REMARK ON A CRITERION FOR COMMON TRANSVERSALS by HAZEL PERFECT

(Received 4 January, 1968)

All sets considered will be finite, and |X| will denote the cardinal number of the set X.

Let $\mathfrak{A} = (A_i: i \in I)$ be a family of subsets of a set E. A subset $E' \subseteq E$ is called a *trans*versal of \mathfrak{A} if there exists a bijection $\sigma: E' \to I$ such that $e \in A_{\sigma(e)}$ $(e \in E')$. According to a wellknown theorem of P. Hall [2], the family \mathfrak{A} has a transversal if and only if $|\{\bigcup A_i: i \in I'\}| \ge |I'|$ for every subset I' of I. Ford and Fulkerson [1] obtained (as a special case of a more general theorem) an analogous criterion for the existence of a common transversal (CT) of two families. We may state their result in the following terms.

The families $\mathfrak{A} = (A_i : i \in I)$, $\mathscr{B} = (B_j : j \in J)$ of subsets of E, where |I| = |J| = n, have a CT if and only if

$$\left|\left(\bigcup_{i \in I'} A_i\right) \cap \left(\bigcup_{j \in J'} B_j\right)\right| \ge \left|I'\right| + \left|J'\right| - n \tag{1}$$

whenever $I' \subseteq I, J' \subseteq J$.

The original proof of this depended on the max-flow min-cut theorem from the theory of flows in networks. This theorem is intimately connected with Menger's graph theorem [3], and it is therefore not surprising that a direct deduction of the Ford-Fulkerson criterion can be made from Menger's theorem. Another treatment [4] depends on the theory of transversal independence. Our purpose here is to indicate a simple argument which relies solely on Hall's theorem.

Assume that $E \cap I = E \cap J = \emptyset$; and consider the family $\mathfrak{X} = (X_k : k \in I \cup E)$ of subsets of $E \cup J$ defined by the requirements:

$$X_k = A_k \ (k \in I), \quad X_k = \{k\} \cup \{j : j \in J, k \in B_j\} \qquad (k \in E).$$

We assert that \mathfrak{A} and \mathfrak{B} have a CT if and only if \mathfrak{X} has a transversal.

Write $E = \{e_1, \ldots, e_m\}$, $I = J = \{1, \ldots, n\}$. Suppose that \mathfrak{X} has a transversal (which must be the whole of $E \cup J$). This implies, after appropriately ordering the *e*'s, *A*'s and *B*'s, that $n \leq m$ and

$$e_1 \in X_1 = A_1, \dots, e_n \in X_n = A_n,$$

 $e_{n+1} \in X_{e_{n+1}}, \dots, e_m \in X_{e_m},$
 $1 \in X_{e_1}, \dots, n \in X_{e_n}.$

The last line is equivalent to the statements

 $e_1 \in B_1, \ldots, e_n \in B_n;$

and therefore \mathfrak{A} and \mathfrak{B} possess the CT $\{e_1, \ldots, e_n\}$. The converse is also easy to prove.

Now, by Hall's theorem, \mathfrak{X} has a transversal if and only if

$$\big|\bigcup_{k\in K'}X_k\big|\geq \big|K'\big|,$$

whenever $K' \subseteq I \cup E$. Write $K' = I' \cup E'$, where $I' \subseteq I$, $E' \subseteq E$; then this is equivalent to the condition

$$\left| \left(\bigcup_{i \in I'} A_i \right) \cup \left(\bigcup_{k \in E'} X_k \right) \right| \ge \left| I' \right| + \left| E' \right|, \tag{2}$$

whenever $I' \subseteq I, E' \subseteq E$. Further,

$$(\bigcup_{i \in I'} A_i) \cap (\bigcup_{k \in E'} X_k) = (\bigcup_{i \in I'} A_i) \cap E'$$
$$\bigcup_{k \in K'} X_k = E' \cup \{j : j \in J, B_j \cap E' \neq \emptyset\};$$

and so, after a simple rearrangement of terms, we may write (2) in the form

$$\left|\left(\bigcup_{i \in I'} A_i\right) \cap (E - E')\right| + \left|\left\{j : j \in J, B_j \cap E' \neq \emptyset\right\}\right| \ge \left|I'\right|,\tag{3}$$

whenever $I' \subseteq I$, $E' \subseteq E$.

and

It remains to establish the equivalence of (1) and (3). To prove the implication (3) \Rightarrow (1), it suffices to define, for each $J' \subseteq J$, the set E' by the equation $E - E' = \bigcup \{B_j : j \in J'\}$. The reverse implication (1) \Rightarrow (3) is proved if, for each $E' \subseteq E$, we take $J' = \{j : j \in J, B_j \cap E' = \emptyset\}$.

REFERENCES

1. L. R. Ford, Jr, and D. R. Fulkerson, Network flow and systems of representatives, *Canad. J. Math.* 10 (1958), 78-85.

2. P. Hall, On representatives of subsets, J. London Math. Soc. 10 (1935), 26-30.

3. K. Menger, Zur allgemeinem Kurventheorie, Fund. Math. 10 (1927), 96-115.

4. L. Mirsky and H. Perfect, Applications of the notion of independence to problems of combinatorial analysis, J. Combinatorial Theory 2 (1967), 327-57.

DEPARTMENT OF PURE MATHEMATICS THE UNIVERSITY SHEFFIELD