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Abstract

The hydrodynamic pressure forces acting upon a slender fish are derived
for the case of a fish swimming in a non-uniform velocity field. Possible
applications are the effects on fish propulsion of swimming in waves, in
turbulent eddies, and in the presence of other fish or a moving ship. The fish is
assumed to be a slender body, with no vorticity shed into the fluid except at a
single abrupt trailing edge located at the posterior end of the fish, and to be
performing small lateral swimming undulations of its body. The non-uniform
field through which the fish swims is assumed to be irrotational, and this field
as well as the body undulations must be slowly-varying on the length-scale of
the lateral fish dimensions. Expressions are derived for the local force and the
time-averaged total thrust force. These are applied to the study of steady-state
bow-riding and wave-riding of porpoises.

1. Introduction

The application of slender-body theory to fish swimming was initiated by
Lighthill [5], and this theory has subsequently been extended by various
authors. (For a recent survey see Newman and Wu, [8].) In his original analysis
Lighthill [5] assumed that the fish body was slender, with an abrupt sharp
trailing edge at the tail from which a vortex sheet extends downstream into the
fluid, but with no vorticity shed into the fluid upstream of the tail. The fluid
motion was assumed ideal, and lateral swimming undulations of the fish body
were assumed small in amplitude and slowly-varying along the body axis. In the
subsequent papers on this subject these assumptions have been critically
examined and in some cases removed, but it has generally been assumed that
the fish swims in a uniform infinite fluid which is at rest except for the
perturbation field generated by the fish.

Interest in fish swimming in non-uniform fields is stimulated by considera-
tions of the effects, on the swimming performance, of various external
disturbances including the presence of other fish (fish-schooling), waves on the
ocean surface, ambient turbulence (particularly in fast-flowing rivers), and the
effects of a moving ship. In a particular example of the latter, which we shall
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96 J. N. Newman [2]

examine here, porpoises are known to "bow-ride" near ships' bows, and
various qualitative explanations for this phenomenum are noted by Lang [4].
Two-dimensional theories for swimming in non-uniform fields have been
developed, especially for the case of ambient surface waves, in an analogous
manner to the gust-theory of two-dimensional unsteady thin wing theory in
aerodynamics. In addition Weihs [!2] has studied fish schooling interactions
using a steady two-dimensional approach. Since fish are typically slender rather
than two-dimensional, it would seem desirable to develop the complementary
theory, initiated by Lighthill [5] for a uniform field, and to extend this to the
case where the surrounding fluid is not at rest but moving with some arbitrary
non-uniform velocity field. In a recent paper Coene [2] has developed the
slender-body approach for a fish swimming in waves. That work can be
regarded as a special case of the present problem, but Coene's analysis is
carried further to include detailed calculations of propulsive efficiency in
waves.

In this paper the slender-body theory of fish propulsion is extended to the
case where the surrounding fluid is in a state of non-uniform motion. In order to
make our results applicable to analyses of the different external disturbances
noted above, we shall suppose that the non-uniformity is quite general, it being
necessary to assume only that this field is irrotational, with gradients which are
small based on the lateral (i.e., slender) length scale of the fish. To keep the
theory as simple as possible we make the same assumptions as Lighthill [5]
regarding the fish slenderness, absence of upstream shed vorticity, and
smallness of the lateral swimming motions. In sections 2-4, the hydrodynamic
pressure force is analysed, including the local lateral force Z£(x,t) and the
time-averaged total thrust force T. In sections 5-6, we illustrate these results by
developing a quantitative analysis of the steady-state porpoise bow-riding
problem.

2. The Hydrodynamic Pressure Force

Cartesian co-ordinates (x,y,z) are employed, fixed with respect to the
mean position of the fish, which is facing in the negative x-direction with its
body axis coincident with the segment (0,/) of the x-axis in the "stretched-
straight" position. The body length / is assumed to be 0(1), whereas the body
thickness is small of order e, and for simplicity it will be assumed that the body
is symmetrically disposed about the y and z-axes. In addition the body may
perform small lateral motions of its centerplane, normal to the z-axis, with
displacement z = h{x,t). It is assumed that the flow past the body is inviscid
and irrotational, except for thin vortex sheets which are shed only from abrupt
trailing edges at the body tail, these tail fins being in the plane z = 0 when h = 0.

The "incident" flow experienced by the fish is defined as the velocity field
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which would exist in the absence of the fish. This flow is presumed to be
non-uniform, but may be described by a velocity potential 4>(x,y,z,t) which is
assumed to vary slowly over distances of order e, i.e., the lateral dimensions of
the fish. Under this assumption, the incident velocity components, in the inner
region near the body, can be approximated by Taylor series expansions of the
form:

<f>y = <Mx,o,o,o + y<M*,o,o,o + z<Mx,o,o,o + 0(£J), (D

From the assumption of body symmetry about the y and z -axes, it is
anticipated that there will be no interactions between the two incident
cross-flow velocities <t>y and <k, even in treating quadratic functionals of the
potential such as the longitudinal thrust force acting on the fish. This assump-
tion can be readily confirmed by straightforward extension of the formulae
below, and to avoid unnecessary algebra we assume hereafter that the incident
field is independent of y, or confined to the same plane as the swimming
motions of the fish. Then, with the definitions

,t) = <f>x(x,0,0,t), (2)

) = <f>!(x,0,0,t), (3)

for the two components of the incident velocity on the body axis, it follows
from (1) that

4>x(x,y,z,t)= U + zW, + 0(e2), (4)

4>Ax,y,z,t)= W-zUx +0(e2), (5)

where Laplace's equation has been used in the last equation.
In order to represent the complete flow, including the interaction of the fish

body with the incident flow, we write for the total potential,

<D = <(> + i/,, (6)

whence if represents the disturbance due to the presence of the body, including
the effects of its own lateral motion and the disturbance which it causes to the
incident flow as well. Appropriate boundary conditions on $ are that the total
normal velocity <&» on the body be equal to the normal velocity of the body,
and that Vip vanish at large radial distances from the body axis. In addition, a
weak Kutta condition must be imposed at the fish tail. From the slenderness
assumption, </» will satisfy the two-dimensional Laplace equation «/>yy + $„ = 0
in the inner region near the body, with the error a factor 1 + O(e2) , and hence,
this potential function can be expanded in the form
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ip = a0logr + X amr~m cosmO+f(x,t), (7)

(cf. Ward, [11], Chapter 9). Here (r,0) are polar coordinates,

y = r sine,

z — r cosS.

The coefficients am(x,t) are determined from the boundary condition on the
body and f(x,t) is related to a0 by a linear integral transform. It is unnecessary
to solve for all of these coefficients, since the normal velocity on the body is
O(l), whereas

(dldn)r~m =0(6"" - ' )
and hence,

am =O(em + 1) .

In fact, the symmetric portion of i/>, due to the body thickness, will be one order
higher, and hence,

(a0,/) = O(e2),

as is well known in classical slender-body theory, and
„ /-\ / _ 2m +2\

a.2m — U(e ) .

Now it is clear that in the "intermediate" region, e < r < 1,
(8)

and hence the body's hydrodynamic characteristics are dominated by the
source strength a0 and dipole moment a,. The source strength a0 is found from
a conservation-of-mass argument, simply by noting that since the body
cross-sectional area S(x) is independent of time, the integral of <t>. taken
around the body contour SB at the station x = constant must vanish, and hence

L = 0 ,

the normal n being defined as positive when pointed into the body or out of the
fluid domain. Using (4,5) for <\>. = 4>xnx + <$>znz, and (7) to compute the flux due
to (//„, it follows that

where a prime denotes the partial derivative with respect to x.
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The dipole moment a,(x,t) is proportional to the relative lateral velocity
(V- W), where

V = h, + Uhx=Dh (10)

is the lateral velocity of the body with respect to a (local) moving reference
frame translating with velocity U(x,t). This follows by noting that, if the body
surface is defined by

the boundary condition 0 = F, + V $ V F takes the form

0= -h, - * A +V*-VF0,

and the even and odd (in z) parts of the potential then satisfy the boundary
conditions

fr'= -unx,
^ a ) = (h, + Uhx - W)nz = (V - W)tu,

respectively. Then, by a well known theorem (cf. Batchelor, [1], p. 403),

{A(x) + S(x)UV-W), (11)

where pA(x) is the added-mass coefficient of the body contour SB for lateral
acceleration parallel to the z-axis.

Having determined the body potential ty in the intermediate region, in
terms of the parameters S and A, we may now compute the hydrodynamic
pressure forces by utilizing conservation arguments, replacing the direct
pressure integral over the body surface (where the full potential i/r is unknown)
by a surface integration in the intermediate region. For this purpose, following
Newman [6], the vector force F acting on the portion of the fish body upstream
of a station x = constant can be expressed in the form

F= -

- ^ - [ [ <t>ndS - pih, j> <Pnzdl (12)

where 5B is the body surface upstream of SB, the intersection of SB and the
plane x = constant, and Sc is an arbitrary control surface surrounding the
partial body surface SB in the fluid.*

* Note thai in Newman [6], a (constant) term - | t / 2 is introduced in Bernoulli's equation and
the subsequent formulae to ensure that the pressure vanishes at infinity; here U is not a constant so
that this step must be avoided, but the Bernoulli constant in (12) may be deleted so long as we
consider the longitudinal force F, only for the complete closed body, where ffndS = 0, and the
local lateral force Z£(x,t) for a closed body section where fn,dl =0.
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We shall use (12) to find the local lateral force Z£(x,t) = (dldx)Fz, and the
total longitudinal drag (or thrust) force Fx. In both cases, the control surface Sc

is taken to be (Fig. 1):
(1) a circular cylinder r = constant in the intermediate region outboard of

the body, denoted by S,;
(2) a closing surface S« far upstream, on which $ = 0; and
(3) a closing surface ST between S, and SB in the plane x = constant,

outboard of SB-
It will be convenient to introduce a "base area" surface So interior to the body
in the same plane as ST ; thus So is the plane surface interior to and bounded by
2 B .

Figure 1.— Coordinate system and control surface surrounding the
upstream portion of the body surface.

3. Local Lateral Force

The lateral force component Fz, acting upon the portion of the body
upstream of ST, is given by

F2 = Pjjs <t>,<t>Mydz + p jjs U((j,l + <f,])nz -$.&]dS-p J £ Q^dydz

+ p \.(<t>**\i, + <t>zipz)n, - (fr.ifi, - ipn(f>z]dS - p I I (fail/: + ilix<}>z)dydz

d_

dt

(13)

The first three integrals, involving quadratic products of derivatives of <f>, can
be evaluated simply by noting that
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P \ \ [\(V<t,Yn-<t>.V<t>]dS= -pjjs [UV<t>)2n-<f>.V<t>)dS (14)

since <t> is harmonic in the interior of the closed surface S« + S, + ST + So.
Using (4-5) the right side of this equation can be evaluated, and the z-
component is simply

jj <t>x<j>zdydz=PUWS + O(e'). (15)

The remaining integrals over 5/ are evaluated using (4-5) for (<£,,<£2) and (8) for
ip, and consistently neglecting terms of O(e2r) or higher in r. It then-follows
that

p J \ [(^iff, + ct>zi}fz)nz - 4>.<pz - <!/.<t>z]

= irpU(x)al(x,t)-2np \ dx[ao(x,t)W(x,t) + a,(x,t)U'(x,t)],
Jo

and the comparable integral involving i/»2 vanishes to O(e2). For the integrals
over ST, the leading-order term is

-p I I <(>xi(izdydz = -pU I I fadydz = -pUQ> tynzdl - irpU(x)a,(x,t).
J JsT J JST JEB

Finally, the integral over the body surface SB is

- pi JL <•+•>"•ds=4 \\\ *>dt - 4 f L *•dt

Jo

Adding these results together,

Fz = -2-irpf'dx(a0W + a,U') + p\'dxSW,+ pUWS - Pui <l*nzdl
Jo Jo J-zB

a r x r (16)

- p — I dx<p tfmzdl = J£(x,t)dx,
at Jo JzB JO

where

x,t)= -2irp(a0W + a,U') + pD(WS)- pD[<t> <l/nzdl)
\JzB I

(17)

PU'WS-pU'(j> 4>nzdl\.
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Finally, if we note the relations (9,11) for a0 and a,, and the relation (cf.
Newman and Wu, [9], section 6),

[ 4>nzdl = A(V- W), (18)

equation (17) reduces to

= - pD[A(V - W)] + PSD(W) + PU'S(V - W). (19)

Equation (19) is the desired expression for the differential lateral force
acting on the body section, as a result of the combined effects of the lateral
body velocity V(x,t) and the non-uniform inflow velocity field [U(x,t),
W(x,t)]. Special cases of this equation have been derived by other authors in a
variety of contexts. In his original treatment of slender-body theory, Munk (cf.
Durand, 1963, Vol. 6, pp. 41-45) treated the case of steady-state motion with
constant U, V and W = 0, for an axi-symmetric body. Nielsen et al [9]
generalize Munk's formula to the case of a non-uniform but steady lateral
inflow W(x), and axi-symmetric body. Lighthill [5] analyses the unsteady
swimming motion of slender fish in a uniform field, corresponding to the
special case of (19) where U = constant and W = 0. Tuck and Newman [10]
present a heuristic derivation of (19) for U = constant, in order to predict the
interaction forces between adjacent ships.

The first term in (19) can be interpreted as the inertial force due to the
resultant velocity (V — W) of the body relative to the fluid, this motion
imparting a momentum pA(V — W) to the fluid and a change of momentum
equal to D[pA(V — W)]. The second term represents the effects of the
inhomogeneous incident velocity field pressure gradient, which exerts an
effective bouyancy force on the cross-section proportional to the cross-section
area 5, and the last term is an interaction effect between the lateral motion and
the longitudinal velocity gradient.

4. Total Thrust Force

The total longitudinal force Fx may be computed in a similar fashion from
(12), taking the plane ST and contour SB at the body tail x = I. In this case there
is no contribution from terms quadratic in (f>, and

= -p

(20)

-ph,i 0 i U / - p £ ff <t>nxdS.
JxB at J JsB

https://doi.org/10.1017/S0334270000000977 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000000977
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Hereafter, we consider only the time-average Fx, whence the last term in (20)
drops out if the motion is periodic or steady-state. Substituting for <f> and if/ on
Si then gives

-p\\ (4>«<k + <M>* + •/'-'A*)dS = -2-rrp f - Wa,)dx

-irpW(l,t)a,(l,t)

+ O(eVlogr) .

Similarly, for the integral over ST, the leading-order terms are:

P\L
= pW 6 ilinz

J

= Trp(Wa,)x=i +jt

where 2 , denotes the intersection of ST and 5 ; . Adding these contributions, the
time-average of (20) gives

Fx=2irp\ (-Uao+W'al)dx+^pi> </»[(2W - 2h,)nz + ijj.]dl. (21)
Jo JsB

Substituting for a0 and a, from(9,11),and applying the boundary condition for
if/m on SB,

r< r

Fx=p\ [-U(US)'+ W'(W- V)(A +S)]dx+ip<l> il/[W-h, + Uhx)nzdl.
Jo r hB (22)

Finally, since the trailing edge is planar, the jump in the potential [t/f] must be

- V)(y2-S
2)m,

where 5 is the semi-span at x = / (cf. Newman, [6], eq. 19). Substituting in (22)
then yields

Px=p[ [ ~ U(US)' +W'(W- V) (A + S)]dx + \irps\V- W){ W - h, + Uhx)
JO

Noting that A(l) = TTS2, and integrating by parts, the thrust f= — Fx is

r'

T = p\ [-UVS+ W'(V- W)(A+ S)]dx+hpA(l) [(h, - W)2- U2hl]x,,.
Jo

(23)
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Equation (23) is the desired expression for the average thrust T. For a
uniform inflow W = 0, U = constant, this reduces to the expression originally
derived by Lighthill [5].

The component in (23) proportional to A (/) is a straightforward generaliza-
tion of Lighthill's [5] formula to account for the change of inflow vector from
(U,0) to (U, W). The integral over the body represents the inhornogerieous
effects, the term UU'S being the bouyancy force due to the pressure gradient
of the axial velocity component. The second term in the integral is due to the
longitudinal pressure gradient associated with the lateral flow interaction, and
may be compared with various explanations of porpoise bow-riding in the
presence of a curved flow or "suddenly-changing flow direction".

5. Applications to Steady-state Porpoise Bow-riding

For a porpoise, in steady motion near an adjacent ship's bow, the unsteady
terms in (19) and (23) vanish, leaving

= -pU[A(V- W)]' + PUSW' + pU'S(V-W), (24)

t = p[ (-UU'S + W'(V- W)(A +S)]dx+±pA(l)[W2- V2]x,,, (25)
Jo

and

We now inquire under what circumstances the porpoise will be in equilibrium,
that is,

g(x)dx=0, (26)
/ :

g(x)xdx=O, (27)

f = D = (viscous) drag force, (28)

where the first two equations express equilibrium of the lateral force and yaw
moment.

The simplest case to consider is that of a purely-longitudinal incident flow,
with W = 0, as at the bow stagnation point and forward of this point on the
centerplane of a ship. Then, with V = 0, the equilibrium condition is simply

= -p\ UU'
Jo

Sdx=D. (29)
Jo

As an example, we set D = \pU2D' where D' is the "drag area" which has
been experimentally measured by Lang [4]. Assuming, in addition, that
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lU'/U < 1, or the porpoise length is short compared to the scale of the velocity
gradient, (29) can be integrated to give

ipU2D' = -pUU' I Sdx = -pL/I/ 'V,
Jo

(30)

or

U'IU= - JD' /V, (31)

where V is the displaced volume of the porpoise. Typical data from Lang [4] are
for a porpoise with V = 0 1 m 3 , and showD' =0-06±0-002 m2. Thus this
porpoise will be in equilibrium if

U'/U= -0 -03 m"1. (32)

which is typical of the velocity gradients 2 - 5 m. forward of the bow on typical
ships.

Next, we consider the possibility of equilibrium in a "suddenly-changing
flow direction", W / 0, but with (locally) uniform longitudinal flow, U =
constant. This requires that

0= f
Jo

= -pU[A(V- W)]x., + pu\ SW'dx, (33)
J

0 = f' x<£(x)dx = - P Ul [A(V- W)]x,, + pU P [xSW + A(V- W)]dx,
Jo Jo

(34)

and

f = p\ W'(V- W)(A +S)dx + l2P[A(W2- V2)]x=l >0. (35)
Jo

We assume without loss of generality that W > 0. Then, from (33), (V - W) >
0 at the tail x = 1. Subracting / times (33) from (34),

A(V-W)]dx, (36)
Jo

and therefore,

f A(V-W)dx= I (l-x)SW'dx>0. (37)
Jo Jo

Thus, for lateral force and moment equilibrium, A{V-W) should be an
increasing function of x, with maximum value

SW'dx > 0 (38)
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at the tail, and mean value

[12]

(39)

along the body. A sufficient condition that (35) be satisfied is that V + W < 0,
and a necessary condition for positive thrust, without large values of (V — W)
which lead to separation, is that W < V < 0. Thus the assumed configuration is
as shown in Fig. 2, along with the "mirror" solution W < 0, W > V > 0. Only
the latter case is relevant to bow-riding (except on the back side of the
bow-wave!) and thus we may conclude that the thrust force resulting from the
longitudinal pressure gradient may be enhanced by the vertical velocity field if
W>0 but W <0 .

w< v<o
w'>o w>v>o

w'<o

(U,W)

(U,W)

Figure 2.— Configurations of body axis (heavy line) so as to
generate a positive (to the left) thrust in the presence of the curved

streamlines shown by the light lines.

6. Porpoise Wave-riding

Finally, we consider the possibility of a porpoise riding on an oblique wave
alongside a ship or on an ambient surface wave. In this case the incident fields
is

_gH/>k2+ikixcmS+ysine)j_ TT_r ( 4 Q )

where H is the wave height (twice the wave amplitude), g is the gravitational
acceleration, k the wave number, and w = Vg/i the wave frequency in a fixed
reference system. The vertical coordinate z is positive upward, deep water is
assumed, and the real part is to be taken in all complex expressions. The wave
angle 0 is the angle between the direction of wave propagation and the negative
x-axis, and the wave will be steady in the moving reference frame, moving to
the left with velocity Uo, ifk= gUo2sec2fl. Now the porpoise must accomodate
itself to the three-dimensional field
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[13] Swimming of slender fish 107

4>x = Uo + iiHigk)"2 cos0 e
kz°+ikxcm\ (41)

ekI°+ik*™°, (42)

on the x-axis at depth zo<0 below the free surface.
If the wave height is small (which is necessary for the above expression to

hold) the only first-order contribution to the thrust (25) is from the longitudinal
pressure gradient, or

T = - pU0 \ <}>xxSdx + O(H2), (43)
Jo

and if the porpoise length / is small compared to wavelength 2irlk,

= ^ PU0\/kH(gk )"2 cos20 e k!°+ik*'°'°

(44)

Noting that the wave elevation is in phase with the oscillatory component of <f>x,
it follows that T is a maximum on the wave face, at the wave node x = 0 where
the slope is a maximum. Before considering the rather complex question of
force and moment equilibrium, we note that the maximum thrust will overcome
the drag reported by Lang [4] if

pgVkH ekz°cosd =\PUlD', (45)

where D' = 0 06 m2, V = 0.1 m\ and thus

| kH e k'« cos 6 = 0.03 Ullg. (46)

The left side of this expression is the x -component of the streamline slope at
depth z0. If U0 = 6ms~\ corresponding to a ship speed of 12 knots, it follows
that the local wave slope must be .12 radians or 7 degrees. The generally
accepted maximum wave slope on the surface for a permanent wave system is
30°; this will be reduced at depths z0 < 0, but also may be exceeded locally in a
ship's bow wave system.

In addition it is necessary to consider the lateral force and moment
equilibrium for the porpoise in the three-dimensional wave field. For this
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purpose we assume the porpoise to be rotated through some arbitrary angle x
relative to the vertical, and note that the tail fins are inclined through the same
angle to the horizontal (See Fig. 3). In body-fixed coordinates (yP,zp) the local
force (24) is valid separately for the yP and zv components of the lateral force,
the only difficulty being to discriminate the appropriate values of added mass A
and velocities (V, W). For simplicity we may assume that A = S for porpoise
motions along the yp-axis (an exact result if the porpoise body is axi-
symmetric, with only a tail fin appendage) but, as a result of the tail fins, A/ S
for zp- modes. Then, from (24),

Figure 3.— Rotated coordinate system (yp,z?) fixed to the porpoise
body and tail (heavy lines).

= -pU0{[S(Vyp - Wyp)]' + SWyp'}, (47)

where the second-order term involving products of U' and V, W is neglected.
Similarly,

By vec tor summat ion ,

and thus

. W2p

= -PUo{[A2 p(V! P - Wzp)]' + SWzp'}.

Wyp = <£, cos x + <t>* sin x,

Wzp = 4>z cos x ~ <f>y sin x,

( i sin 0 cos x + sir

cos x - i sin 0 sin x.

(48)

(49)
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The two lateral force equilibrium conditions are

, f fSW^'dx I
\ Xdx=\ [ = 0, (50)

J° l[Azp (Vzp - Wzp )]x -, + f SWZP')

and the corresponding moment equations are

f, f fxSWyp'dx-JS(Vyp-Wyp)dx ]
5£xdx = | [ = 0.

Jo [fxSWzp' + / [Azp (Vz p - Wzp ) ] x , , - f Azp(Vzp - Wzp)dx J
(51)

The first of these four equations requires that

Re{ifc cos 0[i sin 6 cos^- + sin^-]} = 0

(to leading order in kl < 1, since x = 0 is the position of maximum thrust). Thus,
for 6 > 0, x = 90° and the porpoise must swim on its side. (Note this could be
anticipated, since <t>xy is a (negative) maximum and <f>IZ — 0 on the face.] Now,
with x = 90° (a nd hence Wyp' = Wzp = 0 at x = 0) equilibrium of the zp-force
requires that

Jo
SWzp'dx

zp

(52)

= - ^kH(gk)>n sinO cosd Vek2°

which prescribes the value of Vzp = Uohx at the tail. Equilibrium of the two
moments requires that

f SVypdx = I SWypdx
Jo Jo

(53)

and

f A Vzpdx = f' xSWzp' + I [Azp Vzp ]x _,
Jo Jo

(54)

^ 2 s i n O coseekz°(l - xc),

https://doi.org/10.1017/S0334270000000977 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000000977


110 J. N. Newman [16]

where xc is the centroid position of the porpoise:

xc=h\ xS(x)dx. (55)
o

These two moment equations may be satisfied by suitable choice of
Vyp > 0 along the body length. Hence we conclude that bow-riding alongside
the ship's bow on an oblique bow wave is indeed possible, provided the
porpoise swims on its side. Observations of porpoises riding oblique waves in
this manner are not known to the author, but Fejer and Backus [3] report that
porpoises do swim on their side adjacent to ships' bows off to one side of the
centerplane; presumably in this case the longitudinal pressure gradient is the
principal thrust-producing mechanism, but the lateral deflection of streamlines
around the vertical bow requires that the porpoise swim on its side to obtain
equilibrium of the lateral force and vertical yaw moment.
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