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Abstract. Convectively driven dynamos with rotation generating magnetic fields on scales large
compared with the scale of the turbulent eddies are being reviewed. It is argued that such fields
can be understood as the result of an α effect. Simulations in Cartesian domains show that such
large-scale magnetic fields saturate on a time scale compatible with the resistive one, suggesting
that the magnitude of the α effect is here still constrained by approximate magnetic helicity
conservation. It is argued that, in the absence of shear and/or any other known large-scale
dynamo effects, these simulations prove the existence of turbulent α2 -type dynamos. Finally,
recent results are discussed in the context of solar and stellar dynamos.
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1. Introduction
Stars with outer convection zones are known to display magnetic activity, often in a

cyclic fashion like in the Sun. Such activity can generally be explained by a turbulent
dynamo influenced by rotation and stratification to produce the anisotropies required
for the generation of large-scale magnetic fields. The basic theory is reasonably well
understood (Moffatt 1978; Parker 1979; Krause & Rädler 1980), but there continues to
be substantial controversy until the present day. A major stumbling block has been the
understanding of what is known as catastrophic quenching (Vainshtein & Cattaneo 1992;
Cattaneo & Hughes 1996) and resistively limited saturation (Brandenburg 2001), as well
as the very existence of the α effect in convection even without nonlinearity (Cattaneo
& Hughes 2006; Hughes & Cattaneo 2008).

The first two issues have been reviewed in detail by Brandenburg & Subramanian
(2005). The purpose of the present paper is to review recent progress concerning con-
vective dynamos. However, in view of applications to solar and stellar dynamos, it is
important to realize that we are still lacking simulations that reproduce the salient fea-
tures of the solar dynamo. We should therefore keep our eyes open for new phenomena
that may emerge as simulations become more realistic.

2. Excitation conditions of small-scale and large-scale dynamos
Small-scale and large-scale dynamos are quite different in nature. The difference be-

comes most evident in the nonlinearly saturated regime, provided one allows for what
we call scale separation, which means that the size of the domain is large compared with
the scale of the largest (energy-carrying) eddies of the turbulence. In Figure 1 we show
spectra highlighting the remarkable difference between the two types of dynamos. Con-
versely, if there is insufficient scale separation, a large-scale dynamo becomes impossible
and both types of simulations would look very similar, as has been demonstrated by
Haugen et al. (2004); see their Fig. 23.
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Figure 1. Kinetic and magnetic energy spectra in a turbulence simulation without net helicity
(left) and with net helicity (right) for a magnetic Prandtl number of unity and a mesh size
is 5123 meshpoints. Notice the pronounced peak of M (k) at k = k1 in the case with helicity.
Adapted from Brandenburg & Subramanian (2005) and Brandenburg (2009), respectively.

There can be different types of large-scale dynamos. The most frequently studied ones
are the α2 and αΩ type dynamos. These are dynamos that can produce large-scale
magnetic fields owing to the presence of kinetic helicity in the turbulence, giving rise to
an α effect. The presence of shear can further modify the dynamo, making it usually
easier to excite and favoring oscillatory over non-oscillatory solutions.

Shear can be a typical result of rotation of a gaseous body in the presence of anisotropic
turbulence (Rüdiger 1980, 1989). Shear alone is often found to give rise to large-scale
fields – even if the turbulence is non-helical (Brandenburg 2005; Yousef et al. 2008a,b;
Brandenburg et al. 2008). The nature of such dynamo action is still a matter of debate
and ranges from incoherent αΩ dynamos (Vishniac & Brandenburg 1997; Proctor 2007)
to shear–current dynamos (Rogachevskii & Kleeorin 2003, 2004).

Returning to the α2 and αΩ dynamos, it is important to realize that their excitation
conditions are generally quite different. The onset of small-scale dynamo action depends
generally on the value of the magnetic Reynolds number,

ReM = urms/ηkf , (2.1)

where urms is the typical rms velocity of the turbulence, η is the microscopic magnetic
diffusivity, and kf is the forcing or integral wavenumber, i.e. the wavenumber of the
energy-carrying motions. This is roughly where the peak of the energy spectrum is lo-
cated. The critical value, Rm ,crit , above which dynamo action commences, depends on
the value of the magnetic Prandtl number, PrM = ν/η, where ν is the microscopic kine-
matic viscosity and is about 35 for PrM = 1 (Novikov et al. 1983; Subramanian 1999;
Haugen et al. 2004), but increases to values around and above 400 for PrM somewhere
between 0.2 and 0.1 (Schekochihin et al. 2005). There is now also evidence that Rm ,crit
may actually show a peak at PrM = 0.1 and might then drop to slightly lower values for
PrM = 0.05 and below (Iskakov 2007). This unusual behavior is connected with a change
of the “roughness” of the velocity field (Boldyrev & Cattaneo 2004) and the occurrence
of a bottleneck effect in the velocity spectrum (Falkovich 1994; Dobler et al. 2003), which
means that the velocity has maximum roughness for PrM ≈ 0.1 when the resistive scale
coincides with the position of the bottleneck.

The situation is quite different with large-scale dynamos that operate completely inde-
pendently of the value of PrM , as long as ReM is large enough. Already in Brandenburg
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Figure 2. Snapshots of By in the early phase (left) and saturated phase (right)
of a convective dynamo with shear. Adapted from Käpylä et al. (2008); see also
http://www.helsinki.fi/∼kapyla/movies.html

(2001) the critical value of ReM was found to be around unity regardless of whether
PrM = 1 or 0.1. This finding was then extended by Mininni (2007) and Brandenburg
(2009), who demonstrated dynamo action down to PrM = 0.005 and 0.001, respectively,
or up to PrM = 1000 (Brandenburg 2011). The conclusion is that large-scale dynamo
action depends solely on the dynamo number, which is given by D = Cα for α2 dynamos
and by D = CαCS for αΩ (or α–shear) dynamos. Here,

Cα = α0/ηTk1 and CS = S/ηTk2
1 , (2.2)

where ηT = ηt + η is the sum of turbulent and microscopic magnetic diffusivities, α0 is
a typical value of the α effect, and S is the shear rate (i.e. a typical value of the velocity
gradient). For Cα and CS , we use standard estimates:

α0 ≈ −τ

3
ω · u ≈ − εf

3urmskf
kfu

2
rms = − 1

3 εfurms , (2.3)

where εf = ω · u/kfu
2
rms is a measure of the relative kinetic helicity, τ = (urmskf )−1 is

the turnover time, and

ηt ≈
τ

3
u2 ≈ urms/3kf . (2.4)

With this we find

Cα = −
1
3 εfurms/k1

urms/3kf + η
= −ιεf

kf

k1
(2.5)

where

ι = 1/
(
1 + 3Re−1

M

)
(2.6)

is a correction factor that is close to unity for ReM � 1. Furthermore, we have

CS =
S/k2

1

urms/3kf + η
=

3ιS

urmskf

(
kf

k1

)2

= 3ιSh
(

kf

k1

)2

, (2.7)

where we have defined the shear parameter Sh = S/urmskf . Note that, especially in the
presence of shear, the possibility of dynamo action is strongly connected with the scale
separation ratio. Indeed,

D = −3ιεf Sh
(

kf

k1

)3

(2.8)

depends cubicly on the scale separation ratio. This explains why αΩ dynamos are often
much easier to obtain than α2 dynamos.
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3. Large-scale dynamos in Cartesian domains
3.1. Dynamos of αΩ type

Given the alarming signs of earlier investigations by Cattaneo & Hughes (2006) and
Hughes & Cattaneo (2008), it was quite unclear whether the α effect even exists in simu-
lations with convection. At the time, several possible reasons were put forward, including
the absence of stratification; see, for example, Brandenburg (2009). In the wake of this
initial frustration, it was quite surprising when large-scale dynamo action was found in
rotating convection in the presence of shear (Käpylä et al. 2008); see Figure 2. Similar
results were obtained by Hughes & Proctor (2009). This controversy was still ongoing at
the conference “Turbulence and Dynamos” in Stockholm in March 2008† where Hughes‡
argued that no convective large-scale dynamos exist, while Käpylä¶ showed results from
low Reynolds number convection with shear where large-scale fields were indeed obtained.
In an attempt to clarify the still conflicting results regarding the actual value of α in ro-
tating convection, Käpylä et al. (2010a) pointed out that for a nonuniform mean field,
the mean current density cannot be neglected. In this case, the turbulent magnetic dif-
fusivity contributes and explains the small net electromotive force measured by Hughes
& Proctor (2009) by imposing a uniform field.

3.2. Dynamos of α2 type

The simulations mentioned above do not provide conclusive evidence for the existence
of an α effect in rotating convection, because it is in principle possible that the dynamo
could be the result of an incoherent αΩ dynamo or a shear–current dynamo. In the
absence of shear, however, there is no viable alternative to an α2 dynamo. It is therefore
important to consider the conceptually simpler case without imposed shear, as was also
emphasized by Hughes et al. (2011), who noted that this was not done by Käpylä et al.
(2010a), who just considered the case of a sinusoidal shear profile. For this reason, we
discuss in the following the papers of Käpylä et al. (2009a) and, in particular, Käpylä
et al. (2009b), where large-scale dynamo action was studied in non-shearing convection
at sufficiently large Coriolis numbers.

Before trying to simulate an α2 dynamo for rotating convection, it is instructive to
obtain guidance from numerically obtained measurements of the α and turbulent diffu-
sivity tensors. This can be done using the test-field method (Schrinner et al. 2005, 2007),
which has been applied to turbulence in a number of recent papers (Brandenburg 2005;
Brandenburg et al. 2008). The result is shown in Figure 5. Using this method, Käpylä
et al. (2009a) noted that the magnitude of the relevant components of the α tensor vary
only weakly with Coriolis number, Co = 2Ω/urmskf , where Ω is angular velocity, while ηt
diminishes with increasing values of Co. This was a clear indication that dynamos of α2

type might become possible once Co is large enough. We emphasize this point, because
it is one of the several examples where mean-field theory has proven its predictive power.

Consequently, in a subsequent investigation, Käpylä et al. (2009b) carried out simu-
lations for large enough values of Co and did indeed find dynamo action of large-scale
type when Co >∼ 10. The large-scale field became even more pronounced as the aspect
ratio was increased. In Figure 3 we present horizontal spectra of magnetic and kinetic
energies. What is important here is the fact that, even though the magnetic energy is less
(by factor 5) than the kinetic energy at what we estimate to be kf (about 5k1), the mag-
netic energy strongly exceeds the kinetic energy at the scale of the domain. This seems to

† http://agenda.albanova.se/conferenceDisplay.py?confId=325
‡ http://videos.nordita.org/conference/Turbulence2008/hires/March17/Part1.WMV
¶ http://videos.nordita.org/conference/Turbulence2008/hires/March19/Part5.WMV

https://doi.org/10.1017/S1743921311017704 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921311017704


From convective to stellar dynamos 283

Figure 3. Two-dimensional power spectra of
velocity (upper panel) and magnetic field (lower
panel) as functions of system size. In the lower
panel the upper curves show the spectra from
the saturated state whereas the lower curves
show the spectra from the kinematic state mul-
tiplied by 107 . Adapted from Käpylä et al.
(2009b).

Figure 4. Top panel: rms-values of the total
magnetic field as functions of time for vertical
field (solid lines) and perfect conductor bound-
ary conditions (dashed lines). The two lower
panels show the sums of the rms-values of the
Fourier amplitudes of Bx and By for k/k1 = 0
(middle panel) and k/k1 = 1 (bottom panel).
The dotted lines in the two lower panels show
a saturation predictor according to the model
of Brandenburg (2001). Adapted from Käpylä
et al. (2009b).

exclude alternative explanations whereby the magnetic field at smaller wavenumbers
might just be a trivial result of diffusion in wavenumber space. Instead, we argue that
this is strong evidence for the physical reality of an α2 dynamo driven by rotating con-
vection.

In agreement with virtually all earlier work on large-scale dynamos of α2 type the
saturation time of the dynamo is comparable with the resistive time. Indeed, Brandenburg
(2001) found that in the absence of strong magnetic helicity fluxes, the saturation of an
α2 dynamo follows a switch-on behavior where, after saturation, the mean field is given
by

B2

B2
eq

≈ kf

km
[1 − e−2ηk 2

m (t−ts ) ]. (3.1)

This is also seen in the present case; see Figure 4, where we overplot the prediction from
Equation (3.1).

It is likely that diffusive magnetic helicity fluxes are present in the convection simula-
tions discussed above (Brandenburg et al. 2009). Those fluxes could in principle give rise
to faster saturation times than what is seen in Figure 3.1. This question has been ad-
dressed quantitatively by Mitra et al. (2010a) and Hubbard & Brandenburg (2010), who
note that at the magnetic Reynolds numbers accessible so far, diffusive helicity fluxes
are still quite weak compared with the resistive processes. Based on their scalings for
different values of ReM , they estimate that resistive saturation effects would only begin
to be alleviated for ReM well in excess of values around 1000 or even 104; see also Fig. 10
of Candelaresi et al. (2011). Convection simulations with closed magnetic boundaries do
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Figure 5. Normalized profiles of α (left panel) and ηt (right panel) from kinematic test field
simulations. The vertical dotted lines at z/d = 0 and z/d = 1 indicate the base and top of the
convectively unstable layer, respectively. Adapted from Käpylä et al. (2009b).

seem to suffer from catastrophic quenching at least up to ReM ≈ 240 (Käpylä et al.
2010b). Reaching much higher values to study this issue further in the near future is
not possible. While this is certainly somewhat discouraging news, it does highlight the
importance of studying detailed scaling properties of large-scale dynamos rather than
producing solitary examples of dynamos at large resolution, hoping that they represent
the Sun.

4. Bi-helical magnetic field
An important property of α effect dynamos is the fact that they produce bi-helical mag-

netic fields. This means that one expects to see magnetic helicity fluxes with opposite
signs at small and large scales. While this is now well established theoretically (Blackman
& Brandenburg 2003; Yousef & Brandenburg 2003), there is still no widespread obser-
vational evidence for this. Large-scale magnetic helicity can be estimated using synoptic
maps of the azimuthally averaged radial magnetic field of the Sun; see Fig. 1 of Branden-
burg et al. (2003). Small-scale magnetic helicity fluxes have been inferred from magnetic
field measurements in active regions and coronal mass ejections (Berger & Ruzmaikin
2000).

There is also some evidence from measurements of magnetic helicity in the solar wind.
Using the assumption of homogeneity, Matthaeus et al. (1982) were able to determine
magnetic helicity spectra for the solar wind. Preliminary analysis of more recent solar
wind data from the Ulysses spacecraft does indeed suggest that the field in the solar
wind is also bi-helical. Further details on this are presented in a dedicated publication
(Brandenburg et al. 2011).

5. Concluding remarks
We still do not know exactly how the solar dynamo works. If it is of αΩ type, given that

the α effect is positive in the northern hemisphere, and using the fact that radial shear is
positive in the bulk of the convection zone, one would expect poleward migration of the
dynamo wave. This is also what three-dimensional simulations in spherical shells have
shown repeatedly over several decades starting with the early work of Gilman (1983), and
now again in the spherical wedge simulations of Käpylä et al. (2010c). For rapid rotation,
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however, polarity flips of toroidal magnetic field can also occur more abruptly, as has been
demonstrated by Brown et al. (2010) and Ghizaru et al. (2010), which is beginning to
be reminiscent of polarity reversals in the geodynamo (Glatzmaier & Roberts 1995), but
is different from what we know about the solar dynamo. In this connection it is worth
recalling yet another recent surprise: oscillatory solutions with equatorward migration are
also possible in the absence of any differential rotation provided the dynamo is somehow
bounded between highly conducting media at high latitudes (Mitra et al. 2010b). It is
obviously unclear whether this has any bearing on the solar dynamo, but it reminds us
of the possibility of surprises.

Other proposals for how the solar dynamo might work include the flux transport
dynamo (Durney 1995; Choudhuri et al. 1995; Dikpati & Charbonneau 1999), and the
possibility of a dynamo shaped by the negative radial angular velocity gradient in the
near-surface shear layer (Brandenburg 2005). Neither of these two scenarios have been
seen in three-dimensional turbulence simulations. The former suffers from the difficulty
of obtaining a sufficiently coherent meridional circulation that does not break up into
smaller circulation patterns, while the latter may suffer from the difficulty of resolving
the small-scale turbulence in the near-surface shear layer. A possible step forward might
therefore be a combined effort utilizing a range of different simulations in spherical and
Cartesian geometries on the one hand, and improved mean-field theory on the other.
Clearly, in order to improve mean-field theory it is essential to seek guidance from direct
simulations, as has already been done in recent years with increasing success.
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Discussion

M. Proctor: What do you do about the gauge when calculating magnetic helicity,
and does it make any difference to the answers obtained?

A. Brandenburg: Yes, the magnetic helicity density is in general gauge-dependent.
However, if there is sufficient scale separation between mean and fluctuating fields, the
magnetic helicity density computed from the fluctuating field can be shown to be gauge-
invariant (Subramanian & Brandenburg 2006). Hubbard & Brandenburg (2010) have
recently confirmed this in a simulation where the magnetic helicity from the mean field
was strongly gauge dependent, but that from the fluctuating field was not.

T. Rogers: To calculate magnetic helicity you assumed that the solar wind was
isotropic, which observations show it is not. How would this affect the results you present?

A. Brandenburg: Since we have to adopt the Taylor hypothesis, only the two magnetic
field components perpendicular to the radial direction enter the calculation. The field in
the plane perpendicular to the radial direction is still fairly isotropic, so I guess our results
are still meaningful. To clarify the significance of our results further, it might be useful
to compute magnetic helicity from simulations of anisotropic MHD turbulence with one
preferred direction.

D. Hughes: In your simulations that show the generation of large-scale fields on a long
time, what is the timescale for the generation of the fields? If it is ohmic then it is not
surprising.

A. Brandenburg: The initial exponential growth occurs always on a dynamical time
scale, but full saturation is only obtained on a resistive time scale. We know that this
problem can only be alleviated by magnetic helicity fluxes, which are quite weak in our
Cartesian simulations. Nevertheless, our simulations prove the point that the α effect
works in rotating convection, which was until now quite unclear.

C. Forest: How do you model the boundary conditions? Open or Closed?

A. Brandenburg: At the bottom we adopt a perfect conductor boundary condition and
at the top we assume that the horizontal field vanishes. This pseudo-vacuum condition
is numerically more robust than a proper vacuum condition. However, it would be more
realistic to couple the convection simulation to a force-free model, as has been done for
forced turbulence simulations in the paper by Warnecke & Brandenburg (2010), which
is also presented here as a poster.
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