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ABSTRACT

This article is the first in a series of two in which we study the vanishing cycles of
curves in toric surfaces. We give a list of possible obstructions to contract vanishing
cycles within a given complete linear system. Using tropical means, we show that any
non-separating simple closed curve is a vanishing cycle whenever none of the listed
obstructions appears.
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1. Introduction

Along a degeneration of a smooth algebraic curve C' to a nodal curve, there is a simple closed
curve in C that gets contracted to the nodal point. This simple closed curve, well-defined up to
isotopy, is called the vanishing cycle of the degeneration.

If the question of contracting simple closed curves abstractly in ﬂg leaves no mystery, the
embedded case is still open. In particular, we may ask what are the possible vanishing cycles of
a curve C' embedded in a toric surface X, where the underlying degenerations are constrained
in a fixed complete linear system |£| on X. As simply as it is stated, this question, suggested by
Donaldson [Don00], admits no definitive answer. Another approach is to study the monodromy
map from the fundamental group of the complement of the discriminant D C |£]| to the mapping
class group MCG(C). The study of such fundamental groups was suggested by Dolgachev and
Libgober [DL81] and is still an active field of investigation (see, for example, [Lon09]). From
a wider perspective, the description of the monodromy map gives an insight into the universal
map |L|\D — M, which is far from being understood (see e.g. [CV09]).

We know from [Waj77] that, for a smooth plane curve C' of genus g, we can contract 2g
simple closed curves whose complement in C' is a disc. It leads in particular to the topological
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classification of smooth projective surfaces in CP3 given in [MM76]. In [Bea86], Beauville
determines the image of the algebraic monodromy map for hypersurfaces of degree d in CP™,
for any m and d.

In this paper, we focus on the case of curves but investigate any complete linear system |L]|
on any smooth toric surface X. We point out the obstructions to contracting cycles in the curve
C. They mainly arise from the roots of the adjoint line bundle Kx ® L. Square roots of Kx ® L
were already considered in [Bea86]. The obstructions provided by higher-order roots of Kx ® L
were studied in [ES91] and [Sip82] but were somehow forgotten in the common literature until
recently. In particular, they do not show up in the work of Beauville [Bea86] as the obstructions
they provide are undetectable at the homological level. It might also happen that all the curves
in |£]| are hyperelliptic. In such a case, the monodromy map has to preserve the hyperelliptic
involution.

We show that there are no other obstructions than the ones mentioned above.

THEOREM 1. Let X be a smooth complete toric surface, L an ample line bundle on X and
C € |L] a generic smooth curve. Then, the monodromy map

p:m(|L\D) = MCG(C)

is surjective if and only if C' is not hyperelliptic and if the adjoint line bundle of £ admits no
root. In this case, any non-separating simple closed curve in C' is a vanishing cycle.

Let us mention, on the one hand, a very recent independent work by Salter [Sall6], in which
he proves this result in the particular case of CP? and, on the other hand, a work by Bolognesi
and Lonne [BL16] in which they prove this result in the case of ample linear systems of trisections
on Hirzebruch surfaces.

As suggested by Beauville [Bea86], some of the latter obstructions persist in homology.
In the following statement, Sp(H;(C,Z)) denotes the group of automorphisms preserving the
intersection form.

THEOREM 2. Let X be a smooth complete toric surface, L an ample line bundle on X and
C € |L] a generic smooth curve. Then the algebraic monodromy map

[u] = m(I£\D) — Sp(H1(C, Z))

is surjective if and only if C' is not hyperelliptic and if the adjoint line bundle of £ admits no
root of even order. In this case, any non-separating simple closed curve in C' is homologous to a
vanishing cycle.

We introduce new techniques to determine the image of the monodromy map u. We
first use the intensively studied simple Harnack curves (see [Mik00, KOO06]), for which all
possible degenerations are known. From them, we then construct loops in |[L|\D with explicit
monodromy in MCG(C) using tropical methods. With this aim, we consider partial phase-
tropical compactifications of M. According to [Lanl5b], we have a proper understanding of the
closure of |£|\D in this compactification in terms of Fenchel-Nielsen coordinates. Using these
coordinates, we construct loops with prescribed monodromy in the closure. We then push these
loops back to |£|\D with the help of Mikhalkin’s approximation theorem, see Theorem 5. The
efficiency of such a technique suggests that the discriminant nicely intersects the boundary of a
globally well-defined phase-tropical compactification of M,. It also has the advantage of being
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explicit in the sense that we can actually draw the cycles that we can contract on our reference
curve C.

In [CL17], we will use this technique further to determine the image of the (algebraic)
monodromy in the hyperelliptic and spin cases. Motivated by these results and the constructions
given in §7.5, we give a conjecture about the image of p in the general case (see Conjecture 1).
In [Sall6], Salter proves this conjecture for degree 5 curves in CP2. Note that during a review
of the present paper, Salter answered Donaldson’s question in the present context by proving
Conjecture 1 in almost full generality, see [Sall7]. By introducing elegant techniques in mapping
class group theory, he showed that the constructions of the present paper suffice to generate
the whole group im(u). Coming back to the broader question asked in [Don00], we believe that
the tropical approach could be carried to the case of smooth surfaces in toric 3-folds. Another
interesting and fundamental variation of the problem is the study of the contraction of cycles
along degenerations of real curves.

This paper is organized as follows. In § 2, we introduce the obstructions and the main results
more precisely. In §3, we recall some basic facts about toric surfaces and how to detect the
obstructions on a Newton polygon corresponding to the linear system. In §4, we generalize
some results of Kenyon and Okounkov [KOO06] in order to produce our first vanishing cycles
(see Theorem 3). Moreover, we provide a trivialization of the universal curve over the space of
simple Harnack curves (see Proposition 4.6). It allows us to describe the vanishing cycles in a
combinatorial fashion on the Newton polygon (see Corollary 4.7). In §5, we use a l-parameter
version of Mikhalkin’s approximation theorem (see Theorem 5) to produce elements of im(u)
given as some particular weighted graphs in the Newton polygon. In §6, we play with this
combinatorics to prepare the proofs of Theorems 1 and 2, which we give in §7. At the end of the
paper, we motivate Conjecture 1 with some additional constructions.

2. Setting and statements

2.1 Setting
Let X be a smooth complete toric surface. Take an ample line bundle £ on X and denote by
|L| =P(H°(X, L)) the complete linear system associated with it.

DEFINITION 2.1. The discriminant of the linear system || is the subset D C |L£| consisting of
all the singular curves in |L|.

Notice that since X is toric, £ is in fact very ample (see [Oda88, Corollary 2.15]) and the
embedding of X in the dual |£|* of the linear system identifies D with the dual variety of X. In
particular, we have the following classical facts.

ProprosITION 2.2 [DIKO00, §6.5.1]. If £ is an ample line bundle on a smooth complete toric
surface X, then the discriminant D is an irreducible subvariety of |L| of codimension at least 1.
It is of codimension 1 if and only if there exists a curve in D whose only singularity is a nodal
point. In this case, the smooth set of D is exactly the set of such curves.

From now on, we will assume that the discriminant D is a hypersurface in |£|. Let C' € D
be a curve whose only singularity is a node, which we denote p € C' C X. Then, from [ACG11,
Proposition 2.1] we deduce that there exist a neighborhood U C X of p and a neighborhood
B C |£] of C’ such that the restriction of the universal curve

{(z,C)eUxB|ze(C}—> B
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is isomorphic to
{(z,w,t1,... 7tdim(|£|)) e C? x Cdim(|£)) | 22+ w? = t1} — Cdim(]£]) (1)

in a neighborhood of (0,...,0). The restriction of the previous map to the locus where t; # 0
and 22/t1, w2/t1 > 0 is fibered in circles whose radius goes to 0 as t; goes to 0.

Now take Cp € |£] a smooth curve and v : [0,1] — |£| a smooth path, such that v(0) = Cp
and v~ }(D) = {1}, with (1) = C’. We can find € > 0 such that ([l — ¢,1]) is included in B.
From Ehresmann’s theorem [Voi07a, Theorem 9.3], the universal curve over |£|\D is a smooth
locally trivial fibration. In particular, we can trivialize its pullback to [0,1 — €] via 7. Using this
trivialization and the local form of the universal curve over B, the circles obtained in the local
form (1) of the universal curve induce a smooth simple closed curve § on Cy. The isotopy class
of this curve does not depend on the choices made (see [ACG11, §10.9]).

DEFINITION 2.3. We call the isotopy class of § in Cy a vanishing cycle of Cy in the linear system
L.

The present paper is motivated by a question of Donaldson [Don00, Question 1], which we
formulate as follows.

Question 1. Which isotopy classes of smooth simple closed curves on Cy € |L| are vanishing
cycles in |L]?

Starting from a vanishing cycle § on Cp, one can construct another one using the geometric
monodromy map, which is defined as follows. Taking a path v : [0, 1] — |£|\D from Cj to itself,
the pullback of the universal curve over -y is trivializable and a choice of trivialization induces
an orientation preserving diffeomorphism ¢ of Cy. In fact, the class of ¢ in the mapping class
group MCG(Cp) of Cy only depends on the homotopy class of 7. Thus, we obtain the geometric
monodromy morphism

w: m (|L\D, Cy) - MCG(Cp).

If § is a vanishing cycle on Cy, it follows from the definitions that for any element ¢ € im(u),
¢(0) is also a vanishing cycle. Moreover, the irreducibility of D implies the following.

LEMMA 2.4 [Voi07b, Proposition 3.23]. If § is a vanishing cycle of Cy in |L|, then all the other
vanishing cycles are obtained from ¢ under the action of the image of the geometric monodromy
map. In particular, if § and §' are two vanishing cycles of Cy in |L]|, then the pairs (Cy,d) and
(Cop,d") are homeomorphic.

For an ample line bundle £, there always exists a non-separating vanishing cycle on Cj as
soon as the genus of Cp is at least 1 (see Theorem 3). By non-separating we mean that the
complement of the vanishing cycle in Cj is connected. It then follows from Lemma 2.4 that all
the other vanishing cycles have the same property. If Z denotes the set of isotopy classes of
non-separating simple closed curves on Cy, Question 1 now becomes: are all the elements of Z
vanishing cycles?

In the converse spirit to Lemma 2.4, we can construct elements of the monodromy from
vanishing cycles.

PropoOSITION 2.5 [ACG11, §10.9]. If a simple closed curve ¢ € T is a vanishing cycle in |L|, then
the Dehn twist 75 along § is in the image of .
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The construction of an element ¢ € 71 (|L|\D, Cp) such that p(f) = 75 is rather explicit. Since
0 € T is a vanishing cycle, we can find a path v : [0,1] — |£] joining Cy to D and defining J.
Then the loop £ is obtained from - by replacing the end of ~ itself with the boundary of a small
disk transverse to D, with appropriate orientation.

We do not know if the converse to Proposition 2.5 is true in general. However, Lemma 2.4
shows that if the geometric monodromy is surjective then all the elements of Z are vanishing
cycles. Conversely, if all the elements of Z are vanishing cycles, the geometric monodromy is
surjective since MCG(Cyp) is generated by the Dehn twists around the elements of Z, see, for
example, [Hum79]. This suggests the following analogue to Question 1, which we will study in
the rest of the paper.

Question 2. When is the geometric monodromy map p surjective? More generally, describe the
subgroup im(u).

2.2 Roots of the canonical bundle and monodromy

In some cases, the smooth curves in |£| will inherit some geometric structure from the ambient
toric surface. As a partial answer to Question 2, we will see how this structure might prevent the
map p from being surjective. To make this more precise, we introduce subgroups of the mapping
class group which will come into play.

Let w : C — B be a holomorphic family of compact Riemann surfaces of genus g > 1 and
n > 0 be an integer that divides 2g — 2. An nth root of the relative canonical bundle K¢ (C) of
C is a holomorphic line bundle S on C, such that S®" = K, (C). Denote by R,,(C) the set of nth
roots of K1(C). If the base B is a point, R, (C) is finite of order n?9.

Choose a base point by € B, and let Cy = 7 1(bg). On the one hand, there is a restriction
map from R,(C) to R,(Cp); on the other hand, there is a monodromy morphism uc : m (B,
bp) = MCG(Cy), defined as in § 2.1. Recall from [Sip82, Corollary p. 73] that the group MCG(Cy)
acts on R, (Cp). Moreover, we have the following result.

PROPOSITION 2.6 [ES91, Theorem 2|. If S € R, (C), then all the elements in im(uc) preserve
S\Co S Rn(CO).

If S € R,(Cy), denote by MCG(Cy, S) the subgroup of MCG(Cjy) that preserves S. It is a
subgroup of finite index which is proper in general (see [Sip82]).
Coming back to our problem, we obtain the following.

PROPOSITION 2.7. Let |£| be an ample complete linear system on X, such that its generic
element is a curve of genus at least 2. Suppose that the adjoint line bundle Kx ® L admits a
root of order n > 2, i.e. a line bundle S over X such that S®® = Ky ® L. Then the restriction
of § to Cp is a root of order n of K¢, and the image of i is a subgroup of MCG(Co, S|¢,)-

Proof. The fact that the restriction of S to Cj is a root of order n of Cy comes from the adjunction
formula (see [GH94])

To prove the rest of the proposition, we show that this formula is true in families. To that end,
choose a hyperplane H in |£| that does not contain Cy. Let

C={(z,C) e X x |L\(DUH) | z € C}
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be the universal curve with projection 7 : C — |£|\(DUH ) and evaluation map ev : C — X. Then
the pullback of Kx ® £ to C by ev is isomorphic to the relative canonical bundle of C. Indeed,
denote by TyC the kernel of dn. By definition, K, (C) is the dual of T, C. Moreover, since
all the curves in |£|\D are smooth, the differential of the evaluation map induces an injective
morphism T;,C — ev*T X . Conversely, since we removed H from |L£|, we can choose a section s
of the pullback of £ over X x |£|\(D U H) that vanishes along C. Its derivative is well-defined
along C and induces a morphism ev*T'X — ev*L, which is surjective since the curves in |£|\D
are transversally cut. It follows also that we have an exact sequence

0— TyeC — ev'TX — ev'L — 0.

Thus ev*Ky ® ev*L = K,o(C). In particular, ev*S®" = K,q(C), and ev*S is an element of
R, (C). The result follows from Proposition 2.6 and the fact that the morphism 7 (|L|\(DU H),
Co) — m1(|L|\D, Cp) is surjective. O

Earle and Sipe showed in [ES91, Corollary 5.3] that, for any Riemann surface of genus g > 2,
there exists an element of its mapping class group that does not preserve any nth root of its
canonical bundle for all n > 2 dividing 2g — 2. In particular, Proposition 2.7 gives the following.

COROLLARY 2.8. Let X be a smooth and complete toric surface and let L be an ample line
bundle on X. Assume that the curves in |L| are of arithmetic genus at least 3. Fix a smooth
curve Cy in |L|.

If Kx ® L admits an nth root with n > 2, the geometric monodromy p is not surjective. In
particular, there exists a non-separating simple closed curve on Cy that is not a vanishing cycle.

Remark 2.9. Since the Picard group of X is free [Ful93, proposition p. 63|, the nth root of Kx® L
is unique when it exists.

2.3 Main results

In the following theorems, X is a smooth and complete toric surface and £ is an ample line
bundle on X. We assume that the curves in |£| are of arithmetic genus at least 1. This implies
that the adjoint line bundle Kx ® £ of £ has an empty base locus (see Proposition 3.3). Finally,
we denote by d the dimension of the image of the map X — |Kx ® £|* and we fix a smooth
curve Cy in |L].

THEOREM 1. The monodromy map p is surjective if and only if one of the following is satisfied:

(i) d=0;
(ii) d =2 and Kx ® L admits no root of order greater or equal to 2.

The case d = 1 corresponds to the hyperelliptic case and will be treated in the follow-up
paper [CL17]. In the case d = 2, the parity of the largest order n of a root S of Kx ® L plays an
important role.

When n is even, the restriction of S@n/2 o C) is a spin structure on Cy. We also treat this
case in [CL17]. Let us simply say that the non-surjectivity of the monodromy already appears
through the algebraic monodromy map

[u] : m(IL\D, Co) — Sp(H1(Co, 7)),
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obtained by composing p with the natural map MCG(Cy) — Sp(H1(Co,Z)), where Sp(H1(Co,
Z)) is the group of automorphisms of H;(Cy,Z) that preserve the intersection form.

When n is odd, the obstruction described in Corollary 2.8 is not detected by the algebraic
monodromy. More precisely, we have the following.

THEOREM 2. The algebraic monodromy map [u] is surjective if and only one of the following is
satisfied:

(i) p is surjective;
(ii) d =2 and Kx ® L admits no root of order 2.

In the general case, we conjecture the following.

CONJECTURE 1. Assume that d = 2. Let n be the largest order of a root S of Kx ® L. The
image of y is exactly MCG(Co, Si¢,)-

We motivate this conjecture in this paper (see §7.5) and the follow-up paper [CL17]. We
give the proofs of Theorems 1 and 2 in §§6.3 and 7, where we treat the cases d = 0 and d = 2
separately.

Remark 2.10. (i) The amplitude and genus requirements in Theorems 1 and 2 guarantee that
the discriminant D is of codimension 1 in |£| and that the vanishing cycles are non-separating
(see Theorem 3).

(ii) Question 1 can also be stated in a symplectic setting. That is, if one allows the almost-
complex structure on X to vary along a degeneration of Cp, can one obtain more vanishing cycles
than in the algebraic case? Does the obstruction coming from the root of Kx ® £ survive in this
setting?

To prove Theorems 1 and 2, we use techniques from tropical geometry, namely a version
of Mikhalkin’s approximation theorem (Theorem 5). It allows the construction of explicit 1-
parameter families of curves in |£|\D whose images by p are rather simple and explicit elements
of MCG(Cy). If no root of Kx ® L appears, we show that we can recover Humphries’ generating
set for MCG(C)), see § 7.3. If no even root of Kx ® L appears, we recover the image of Humphries’
generating set in Sp(H1(Cy,Z)), see §7.4.

3. Toric surfaces, line bundles, and polygons

We recall some facts about toric surfaces (for more details, see, for example, [Ful93] or [GKZ08]).
Let X be a smooth complete toric surface associated with the fan ¥ C Z2 ® R. Denote by (1)
the set of one-dimensional cones in ¥. For each element € € (1), let u. be the primitive integer
vector in € and D, C X the associated toric divisor.

Take a line bundle £ = Ox (3. cx(1)acDe) on X and define
Ar={veR?|ec (1), (v,u) = —ac}.

Notice that A, is, in fact, only well-defined up to translation by an integer vector.

If £ is nef, A, is a convex lattice polygon (in this paper, lattice polygons are bounded by
convention) and ¥ is a refinement of its normal fan. More precisely, A, has one edge for each € €
¥(1) and the integer length [, of this edge is equal to the intersection product (}_ ces(l) agDer)e
D¢, which can be 0. In particular, we have the following proposition.
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PRroOPOSITION 3.1. Let L be a nef line bundle on a smooth complete toric surface X with fan X..
Let n be the largest order of a root of L. Then

n=ged({le | e € £(1)}).
Proof. Let m = ged({le | € € X(1)}) and let S be a root of order n of L. Then, for any € € (1),
le=LeD.=n(SeD,).

Thus n divides m.

Conversely, let U be the matrix whose rows are given by the vectors u.. Up to translation,
we can assume that 0 is a vertex of A,. In particular, (1/m)A, is still a convex lattice polygon.
Moreover, if Ay is given by the system Uv > —a, then (1/m)A[ is given by Uv > —(a/m). In
particular, m divides all the coordinates of a. Thus, we can write

L= Z acD.=m Z %De,

e€X(1) e€x(1)

and £ has a root of order m. Thus m divides n. O

DEFINITION 3.2. A convex lattice polygon A is even (respectively odd, respectively prime) if the
integer ged({l¢ | € edge of A}) is even (respectively odd, respectively equal to 1).

A nef line bundle £ on a smooth complete toric surface X is even (respectively odd,
respectively prime) if the polygon A, is even (respectively odd, respectively prime).

If £ is ample, the normal fan of A, is X. Moreover, since X is smooth, the polygon A,
is also smooth, i.e. any pair of primitive integer vectors directing two consecutive edges of Ay
generates the lattice. Conversely, a smooth convex lattice polygon A of dimension 2 defines a
smooth complete toric surface X as follows: label the elements of ANZ2 = {(ay,b1),. .. (@m,bm)}
and consider the monomial embedding (C*)?2 — CP™ given by

b1

(z,w) > [2Mw® ... 2%,

Then X is defined as the closure of (C*)2 in CP™. In particular, it always comes with (z,w)-
coordinates and the associated complex conjugation. The line bundle £ on X given by the
inclusion in CP™ is such that A = A,. If A’ is obtained from A by an invertible affine
transformation A : R?> — R? preserving the lattice, then A induces an isomorphism between
the two toric surfaces obtained from A and A’, which pulls back £’ to £. Indeed, the lattice
72 C R? is naturally isomorphic to the space of characters on (C*)? via the (z,w)-coordinates.
The map AV : (C*)? — (C*)? dual to A induces the desired isomorphism of toric surfaces.

When int(A) N Z?2 is non-empty, we can consider the adjoint polygon A, of A defined as the
convex hull of the interior lattice points of A. The number of lattice points of A, is equal to the
arithmetic genus of the curves in |£|, which we denote g., see [Kho78]. Denote also by b, the
number of lattice points on JA. The integer b, is then equal to the intersection multiplicity of
the curves in [£[ with the divisor (3_.cx1) De)-

PROPOSITION 3.3. Let X be a smooth complete toric surface with fan ¥ and let L be an ample
line bundle on X such that g, > 1.

(i) The adjoint line bundle K x®L is nef with empty base locus and Ak, g = A,. In particular,
for each € € ¥(1), the associated edge of A, has length I, — D? — 2 ([Koe91, Lemma 2.3.1
and Proposition 2.4.2], [Oda88, Theorem 2.7]).
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(ii) Let ¢pryor : X — |Kx ® L|* be the natural map. We have dim(im(¢x o)) = dim(A,).
(iii) If dim(A,) =2, then A, is smooth [Oga07, Lemma 5]. O

If A is a smooth convex lattice polygon, we call its extremal points vertices.

4. Simple Harnack curves

Let A C Z? ® R be a smooth two-dimensional convex lattice polygon, X the associated toric
surface, and £ the line bundle on X given by A. Recall that X comes with an open dense
torus (C*)? € X with coordinates (z,w). These coordinates induce a complex conjugation on
X. A curve C € |L]| is real if it is invariant by complex conjugation. Define the amoeba map
A:(C*)? - R? by

A(z, w) = (log |z[,log |w]).

For any algebraic curve C' C X, denote C° := C' N (C*)? and RC° := C' N (R*)2.

DEFINITION 4.1. A real curve C € |L| is a (possibly singular) simple Harnack curve if C\C° is
a finite set and if the amoeba map A : C° — R? is at most 2-to-1.

Remark 4.2. The original definition of simple Harnack curves can be found in [Mik00]. The
equivalence to the definition given here is proven in [MRO1, Theorem 1]. We seize the occasion
to slightly clarify [MRO1, Theorem 1]. For the latter theorem to be true, one has to stress in
[MRO1, Definition 2] that the intersection ay, NI consists of dj, points, counted with multiplicities.
Whether Mikhalkin and Rullgard [MRO1] meant Definition 2 this way or not, it is, in any case,
a minor issue.

From the present perspective, simple Harnack curves have two remarkable properties. First,
the topological type of (RX,RC,|J,RD.) is unique, see [Mik00]. Second, the space of simple
Harnack curves admits a very simple set of coordinates, see [KO06] and [Olal7]. In particular,
all the possible deformations of simple Harnack curves to singular curves are known. The topology
of RC C RX can be recovered from Definition 4.1. The real part RC' consists of gr + 1 ovals.
One of these ovals intersects all the toric divisors D, in the maximal number of points (with
multiplicities) in the cyclical order induced by the fan ¥. The remaining g, ovals are mutually
non-nested. The amoeba of C° is a closed domain of R? bounded by A(RC®). In particular,
it has g, holes and one tentacle going off to infinity for any intersection point of RC' with
X\ (C*)2. These properties are illustrated, for instance, in [Lan15a, Figures 1 and 2]. Next, we
use these properties to construct a rigid and combinatorial model for simple Harnack curves, see
Proposition 4.6 and Figure 1. The latter model will be very helpful in keeping track of vanishing
cycles or monodromy along 1-parameter families of curves.

For a simple Harnack curve C, the amoeba map A is 1-to-1 on RC° and A(C°) determines
C up to sign. We get rid of this sign ambiguity as follows. Choose a vertex v € A with adjacent
edges €1 and ez. By [MRO1, Definition 2], there is a unique connected arc @ C RC® joining
€1 to €a. We restrict ourselves to the set of smooth simple Harnack curves for which « sits in
the (+, +)-quadrant of R2. For technical reasons, we also assume that C intersects the divisor
X\ (C*)? transversally, implying that C° is a compact Riemann surface with b, points removed.
The latter is a Zariski-open condition in the linear system |L|, see, for example, [Vir84, §1.1].
We denote by Ha C |L£] the set of such simple Harnack curves. In the following, we refer to the
gr ovals of RC contained in (C*)? as the A-cycles of C.
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N AN - N A~ GA

FIGURE 1. Construction of C} from A.

THEOREM 3. Any A-cycle of a curve Cy € Ha is a vanishing cycle in the linear system |L|.
THEOREM 4. The set Ha is connected.

These theorems are given in [KOO6] for the case X = CP2. The proofs we provide here rely
mainly on [KOO06]. We only provide the extra arguments that we require. Before doing so, we
recall one of the main ingredients. We identify H°(X, £) with the space of Laurent polynomials
with support inside A N Z2. For any f € H°(X, L) and C := f~1(0) € X, the Ronkin function
Ny : R? — R given by

1 dz dw
N = — 1
#(z,y) @in)? //ﬂz'i"’z og|f(z w)l——

is convex, piecewise linear with integer slope on every connected component of R2\ A(C®). Tt
induces the order map

mo(R2\A(C°)) — ANZ?
U — grad N¢(U).

For a curve C' € Ha, the latter map is a bijection, mapping any compact connected component
of R2\ A(C®) to A, N Z2. Note that for two polynomials defining the same fixed curve C,
the associated Ronkin functions differ only by an additive constant. It follows that the map
(grad Ng) o A : C° — R? does not depend on the choice of f. We refer to [FPT00] and [PRO4]
for more details.

The proof of Theorem 3 relies on the fact that [KOO06, Proposition 6] extends to the present
case. To show this, we need an explicit description of the space of holomorphic differentials on a
curve C' € Ha.

LEMMA 4.3. Let C € Ha and f € H*(X, La), such that C = {f = 0}. The space of holomorphic
differentials on C' is isomorphic to the space of sections of LA, via the map

Proof. The space of sections of La, has the expected dimension g, and two such meromorphic
differentials are linearly independent for different h. It remains to show that they are in fact
holomorphic. We proceed in two steps.

Assume first that A C N? has a vertex at the origin with adjacent edges given by the
coordinates axes. Then, the plane C? given by the coordinates (z,w) provides a chart of Xa
at this vertex. In such a case, h(z,w)/zw is a polynomial and the poles of 1/0,f(z,w) are
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compensated by the vanishing of dz on C?> N C. The latter fact follows from a straightforward
computation, using a local parametrization of C. It implies that any differential

h(z,w)

2= Owf(z,w) zw

dz

is holomorphic on C2 N C.

We now show that one can apply the following argument at any vertex of A, to conclude
the proof. It relies on the following claim: for any lattice-preserving transformation A : R? — R?
sending A to some A’ and dual map A : (C*)? — (C*)?, then

AYQ = _Mst) s,
Ocf'(s,t) st

where h' := A.h € Ly, f':= Auf € Lar, and (s,t) := AY(z,w). Any such map A can be
decomposed into an integer translation and an Sly(Z)-linear map. If A is a translation by some
vector (a,b) € Z2, the map AV is the identity. We have b/ = z%w®h, f' = 2%w’f. On the curve
C, we have 0y f'(z,w) = 2*w’dy f (2, w) as fic = 0. It follows that

B (z,w)
_BY - q
Owf!(z,w) zw :

If A(n,m) = (dn — bm, —cn 4+ am), then AY(z,w) = (2*w®, z°w?) and, by definition, h(z,

w) = h/(s,t). Set the logarithmic coordinates (z, w) = (log(z),log(w)) and (s, t) = (log(s),log(t))
and define f(z, w) := f(z,w) and f'(z, w) := f’(z,w). Observing that f’'(s, t) = f(ds—bt, —cs+at)

and that
dz dw

Owf(z,w)  0.f(z,w)

on {f = 0}, we compute

ds ds adz + bdw dz dz

Oif!(s,t) st - Ot (s, t) - —b0,f(z,w) + a Owf(z, W) - Owf(z, w) - O f(z,w) zw’ -

Proof of Theorem 3. To begin with, we briefly describe the setting of [KO06, Propositions 6 and
10]. Consider the space H of simple Harnack curves in |£| with fixed intersection points with
X\(C*)2. Note that H is closed and has dimension g, and the only singular curves in H have
isolated real double points (see [MRO1]).

Consider then the continuous and proper map Area : H — Rg;o that associates with any curve
C' the area of the holes of A(C*). We show next that the map Area is a local diffeomorphism. In
particular, it is a covering map. Now, for any curve C € H, denote Area(C) =: (a1, a2, ..., aq,)
and Tj := {(a1,...,taj,...,aq.) | t € [0,1]}, for 1 < j < gg. As the map Area is a covering map,
we can lift the segment 7} to a path in |£| starting at C. By construction, this path ends at a
curve whose only singularity is a node and the corresponding vanishing cycle is the jth A-cycle
of C.

Let us now show that Area is a local diffeomorphism. With this aim, we show that [KOO06,
Proposition 6] holds true in the present case. Namely, fixing a simple Harnack curve C' € H
defined by a polynomial f, we check that the intercepts of the g, affine linear functions supporting
Ny on the compact connected component of R\ A(C®) provide local coordinates on H near C.
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We reproduce the computation of [KOO06]: from Lemma 4.3, we know that for a defining
polynomial f € H°(X, L) of C, any holomorphic differential on C has the form

where h € H%(X, La, ). Taking f to be a real polynomial, the tangent space of H at C'is identified
with the space of real polynomials h in H°(X, £a, ). For any points (z,y) contained in a compact
component of R?\A(C®), we can compute the variation of Ny as in [KO06, Proposition 6]

_ 1 h(z,w) dz dw
=0 %QW //ZP@I flz,w) zw

L Ch(zw) dz / (z,w)
wf(Z, ) zw T 2m Owf(z,w) 2w’

d
dt

Nf+th($ 3/)

2’L7T |Z‘_ez Flow

\w\<ey
where [ is the B-cycle {|z| = €%, |w| < e¥}NC. The latter is anti-invariant by complex
conjugation, justifying that we can omit Re in the last equality. Hence, the differential of the
map giving the intercepts in terms of the coefficients of f is the period matrix of C', which is
invertible.

Now the variational principle of Proposition 8 and the discussion opening [KO06, §4.5] hold
true in the present case as no argument depends on A. It implies that the map giving the areas
of the holes of A(C®) in terms of the intercepts is a local diffeomorphism. We conclude that the
map Area is a local diffeomorphism. |

Proof of Theorem 4. The strategy of the proof is as follows: we first show that any two curves
Co, C1 € Ha can be continuously degenerated to rational simple Harnack curves Cj and C7.
Then we show that the space of rational simple Harnack curves is path connected, and construct
a path inside the latter space joining Cj to C7. Finally, we show that the resulting path joining
Cp to C7 can be deformed in Ha.

First, we use the same argument as in the proof of Theorem 3 involving [KO06, Proposition
10]. If (aj1,a4.2,...,a54.) is the vector of the area of the holes of A(C7), j = 0,1, we can
construct two continuous paths of simple Harnack curves {C;s|s € [0,1]} such that C;; = C}
and the area of the holes of .A(C]‘?,s) is s+ (aj1,...,aj4.). Notice that C;j s € Ha for s > 0. The
curves Cj o are the curves C”7 announced already.

The space of rational Harnack curves admits a parametrization similar to that given in
[KO06, §4.1]. Label the edges of A counterclockwise as €1, ...,€,, with respective primitive
integer normal vectors v1 = (a1,b1),...,v, = (an,b,) pointing outwards, and finally I; := I,.
Real rational curves with Newton polygon A can always be parametrized by

n n
tc CP!' v <aHH(t—cjk)aj”BHH(t—cjk)bJ> eX (2)
j=1k=1 j=1k=1

with «, 8 € R*; the c¢;, are either real or appear in complex conjugated pairs. Such a
representation is unique up to the action of PGLa(R) on the parameter ¢. The same arguments
as in [KOO06, Proposition 4] apply so that the curve (2) is a rational simple Harnack curve if and
only if all the c;;, are real and

e <Ko < KK ey <<t St K Gy, - (3)
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For a curve in OHa, the signs of a and 3 are determined by the sign convention made on HAa.
The space of parameters «, 3, and c;), satisfying (3) is connected. This implies that the space
of rational simple Harnack curves in 9Ha is connected. Hence, one can construct a continuous
path {Cf |t € [0,1]} in this space joining Cj to Cf.

The deformations of C; towards Ha with fixed points on X\(C*)? are given by real
polynomials h € H°(X,La,) having prescribed signs at the nodes of C}, once we choose a
continuous path of defining real polynomials f; for C}. Indeed, h and f; need to have opposite
signs around each node for an oval to appear. This sign distribution does not depend on t,
as the topological pair ((R*)2,R(C;)°) does not depend on t either. The vanishing of the
polynomials of RH?(X, L,) at each of the nodes of Cj imposes independent conditions, cutting
RHY(X, La,) into 29¢ orthant. Only the orthant corresponding to the sign prescription above
leads to deformations into Ha. It induces a continuous family of orthant in ¢, inside of which
{C/}+ can be continuously deformed to a path in Ha with endpoints on {Cps}s and {C1s}s.
The result follows. a

Remark 4.4. In his recent work [Olal7], Olarte generalized the parametrization of the space of
simple Harnack curves given in [KO06] to any Newton polygon. In particular, Olarte shows that
the space Ha is contractible, generalizing Theorem 4.

We now show that Ha := {((z,w),C) € (C*)? x Ha,| (z,w) € C} is a trivial fibration over
Ha. For this purpose, we will again make use of the Ronkin function. It is shown in [PR04] that,
for C € |£] and f a defining polynomial, the map (grad Ny) o A: C° — R? takes values in A. In
the Harnack case, we have the following stronger statement.

LEMMA 4.5. For a polynomial f defining a curve C' € Ha, the map (grad Ny) : int(A(C°)) - A
is a diffeomorphism onto int(A\Z?).

Proof. This lemma follows from [Kril3, Lemma 4.4]. We choose to give an alternative proof here.

First, it is shown in [PR04, Theorem 7] that the Hessian of Ny is symmetric positive definite
on int(A(C?)), implying both that grad Ny is a local diffeomorphism and that Ny is strictly
convex on int(A(C?)). Let us show that grad Ny is injective on int(A(C®)). Suppose there are
two points p, ¢ € R? such that grad N +(p) = grad N¢(q). By the convexity of Ny, it implies that
Ny is affine linear on the segment joining p to ¢. By the strict convexity of Ny on int(A(C?)), it
follows that both p and ¢ sit outside int(.A(C®)). This proves injectivity.

Now, it is shown in [PR04, Theorem 4] that im(grad Ny) = A. Suppose there is a point
p € int(A\Z?) not in im(grad Ny) and consider a sequence {py }nen C im(grad Ny) converging to
p. All the limit points of {(grad Ns)~!(p,)}nen are either in D.A(C®) or escape to infinity along
the tentacles of A(C®). This implies that p, converges either to A NZ? or to JA. This leads to
a contradiction. The surjectivity follows. O

We now show that this map provides a trivialization of the fibration Hao — Ha via the
following construction. First, consider the real oriented blow-up of R? at Z2. This operation
replaces the neighborhood of any lattice point p with {z € R? | ||z|| > ¢} for an arbitrarily small
£ > 0. Define A to be the closure of int(A)\Z? inside the latter blow-up of R? minus the closure
of OA\Z?. Now, consider a copy A’ of A given with opposite orientation and define

CR:=ANUA/~,
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where ~ is the identification of the boundary of A’ to that of A. It follows that C} is a compact
oriented surface of genus gz with bz points removed. The construction of C} is illustrated in
Figure 1. Denote by pr: C} — A the 2-to-1 projection and by conj : CR — CR the associated
deck transformation. By Lemma 4.5, we can define an orientation-preserving and equivariant
map Rc : C°\RC® — C3 such that pro Rc = (grad Nf) o A. The map R¢ is unique.

PROPOSITION 4.6. The map R¢ extends to a diffeomorphism Rc : C° — CR. Moreover, the
map R := (R¢,id) : HA — C} X Ha is a trivialization of the fibration Hx — HAa.

Before getting into the proof, recall that the logarithmic Gauss map v : C° — CP! is the
composition of any branch of the complex logarithm with the standard Gauss map. In coordinates
(2,w) € (C*)?,

7(Z>w) = [Zazf('z?w) : wawf(sz)] )

where f is a defining polynomial for C.

Proof. For the first part of the statement, we show that R¢ extends to a diffeomorphism on one
half of the curve C° and use the equivariance to conclude.

Consider the affine chart [u : v] — u/v of CP! and define the half CT of C° to be the closure
of {g € C° | Im(v(q)) > 0}. Notice that it induces an orientation on RC® and a lift 4+ : RC°® — S*
of 7. By the computation of the Hessian of Ny in [PR04, (19)], we deduce that the restriction to
C* of (grad N¢) o A is a lift of the argument map Arg : C° — (S')? to its universal covering R?
after a rotation of 7/2. Now let p € RC°. Up to permutation of the coordinates and sign change,
we can assume that v(p) = [« : 1] and that p sits in the positive quadrant. We prove next that
the restriction of Arg to a neighborhood of p in C™ lifts to the real oriented blow-up of (S')? at
(0,0).

By [Mik00, Corollary 6], the logarithmic Gauss map  has no critical point on RC°. Then - is
1-to-1 around p and can be used as a local coordinate for C' around p. The local parametrization
Logoy™t:t:=u/v+ (z(t),w(t)) of Log(C) around Log(p) satisfies

—w'(1)/2 (1) = t,

where the left-hand side is the map 7 seen via the affine chart of CP! chosen above. It follows
that ]

J
Jj+1

z(t) = az + Zajtj and w(t) =aw —

j>1 j>1

ajt]+1,

where a, aw,a; € R. Recall that Arg is the projection on iR? in logarithmic coordinates. Hence,
in the coordinate ¢, we have

Arg(t) = (m(a(t). Im(w(o) = (L ayam(e), - 3 T aym(e ) ).

j=1 j=1
Now, let us denote t = o+ i5. A direct computation shows that
Jm(t! o Jm(tt!
lim @ ) gy ImET)
B—0 15} B—0j5+1 15}
providing the following explicit formula

Arg(t) 7o) (L—a)

A8 TArg®l 2@ 1L —a)]

— ind
=Jja,
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for the extension of Arg to the real oriented blow-up at (0,0). The same computation shows that
s Arg(a) = 2z'(a)(1, —a).

Applying a rotation of m/2, we deduce that Ro extends to C* and that its restriction to RC°
is given by 4. Together with Lemma 4.5, It implies that R¢ is differentiable and then induces a
diffeomorphism from C'* to A. From the equality 95 Arg(a) = 2/ (a)(1, —a), we deduce, moreover,
that the partial derivative dgRc at any point of RC® is normal to OA. Hence, it extends to an
equivariant diffeomorphism on the whole C°.

From the computation led above and Lemma 4.5, we deduce that the map R := (R¢,id) :
Hpa — CR x Ha is a differentiable map, and therefore a trivialization of the fibration Ha —
Ha. Indeed, R is given by the lift of the argument map to its universal covering on C°\RC®
and extended by the logarithmic Gauss map on RC°. Both maps depend analytically on the
coefficients of the defining polynomial of C' € HAa. O

We define a primitive integer segment to be a segment in A that joins two integer points and
is of integer length 1. For a primitive integer segment o C A, denote by & its lift in A. It follows
from Proposition 4.6 that for any primitive integer segment o C A, (pro Rc)~(5) € C is a loop
invariant by complex conjugation. Similarly, denote by & C A the boundary circle projecting
down to v € A, NZ2 Then (pro Rc)~1(#) C RC is one of the A-cycles of C.

COROLLARY 4.7. Let Cy,C € Ha and ¢ : Cy — Cp be the diffeomorphism induced by the
trivialization R. Also, let o C A be a primitive integer segment and v € A, N Z?. Then, the
pullback by ¢ of the Dehn twist along the loop (pro Re,) () (respectively (pro Re,)~(9)) in
C} is the Dehn twist along the loop (pro Re,) () (respectively (pro Rg,)~1(%)) in Cp.

DEFINITION 4.8. For any primitive integer segment ¢ C A and any curve C' € Ha, define the
loop d, := (pro Rc)™1(6) € C and 7, € MCG(C) to be the Dehn twist along &, .

For any v € A, NZ2, define the A-cycle §, := (pro Rc)~}(?) C RC and 7, € MCG(C) to be
the Dehn twist along &,.

Remark 4.9. The loops §, and §, intersect if and only if v is an end point of ¢. In this case, J,
intersects d, transversally at one point.

5. Tropical curves

In this section, we recall some definitions for tropical and phase-tropical curves, following [IMS09]
and [Lan15b]. For the sake of pragmatism and simplicity, some definitions are given in a restrictive
context. The expert reader should not be disturbed. The main goal of this section is the statement
and proof of Theorem 5, as a corollary of Mikhalkin’s approximation theorem, see [Lanl5b,
Theorem 5]. Namely, we construct explicit elements in the image of the monodromy map p by
approximating well-chosen loops in the relevant moduli space of phase-tropical curves.

A tropical polynomial in two variables x and y is a function

flz,y) =" Z caﬁxo‘yﬁ’ = max (cop+za+yp), (4)
(a.f)eA (a,B)EA

where A C N2 is a finite set and Ca,g € R.
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DEFINITION 5.1. The tropical zero set of a tropical polynomial f(z,y) is defined by
I';:= {(z,y) € R?| f is not smooth at (z,y)}

A subset I' C R? is a tropical curve if I' = I'; for some tropical polynomial f. We denote by E(I')
the set of its bounded edges and by V(I') the set of its vertices.

It follows from the definition that a tropical curve I' C R? is a piecewise-linear graph with
rational slopes. The Newton polygon of a tropical polynomial f is defined as the convex hull
of its support A. The Newton polygon of a tropical curve is only defined up to translation as
the multiplication of tropical polynomial by a tropical monomial does not affect its zero set.
Tropical curves are intimately related to subdivision on their Newton polygon. For a finite set
A C ANNZ, denote by A the lattice polygon A := conv(A). For any function h : A — R, define

Ap = conv{((a, B),t) € R3 | (a,8) € A, t = h(e, B)},

i.e. Ay is the convex hull of the epigraph of h. The bounded faces of A}, define a piecewise-linear
convex function vy : A — R. Finally, define S}, to be the subdivision A = Aj UAsU--- U AN
given by the domains of linearity A; of v,. The subdivision Sp is a union of 0-, 1- and 2-
cells. For practical matters, we will often consider S; as a graph. The set of its vertices is
V(Sk) = U;(0A; N N?) and the set of its edges E(Sy) is the union over i of all the primitive
integer segments contained in 0A;.

DEFINITION 5.2. A convex subdivision S of A is a graph S = S}, for some function h: A — R.
The subdivision S is unimodular if any connected component of A\S has Euclidean area 1/2.

Notice that by Pick’s formula, a subdivision is unimodular if it decomposes A into triangles,
whose vertices generate the lattice Z2. Now any tropical polynomial f as in (4) can be considered
as the function (o, 8) — co,3 on A, and hence induces a convex subdivision Sy on its Newton
polygon A. We have the following duality, see [IMS09].

PROPOSITION 5.3. Let f(x,y) be a tropical polynomial. The subdivision (R?,T'¢) is dual to the
subdivision (A, Sy) in the following sense.

(a) i-cells of (R%,Ts) are in 1-to-1 correspondence with (2 —i)-cells of (A, S¢), and the linear
spans of corresponding cells are orthogonal to each other.

(b) The latter correspondence reverses the incidence relations.

For any edge e € E(Ty), denote its dual edge by e¥ € E(Sy). Define the order of any connected
component of ]RQ\Ff to be its corresponding lattice point in A.

Remark 5.4. A unimodular convex subdivision S of A induces a pair of pants decomposition of
any curve C' € Ha by considering the union of the loops 4, for all o € E(S), see Definition 4.8.

DEFINITION 5.5. A tropical curve I'y C R? is smooth if its dual subdivision Sy is unimodular.

In particular, a smooth tropical curve has only 3-valent vertices. Now, we introduce some
material in order to define smooth phase-tropical curves. Consider the family of diffeomorphism
on (C*)? given by

Hi(z,w) = <‘Z‘1/10g(t)2’ ,w|1/1og(t)w>_

2| [w]
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Define the phase-tropical line L C (C*)? as the Hausdorff limit of H;({1 + 2z + w = 0}) C (C*)?
when ¢ tends to +oo. If we denote by A := I'«;,,» the tropical line centered at the origin, L
is a topological pair of pants such that A(L) = A. The tropical line A consists of 3 infinite rays
merging at the origin. The preimages by A in L of the 3 open rays of A are the cylinders

{z=1,|w| <1}, {w=1,|z|] <1} and {z=w,|z|>1}.

These cylinders are glued to the coamoeba Arg({1 + z + w = 0}) over the vertex of A.
A toric transformation A : (C*)? — (C*)? is a diffeomorphism of the form

(z,w) > (b 2" w2, bez?tw?2),

where (b1,b2) € (C*)? and (aij)i; € Sla(Z). The composition of A with the projection A
(respectively Arg) is an affine linear transformation on R? (respectively on (S')?) that we
still denote by A. Notice that the group of toric transformations fixing L is generated by
(z,w) = (w,2) and (z,w) — (w, (z2w)~1). It descends to the group of symmetries of A via A.

DEFINITION 5.6. A smooth phase-tropical curve V C (C*)? is a topological surface such that:

(i) its amoeba A(V) is a smooth tropical curve I' C R?;

(ii) for any open set U C R? such that U NT is connected and contains exactly one vertex v of
I, there exists a toric transformation A such that V N A~Y(U) = A(L)n A~Y(U).

We will say that the map A is a chart of V' at the vertex v.

Remark 5.7. Tt follows from the definition that the topology of V' is determined by its underlying
tropical curve A(V). V is an oriented genus g surface with b punctures, where g and b are,
respectively, the genus and the number of infinite rays of A(V).

Smooth phase-tropical curves enjoy a description very similar to the one of Riemann surfaces
in terms of Fenchel-Nielsen coordinates, see [Lanl5b]. Let V' be a smooth phase-tropical curve
and I' := A(V). Up to toric translation, the phase-tropical curve V' can be encoded by the pair
(I',©) where © : E(I') — S! is defined in the following way. For any e € E(I') bounded by
v1,v2 € V(T), consider any two charts Ay, Ay : (C*)?2 — (C*)? at v; and vy overlapping on e
such that A; and A, map e on the same edge of A and exactly one of the 4; : R? — R? is
orientation-preserving. Without restriction, we can assume that the cylinder of V' over the edge
e is mapped to the cylinder {w = 1,e < |z| < 1} by both A; and As. The induced automorphism
Ao A1_1 on the latter cylinder is given in coordinates by z — 1/z for a unique ¥ € C*. We can
check that the quantity arg() € S is an intrinsic datum of V, see [Lan15b, Proposition 2.36].

DEFINITION 5.8. For a phase-tropical curve V' C (C*)? and T := A(V), the associated twist
function © : E(I') — S! is defined by

O(e) := arg(v)
for any e € E(I') and ¥ € C*, as constructed above.

Remark 5.9. If any smooth phase-tropical curve V C (C*)? can be described by a pair (T, 0),
there are conditions on the twist function © for the pair (I', ©) to correspond to a phase-tropical
curve in (C*)2. These conditions are given in [Lan15b, (5)]. Notice also that any tropical curve
I" induces a length function [ on E(I"). The Fenchel-Nielsen coordinates of a phase-tropical curve
(T, ©) consist of the pair (I,0), see [Lan15b].
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Phase-tropical Harnack curves are the phase-tropical counterpart of the simple Harnack
curves that we reviewed in the previous section.

DEFINITION 5.10. A phase-tropical Harnack curve is a smooth phase-tropical curve V C (C*)?
invariant by complex conjugation and with associated twist function © = 1.

It follows from the definition that, for a given smooth tropical curve I, there are exactly four
phase-tropical Harnack curves V' C (C*)? such that A(v) = I' and that they are all obtained from
each other by sign changes of the coordinates. The map A is 2-to-1 from the real part RV onto
I'. In particular, the topological type of (RX,RV') can be recovered from I'. If A is the Newton
polygon of T', it follows from [Lanl5a, Theorem 2] that the approximation of I" in L4 is a simple
Harnack curve whose amoeba can be made arbitrarily close to T'.

We now introduce some necessary terminology for the statement of Theorem 5.

DEFINITION 5.11. A weighted graph of A is a pair (G, m), where G is a graph whose edges
are primitive integer segments contained in A and m : E(G) — Z. A weighted graph (G, m) is
balanced if, for any vertex v € V(G) Nint(A),

Z m(e)-€=0, (5)

eeE(G,v)

where F(G,v) C E(G) is the set of edges adjacent to v oriented outwards. A weighted graph
(G, m) is admissible if it is balanced and if it is a subgraph of a unimodular convex subdivision
of A.

DEFINITION 5.12. For a weighted graph G := (G, m) of A, and any curve Cy € Ha, define

o= [ =" eMCG(Cy),
c€E(G)

where 7, is given in Definition 4.8.
THEOREM 5. For any curve Cy € Ha and any admissible graph G = (G, m) of A, we have
Tg € im(p).

Proof. Let S be a unimodular convex subdivision containing G and I' C R? be a tropical curve
of dual subdivision S. Among the four phase-tropical Harnack curves supported on I', consider
the one, V, that is coherent with the sign convention made for HAa.

The admissible graph G = (G, m) induces the following family {V; := (I',®;) | 0 < ¢t < 27}
of phase-tropical curves: for any ¢ € E(I') such that ¢/ € E(G), define ©,(¢) = ™) and
©.(e) = 1 otherwise. One easily checks that ©; satisfies (5) in [Lanl5b] for any parameter ¢, so
that it actually defines a loop of smooth phase-tropical curves in (C*)? based at Vo = Vor = V.

We now want to use Mikhalkin’s approximation theorem in families (see [Lanlbb,
Theorem 5]). For this, we briefly reproduce a construction that can be found in [Lanl5b,
§4.2]. Consider the Teichmiiller space 7 (C') pointed at a fixed curve C' € Ha. The pair of pants
decomposition of C given by {d, | ¢ € E(S)} induces Fenchel-Nielsen coordinates on 7 (C),
see, for example, [Busl0, ch. 6, §3]. The partial quotient 7(C) — (C*)PT) — M, ;. by the
group generated by the set of Dehn twists {7, | 0 € E(S)} inherits Fenchel-Nielsen coordinates
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]RE(()F) x (SHEM) ~ (C*)EM), In particular, the latter quotient parametrizes actual genus g
Riemann surfaces with b punctures, see, for example, [Busl10, ch. 3, § 6]. Using these coordinates,
we consider the partial compactification F' of (C*)#(I) obtained by considering the real oriented
blow-up of its Rso-factor at the origin. Namely, we replace RE(()F) with {l € RE(()F) | |1 = e}
We then identify the boundary points of the blow-up with phase-tro