Y(x)+Y'(x)/a. This
yields f(x) < 1 +pxY'(x)/a ~ 1, which implies that e(k) ~ O.

Similarly, for x > 0,

f(x) = a(Y(x) - Y(x + l/a)) +x(pY(x) + qY(x + l/a))

~ -Y'(x + l/a) +x(pY(x) +qY(x + l/a))

1
= 1- - Y(x + l/a) + qx(Y(x) - Y(x + l/a))

a

1
~ 1 - - Y(x + 1/ a)

a

from which it follows that e(k)~ l/x.
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To obtain the uniform bound, define u =x + 1/(2a). Then

f(x) = a(Y(x) - Y(x + l/a)) +x(pY(x) + qY(x + l/a))

~ - Y'(u) + x(pY(x) + qY(x + l/a))

1
~ 1- 2a Y(u) -x(Y(u) - Y(x + l/a))

1 x
= 1 - 2a Y(u) + 2a Y'(u).

477

Thus,

The derivative of the last expression with respect to x is xY"(u)/(2a) ~ 0, so the smallest
value is achieved at x = O. Hence

f(x) ~ 1 - J-. y(J-.),
2a 2a

from which the bound e(k)~Y1'C/8 follows easily.
Finally, we note that our bounds on e(k) are non-increasing for x ~ 0, implying that they

hold also for E(k).

An estimate similar to Theorem 2 was obtained by Bahadur [1], although the uniformity of
the estimate was not established.

Theorem 2 could probably be sharpened to 0(1/~) without a great deal of effort. For a
smaller range of k values, we have found such an estimate of quite different form.

Theorem 3. Let p. = p(n) be such that a~ 00 as n~ 00. Let t = t(n) be such that pn + t is an
integer and t = O(a~). Then B(np + t; n, p) = Q(t/a + 6. + 0(a-2+ ItI5/a9)), where

l+p (S-11p- p2)t (1-2p)t2 (5-14pq)t3 (1-2p)(83-146pq)t4

6. = -~ + 36a 3 - 6a 3 + 72a5 - 2160a7 •

Proof. Define h(t) = h(t, n, p) by B(np + t) = Q(t/ a + h(t)). With a simple iteration, we
can find a function ht(t) such that, for t = O( a~),

(1) Q(t/a + ht(t) - Q«t + 1)/a + ht(t + 1) = (1 + O(a-~ + It1 3/a6 + ItI5/a9))b(np + t).

There is such a function h t (t) of the form

ht(t) = A + {34(P )t
S
+ {3s(p )t

6
+ (36(P )t

7

o" a t t a 13
'

where each fJ;(p) is a polynomial in p of degree i.
Thus, putting m = ra7

/
41,

Q(t/a + ht(t» - Q«t + m)/a + ht(t + m»
m-t

=B(np + t) - B(np + t + m) + L: b(pn + t + r)0(a-2+ It+ r1 3 / a6 + It+ rI5/a9).
r=O

Assume now that t ~ O. For integer k ~ 0,

L:(t + r)kb(pn + t + r) = b(np + t)0(a2(a + t)k-t).
r~O

(2) Q(t/a + ht(t» = B(pn + t) + b(pn + t)O(l/(a + t) + (a + t)2/ a4 + (a + t)4/ a7),

the other terms being easily seen to be negligible in comparison.
Now define E(t) = h(t) - ht(t). By the mean-value theorem applied to (1), we have

ab(pn + t) = <jJ(t/ a + ht(t»)(1 + a(I)), and so Equation (2) gives

Q(t/a + ht(t) - Q(t/a + ht(t) + E(t) = lJ>(t/a + ht(t))0(a-2+ t2/a5+ t4/a8 ) ,

from which it easily follows that E(t) = 0(a-2+ t' l o" + t4/a8 ) .
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The theorem now follows for t ~ O. For t < 0, we need only note that B(np + t; n, p) =
1- B(nq - t + 1; n, q).

The symbolic algebra system Maple [4] was used for these calculations. Both Theorems 2
and 3 could be extended to more terms or a wider range if required.
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