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Regge trajectories and resonances 

5.1 Introduction 

One of the most important conclusions of chapters 2 and 4 was that 
whenever a Regge trajectory, a(t), passes through a right-signature 
integral value of J- v a t-plane pole will occur in the scattering 
amplitude because of the vanishing of the factor sin [1T(a(t) +.A')] in 
(4.6.2). And, as we found in section 1.5, such poles correspond to 
physical particles; to a particle which is stable against strong-inter­
action decays if the pole occurs below the t-channel threshold, or to 
a resonance which can decay into other lighter hadrons if it occurs 
above threshold. If a given trajectory passes through several such 
integers it will contain several particles of increasing spin, and so it is 
possible to classify the observed particles and resonances into families, 
each family lying on a given Regge trajectory. Some examples are 
given in figs. 5.5 and 5.6 below. 

This chapter is mainly devoted to presenting the evidence for this 
Regge classification, but as there will be a different trajectory for each 
different set of internal quantum numbers such as B, I, S, etc. it will 
be useful for us first to examine briefly the way in which the particles 
have been classified according to their internal quantum numbers 
using SU(3) symmetry and the quark model. Readers requiring a more 
complete discussion than we have space for here will find the books by 
Carruthers (1966), Gourdin (1967), and Kokkedee (1969) very helpful. 

The complete specification of a hadron requires, in addition to its 
mass rn, and spin o-, the values of the internal quantum numbers; 
i.e. baryon number B, charge Q, intrinsic parity P = nY from (4.6.8), 
strangeness S, and isospin I, and in some cases the charge conjugation 
On, and G-parity G, as well. All of these are good, conserved quantum 
numbers for strong interactions, though only B and Q are conserved 
in all interactions (to the best of our knowledge). 

By definition B = 0 for mesons, + 1 for baryons, and -1 for anti­
baryons. These are the only values which occur for what are often 
loosely referred to as the 'elementary' particles (though see section 
2.8 for a discussion of the more strict use of this terminology which we 
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134 REGGE TRAJECTORIES AND RESONANCES 

employ). But baryon number is an additive quantum number, which 
means that a two-particle state 11, 2) will have baryon number 
B12 = B1 +B2, and so complex nuclei have B =A, the atomic mass 
number. 

The intrinsic parity of a particle is P = ± 1 depending on how its 
wave function transforms under the parity reflection operator in 
the particle's rest frame, i.e. Pop ljr( r) = ljr(- r) = Pljr( r). This is a 
multiplicative quantum number, and so for a two-particle state 
P12 = P1P2{ -1)1, where lis the relative orbital angular momentum of 
the two particles (see (4.6.6)). 

The charge-conjugation operator 0, has the effect of turning a 
particle into its anti-particle, i.e. a particle which has the opposite 
sign for all the additive quantum numbers. So under 0, B-+-B, 
Q-+- Q and S-+- S. Since strong interactions are invariant under 0, 
particles which have B = Q = S = 0, i.e. non-strange, neutral mesons, 
are eigenstates of 0 with eigenvalue On = + 1 (n = neutral). It is 
found (see for example Bernstein (1968)) that On= ± 1 for nO and 11°, 
and On= -1 for p0 , co, <1> and the photon y. These assignments are 
consistent with the observed decays 1t0, Tt0 -+yy and p0 , co, <I>-+Y11 -+e+e­
(where y11 is a virtual photon). 

For other non-strange mesons (B = S = 0, Q =t= 0) it is useful to 
invoke the isospin invariance of strong interactions to define an 
extended particle-anti-particle conjugation operator called the G­
parity operator. For such particles the z component of the isospin 
(see (5.2.1) below) is equal to the charge, i.e. Q = Iz, and so rotation 
of the particle state by an angle 1T about they axis in 'isospin space' 
takes us to the charge-conjugate particle, i.e. lz-+-lz, up to a phase 
factor. The Condon and Shortley phase convention for isospin multi­
plats gives (cf. (B.7)) 

e'"IyiJ, Jz) = ( -1)1-I•il, -Jz) (5.1.1) 

So for non-strange mesons the combined operation 

G = Oe1"Iy (5.1.2) 

will have an eigenvalue G = ± 1. Thus for the pion multiplet, 1t+, 1t0, 1t-, 
with I= 1, Jz = 1, 0, -1, we have G, = -1 since O,o = + 1. This is 
obviously also a multiplicative quantum number, and hence a state 
consisting of n pions will have Gin) = ( -1)nln). This allows one to 
determine the G-parity of other non-strange mesons from their 
hadronic decays into pions; for example the fact that the decay p-+1t1t 
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occurs indicates that p has G = + 1. And of course the decays p-+ 31t, 51t 
etc. are forbidden by G-parity conservation. 

The remaining quantum numbers I and S require a brief discussion 
of unitary symmetry, which we give in the next section. 

5.2 Unitary symmetry 

a. Isospin 

It is well known from nuclear physics that the strong interaction is 
approximately invariant under the transformations of the isotopic 
spin (or isospin) group SU(2), at least to an accuracy of a few per cent. 
This group is isomorphic to the rotation group, the isospin vector I 
corresponding to J, while its z component in isospin space Iz corre­
sponds to ola- This isospin invariance manifests itself in two related 
ways. 

(i) All the hadrons may be grouped conventionally into multiplets 
of a given isospin I (such that 1(1 + 1) is the eigenvalue of 12 ) which 
are approximately degenerate in mass, and are identical in all their 
other quantum numbers except the charge. Well known examples are 

Nucleon, N p, n I = !, Iz = ±! 
Pion, 1t 1t+, 1t0, 1t- I = 1, Iz = 1, 0, -1. 
3-3 resonance, A A++, A+, A0 , A- I= !, Iz = J, !, - !, -! 

The isospin is assigned according to the multiplicity of charge states 
exhibited by the particle, so thatizspanstherangeJ,J -1, ... ,-/,and 
the z component is associated with the charge according to the relation 

Q = Iz+!B (5.2.1) 

(for non-strange particles only). A particle may thus be represented 
by the isotopic state vector II, Iz>· 

The mass differences within a given multiplet are rather small (for 
example mp = 938.3MeV, mn = 939.6MeV) and are believed to be 
caused by the differing electromagnetic interactions of the particles. 
As far as strong interactions are concerned such differences can be 
ignored, and so we use a single symbol for all the members of a multi­
plet (for example N = {p, n}), and regard them all as lying on the same 
Regge trajectory, which carries a definite isospin. For example 
aN(t) has I = !, and only if we want to discuss electromagnetic inter­
actions need we take account of the fact that this is really two trajec­
tories, with Iz = ± !, which are very slightly split. 
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(ii) The various scattering amplitudes involving these particles are 
related by isospin invariance, being dependent on the value of I but 
not on Iz, i.e. strong interactions exhibit charge independence. This 
property will be examined in section 6.7. 

It is sometimes convenient to regard the iso-doublet 

(p, n) JI = t• Is = ± l) 
as the fundamental isotopic spinor, out of which all other multiplets 
can be constructed (just as all possible angular momenta can be 
obtained by adding different numbers of spin=! particles). This 
doublet iso-spinor can be represented by a column matrix. 

{2} = 11 = (~) (5.2.2) 

which transforms under SU(2) as 

11-+11' = UTJ (5.2.3) 

where U is any 2 x 2 unitary matrix with det (U) = 1. Any such 
matrix can be written in the form 

(5.2.4) 

where 0 is an arbitrary parameter, n is a unit three-vector, and the 
components of -r are the Pauli matrices 

Tz = (~ ~). Ty = (~ -~). Tz = (~ -~) (5.2.5) 

The corresponding 'anti-particles' are given by the row-matrix 
iso-spinor {2} = ?J = (p,n) (5.2.6) 

Formally all the other iso-multiplets can be constructed by com­
bining 11's and 'ij's. Thus for example 

1 - -.J2 (pp+nn) (5.2.7) 

r,ives an I = 0 singlet, like the 11 meson, {1}, while 

pn, ) 2 (pp-iin), and pn (5.2.8) 

form the triplet, {3}, 1 = 1, Iz = 1, 0, - 1 respectively, like the 1t meson. 
So at least in this formal sense we can regard the 11 and 1t mesons as 
bound states of the nucleon-antinucleon system, with 

{2} ® {2} = {1} EB {3} (5.2.9) 
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l___________I. 
• ~ = • 
-! ! -1 

0 1 

FIG. 5.1 The superposition of two iso.doublets, I.=± t to give four 
states, one with I. = - 1, two with I. = 0 and one with I. = 1. 

as shown in fig. 5.1, completely in analogy with the construction of 
spin = 0 and spin = 1 helium atom states from two electrons of 
spin t. 

b. SU(3) 

The above scheme can be extended to include strange particles as 
well as by taking the fundamental representation to be the three­
component spinor 

{3) = q = (~) (5.2.10) 

transforming under SU(3) as 

q-+q' = Uq (5.2.11) 

where now U is any unitary 3 x 3 matrix with det (U) = 1, which can 
be written 

(5.2.12) 

where a is an 8-dimensional unit vector, and the A matrices are given 
in table 5.1. They correspond to the three T matrices ofSU(2), (5.2.5). 

The three particles p, n, A were introduced by Gell-Mann (1964) 
and Zweig (1964), and are called 'quarks'. They are assigned the 
quantum numbers shown in table 5.2. Clearly, the p and n quarks are 
not to be identified with the proton and neutron of (5.2.2) as they 
have, inter alia, B = t. We also need a triplet of anti-quarks 

{3} = g: = (p,n,i) (5.2.13) 

There is no evidence that such quarks actually exist, but at the very 
least they provide a very convenient mnemonic for the group-theory 
of SU(3). Also the observed hadrons frequently behave as though 
they were actually composed of quarks as we shall discuss particularly 
in chapter 7. (An extensive review of the evidence for the quark 
structure of hadrons in electromagnetic and weak interactions is 
given in Feynman (1972).) 

A baryon is made up of three quarks (to give B = 1), while mesons 
are composed of quark-antiquark pairs. The hypercharge, Y, is defined 
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Table 5.1 The A matrices of SU(3) 

A1 = (! 1 0) 
A2 = G -~ ~) 0 0 

0 0 0 0 

A8 = (i 0 0) 
A,= G 0 

i) -1 0 0 
0 0 0 

A5 = (~ 
0 -i) Aa = G 0 !) 0 0 
0 1 

A7= G 0 

-1) As= C't 0 

-2/~3) 0 1/.)3 
0 

Table 5.2 The quantum numbers of the quarks 

B I I. Q s y 

p t t t t 0 t 
n t t -t -t 0 t 
A. t 0 0 -t -1 -t 

in terms of the strangeness S by 

Y=S+B (5.2.14) 

and the charge is then given by the Gell-Mann-Nishijima relation 

Q = lz+!Y = lz+t(S +B) (5.2.15) 

instead of (5.2.1). 
Taking all possible combinations of a quark and an antiquark, as 

shown in fig. 5.2, we get 

qq = {3}@ {3} = {1} EB {8} (5.2.16) 

so we can expect that mesons will occur in nonets, each nonet con­
sisting of a singlet and an octet with the quantum numbers shown in 
fig. 5.2. Table 5.3 gives the well established mesons grouped into such 
multiplets. It is evident that the symmetry is very badly broken for 
the masses of the particles, the SU(3) mass-splitting in Y being very 
much greater than the isospin mass-splitting in Jz. 

Also it is not clear how one should distinguish the singlet states 
such as ro1 from the octet state with the same quantum numbers, ro8. 

With a broken symmetry the observed ro and <1> particles can be 
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n- n• n+ h e 
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• -1 • 
K- R• 

FIG. 5.2 (a) Triplets of quarks {p, n, A.} and anti quarks {p, ii, ~}. (b) The de­
composition q@q = {8}+{1}. On each quark represented by 0 is imposed 
an anti.quark triplet to give the nine states which are identified with pseudo­
scalar mesons on the right-hand side. 

mixtures of these pure SU(3) states, say 

<I> = IDs cos()- ID1 sin()} 

ID = IDs sin () + ID1 cos () 

where () is the 'mixing angle'. The so-called 'ideal' value is 

() = tan-1 (J2) ~ 38° 

in which case from table 5.3 we find that 

1 - - -ID= ,J2 (pp+nn}, <!>=-A.A. 

(5.2.17} 

(5.2.18} 

(5.2.19) 

so that ID contains no strange quarks. This ideal mixing seems to hold 
for the vector and tensor mesons, but not the pseudo-scalars. 

The mass separations within a given multiplet are assumed to be 
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Table 5.3 Meson nonets and their quark content 

Particles .J PCn 

:Multi- Quark u-+ 1--- o++ i++ u- 2++ 
plet content I s p~ v ~ A+ A- T 

{8} pii 0 Jt+ p+ 8+ _A+ 
1 B+ A+ 

2 

(140) (770) (970) (1100) ( 1235) (1310) 
1 

..J2 (pp-nn) 1 0 Jto Po 80 A~ BO Ao 
2 

np 1 0 Jt- p- 8- Ai- B- A:! 
nX 1 1 1(0 K*O Ko QO QO K**O 2" 

(498) (890) (1300) (1240) (1280) (1420) 

pX l 1 K+ K*+ K+ QO QO K**+ 2 

A.ii ! -1 K 0 K*O i(O QO QO K**O 

A.p t -1 K- K*- K- Q- Q- K**-
1 -

0 Tis Ds Hs fs ..J6 (pp+nii-2A.A.) 0 Ols l:s 

1 -
0 0 Tit Dt Ht fl {1} -(pp+nii+A.A.) Olt 1:1 

..J3 

All the particles in the PS, V and T nonets are well established, but some of 
the others are less certain. Masses (in MeV) have been given only for the first 
member of each isospin multiplet. C n is not a good quantum number for strange 
mesons so the assignment in the Q region is particularly uncertain. The iso­
singlet mixtures are 11s+111 = 11(549)+11'(958), ro8 +ro1 = ro(783)+<J>(1019), 
~:8 +~:1 = ~:(600)+8*(993), D 8 +D1 = D(1285)+E(1420), H 8 +H1 = H(990)+ ?, 
f8 +f1 = f(1270) + £'(1514), mixed as in (5.2.17). 

due to the ').., quark having a different mass from that of the p and n 
quarks. Sowithidealmixing,ifwesetmn = mP = m and m~.. = m+L1m, 
we find that for the vector mesons 

mro = mP =2m, mK* = 2m+L1m, m"' = 2(m+L1m) (5.2.20) 

giving mro+mcp = 2mK* (5.2.21) 

However for mesons it is generally supposed (for no very compelling 
reason) that these relations should actually be written for the squares 
of the masses, i.e. m! = m~, m! + m: = 2mk., which hold equally well 
because the masses are much larger than the mass differences. The 
lighter pseudo-scalar mesons do not obey the corresponding mass 
formulae either form or m2, which is generally taken as evidence that 
the mixing between 11 and 11' is far from ideal (see Kokkedee 1969). 

Both the pseudo-scalar (PS) and vector (V) meson nonets can be 
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obtained with the spin = l quarks in an l = 0 orbital state, since they 
correspond to quark spins being anti-parallel (total quark spins = 0) 
or parallel (s = 1) respectively. Higher spin mesons can be obtained 
by orbital excitation of the qq pair. Since q and q, being fermions, 
have opposite intrinsic parity, the parity of a qq state is 

p = ( -1)1+1 (5.2.22) 

and forB= S = 0 states the charge conjugation and G-parity are 

(5.2.23) 

Since the spin of the meson is J = l + s we have for l = 0 just the PS 
and V nonets with JPC = o-+ and 1-- respectively, while for l = 1 
there are four possible nonets, scalar S = o++, two axial vectors, 
A+= 1++ and A-= 1+-, and tensor T = 2++. A possible assignment 
of meson states according to this classification is given in table 5.3. 

Regge theory suggests that one may expect to see recurrences of 
each of these six nonets at J values spaced by 2 units from the above. 
In the next section we shall find that only a few of these excited states 
have been observed. This is hardly surprising, however, because 
mesons can usually only be observed in production experiments such as 

1+2-+3+4, 4-+a+b 

The resonance 4 will be seen as a peak of the cross-section in the 
invariant mass of its decay products at m! = (Pa + Pb)2 , a and b having 
an angular distribution corresponding to the spin of 4 (see section 4.2). 
But at high values of m! many partial waves can be expected to 
contribute to the ab system and so the analysis of this decay within 
the three-body final state 3+a+b becomes difficult. Un-natural 
parity mesons are even more difficult to find as they only have three 
(or more) body decays. 

The situation is more favourable for baryon resonances which can 
be formed in meson-baryon scattering experiments such as 

MB-+B*-+MB 

where a partial-wave analysis of the two-body final state is sufficient 
to find the resonance. So a lot more baryon resonances are known. 

They are built from three quarks 

q ® q ® q = {3} ® {3} ® {3} = {1} EB {8} EB {8}+ {10} (5.2.24) 

(see Carruthers 1966), and so baryons should occur in singlets, octets 
and decuplets, with the quantum numbers shown in fig. 5.3 
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E*- s•o 

n- -2 

FIG. 5.3 The JP = f+ decouplet and the!+ octet of baryons. 

The lowest mass states, with l = 0 may have J = t or J, and are 
given in table 5.4, and again one may expect higher l states at higher 
masses. (We shall ignore the difficulty that since the quarks are 
fermions with presumably anti-symmetric wave functions the increase 
of mass with J is far from obvious-see Kokkedee (1969).) By the 
same method as before we find that the mass-splitting in the decuplet 
should obey the equal spacing rule 

(5.2.25) 

which is well satisfied. For the octet we obtain the Gell-Mann-Okubo 
mass formula (5.2.26) 

but the relations mA = m:E and mA -mP = m1:.-m11 are not obeyed, 
so there must be symmetry-breaking effects in the potential between 
the quarks as well. 

In addition to these predictions about the masses of the particles 
SU(3) invariance also gives relations between scattering amplitudes, 
and these will be explored in section 6. 7. 

The scheme outlined above is only the most elementary version of 
the quark model. The discovery of two long-lived vector mesons, 
\j/1 (3100) and \j/2 (3700) (see Particle Data Group (1975) for references) 
has increased the interest in more elaborate structures based on the 
inclusion of a fourth quark, c, having the quantum numbers 

B,Q,l,S,C = l,f,O,O, 1, 
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Table 5.4 The lowest mass octet and decuplet of baryons 
and their quark content 

Quark 
Multiplet content I s Particles 

{8}, JP = t+ ppn t 0 p(938.3) 
pnn t 0 n(939.6) 
ppA. 1 -1 !:+(1189.5) 
pnA. 1 -1 I;0(1192.6) 

0 -1 A(1115.6) 
nnA. 1 -1 I:-(1197.4) 
pA.A. t -2 80(1314.7) 
nA.A. t -2 8-(1321.2) 

{10}, JP = J+ ppp i 0 a++(1236) 
ppn i 0 a+ 
pnn i 0 ao 
nnn i 0 a-
ppA. 1 -1 1:*+(1383) 
pnA. 1 -1 I;*O 
nnA. 1 -1 I:*-
pA.A. t -2 8*0(1532) 
nA.A. t -2 E*-
A.A.A. 0 -3 n-(1672) 

where 0 is a new quantum number called 'charm', which has eigen­
value 0 for the p, n and A. quarks. The particles \j/1 and \j/2 are taken 
to be cc bound states, and the basic meson SU(3) nonets from {3} ® {3} 
are increased to SU(4) 16-plets formed from {4} ® {4}. However this 
fourth quark must be much heavier than the others so that the pre­
dicted charmed particles (formed from cp, en, c~. cp, en, cA.) are heavier 
than the nonet mesons, whose SU(3) symmetry and mixing are 
approximately preserved. The discovery of charmed particles has 
greatly increased the interest of this model, and of the related schemes 
based on 'coloured' quarks (see Weinberg (1974), de Rujula et al. 
(1974), Gaillard, Lee and Rosner (1975) for reviews). 

An important test of the quark model is that all the observed mesons 
have quantum numbers which can be formed from q ® q as in fig. 5.2, 
and all the baryons have quantum numbers that can be formed from 
q ® q ® q as in fig. 5.3. Channels which have quantum numbers 
outside these patterns, like 1t+1t+ which has I= 2, or K+p which as 
S = 1, are called 'exotic' channels, and do not seem to contain 
resonances. All the well established resonances have non-exotic 
quantum numbers. 
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5.3 The Regge trajectories 

An authoritative survey of the experimental properties of particles 
and resonances is published at frequent intervals by the Particle Data 
Group. Their 1974 edition (Particle Data Group 1974) contains in­
formation on over 50 possible mesons and 90 baryons, though the 
evidence for some of these is fairly weak. In this section we shall try 
to group all the particles for which there is reasonably strong evidence 
on Regge trajectories. Of course this cannot be done with complete 
certainty because there are few a priori rules to direct which particles 
should be associated together on the same trajectory. But, as we shall 
see, this problem is greatly simplified by the fact that the trajectories 
seem to be straight parallel lines when Re{a(t)} is plotted against t. 

a. Mesons 
All the well established mesons are shown in fig. 5.4 in a Chew­
Frautschi plot (Chew and Frautschi 1962) of the spin u( = Re{a}) 
versus mass2 = t. It should be noted that the only well verified particle 
with u > 2 is the spin= 3, I= 1, g meson which has the same internal 
quantum numbers as the p(u = 1) and so presumably lies on the same 
trajectory. Strictly this is the only trajectory on which we can put 
even two points! However, in drawing fig. 5.4 we have taken into 
account that there is also evidence for spin = 3 ro and K *resonances 
and spin = 4 hand A: resonances, and have made some use of informa­
tion about the behaviour of the trajectories in the region t < 0 obtained 
from Regge fits (see fig. 6.6. below). 

Also it is found that the u = 2 A2 meson, which has similar quantum 
numbers to the p apart from its signature (note from (4.6.8), (5.2.22) 
and (5.2.23) that this in fact means opposite values of P, On and G), 
lies very close to the straight line joining p and g, and (fig. 6.6) the A2 

trajectory is close to that of the p for t < 0 as well. Such an identity 
between trajectories of opposite signature is called 'exchange de­
generacy'. It seems to imply (from (2.5.3) or ( 4.5. 7)) that, rather 
surprisingly, the exchange forces, i.e. the u-channel singularities, are 
not making much contribution to the trajectories. Similarly the ro 
and f, which because of ideal mixing are almost degenerate in mass 
with the p and A2 respectively (see (5.2.20)), seem to lie on a single 
I = 0 exchange-degenerate trajectory which almost coincides with 
that of p, A2, g while the I= 0, <j>, f' trajectory appears to be parallel 
with these. 
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FIG. 5.4 Chew-Frautschi plot of Re {a.(t)} versus t for the well established 
mesons. Less well verified states appear in brackets. 

4 

If we then make the rather bold assumption that all the mesons 
lie on approximately straight, parallel, exchange-degenerate trajec­
tories we can associate most of the states listed by the Particle Data 
Group with trajectories as shown in fig. 5.5. They give leading trajec­
tories which are very approximately 

ap(t) ~ 0.5 + 0.9t p, c:o, A2, f, g, c:o*, At, h 

aK.(t) ~ 0.3+0.9t K*,K**,K*** 
acp(t) ~ 0.1 + 0.9t <1>, f' 

an(t) ~ 0.0 + O.St 1t, B, A3 

aK(t) ~ - 0.2 + O.St K, Q, L 

I= o, 1 

l=l 
(5.3.1) 
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FIG. 5.5 Meson trajectories for (a) I = 0, (b) I = 1 and (c) I = t mesons, 
including less well established states. 
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These straight lines are suggestive of a harmonic oscillator type of 
effective potential between the quarks, as mentioned in equation 
(3.3.33) et seq. An additional motivation for these figures, to be dis­
cussed in sections 6.5 and 7 .4, is that there are theoretical reasons for 
expecting that trajectories may occur in integrally spaced sequences, 
with a' parent' trajectory a(t), and an infinite sequence of' daughters' 
an(t) = a(t) -n, n = 1, 2, .... Thus the p'(1600), if it really is a reson­
ance, may lie on the n = 2 daughter of the p. 

b. Baryons 
There are many more baryon states with high spin whose quantum 
numbers have been fairly well determined, and so the Chew-Frautschi 
plots of figs. 5.6 are more highly populated. 

Again the trajectories seem to be straight and parallel, with similar 
slopes to the meson trajectories, but exchange degeneracy is badly 
broken in many cases. The leading trajectories are approximately 
given by 

aN(t) ~ -0.3+0.9t N(939),N(1688),N(2220) 

aA(t) ~ 0.0 + 0.9t .£\(1232), .£\(1950), .£\(2420), .£\(2850), .£\(3230) 

aA(t) ~ -0.6 +0.9t A(1116), A(1520), A(1815), A(2100), A(2350), 
A(2585) 

a1:(t) ~ -0.8+0.9t 1:(1190),1:(1915) 
(5.3.2) 

We have plotted the natural and unnatural parity trajectories back 
to back because the generalized MacDowell symmetry (see section 6.5) 
requires that odd-baryon-number trajectories should satisfy the 
relation 

a+(.jt) = a-(- .jt), for t > 0 (5.3.3) 

where the superscripts ± refer to the parity. Since the trajectories 
(5.3.2) are approximately even in .jt this gives 

(5.3.4) 

for both parities, and so the resonances should appear in exchange­
degenerate pairs. It is evident from fig. 5.6 that this relation is not in 
fact satisfied, It is discussed further in section 6.5. 

It is clear from the above figures that the Chew-Frautchi plot 
provides a very useful way of classifying resonances in addition to 
SU(3). 

6 CIT 
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Fw. 5.6 Baryon trajectories for (1, S) = (a) (t, 0), (b) ( J, 0). 
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Fw. 5. 7 A plot of Re {a(t)} and Im {a(t)} against t for 
the I= 1 p, A 2 exchange-degenerate trajectory. 

5.4 The analytic properties of trajectories 

6 

6 

The presence of external particles with spin does not alter significantly 
the conclusions drawn in section 3.2 about the analyticity of the Regge 
trajectory functions. 

The position of a pole at J = a(t) is determined by (cf. (3.2.1)) 

(AHJ(t))-l_~o as J -+a(t) (5.4.1) 

so that usually a(t) will inherit only the singularities of (AHJ(t))-1• 

However, as discussed previously, a(t) will not obtain the left-hand 
cuts of the partial-wave amplitude. Also since the same trajectory 
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function occurs in all the different helicity amplitudes for a given 
process which are connected by the unitarity relation like ( 4.4.11 ), the 
various kinematical singularities of AHJ(t) which depend upon the 
helicities will not occur in a(t}, though they are present in the Regge 
residue (see section 6.2). 

So, unless trajectories cross each other, a(t) will have just the 
dynamical right-hand cut of AHJ(t) beginning at the t-channel 
threshold branch point, tr. The unitarity relation (4.4.11) with (4.7.6) 
leads to the threshold behaviour 

(5.4.2) 

instead of (3.2.26), and an infinite number of trajectories will accumu­
late at threshold at the point J = Yia- !, as in (3.2.29). 

For mesons one can expect that the trajectory functions will satisfy 
dispersion relations like (3.2.12) or (3.2.13). But for baryons the 
MacDowell symmetry (5.3.3} implies that the dispersion relation must 
be written in terms of ,Jt rather than t, so in unsubtracted form it reads 

a(.jt) = ~soo Im~a(.jt')}d.jt'+~f-oo Im~a(.jt')}d.jt' (5.4.3) 
7T vtT ,Jt - ,Jt 7T _ vtT ,Jt - ,Jt 

where we have integrated over both the physical regions of a(.jt). Of 
course subtractions will in fact be necessary. 
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The magnitude of Im {a(t)} at the position of a resonance can be 
obtained from the width of that resonance using (2.8.7). The values 
obtained for the p trajectory are shown in fig. 5. 7, and those for the 
Nand 11 trajectories in fig. 5.8. 

In each case Im {a(t)} ~ Re {a(t)}, which, together with the linearity 
of Re {a(t)} strongly suggests that the dispersion relation (3.2.12) 
holds, rather than (3.2.11) which is valid for potential scattering and 
the ladder models described in section 3.4. We shall discuss this point 
further in chapter 11. 
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