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AN INVENTORY SYSTEM FOR PERISHABLE
COMMODITIES WITH RANDOM LIFETIME

DAVID PERRY* Haifa University

Abstract

In this study we assume an inventory system for perishable com
modities in which the lifetimes of the items stored are i.i.d. random
variable with finite mean.

We utilize the analogy between this inventory system and a queue
ing system with impatient customers, to study the process of the lost
demand, the death of the unused items and the number of items in
the system.

VIRTUAL WAITING TIME; VIRTUAL LOST DEMAND TIME; M/G/1 QUEUE
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Two recent papers [1] and [2] treated an inventory system in which the lifetimes of
the items stored are fixed and finite. In this study we assume that the lifetimes of the
items stored are i.i.d. random variables with finite mean; note that in this case it could
happen that an older item dies before a younger one. For a FIFO issuing policy we
utilize the analogy between our inventory system and a queueing system with impatient
customers to study the processes of the lost demand, the death of the unused items and
the number of items in the system.

The analysis of this model is dual to that of the model we considered in Section 5 of
[2], in the sense that both of them are analogous to the same queueing model (where A.
and IJ- change roles with each other).

We assume that the arrival of items into the system is a Poisson process with rate A.,
and the arrival of demands is a renewal process with inter-renewal distribution Band
mean 1/ IJ-. When a demand occurs and there are items in the system the demand is
satisfied immediately by the oldest item, otherwise it leaves the system unsatisfied. An
item which was not taken by a demand during its lifetime (which is assumed to be a
random variable having distribution H with finite mean) leaves the system.

Define a process W= {Wt : t ~ O} such that Wt is the time of the next unsatisfied
demand from t, if the arrival process of items is stopped at time t. We call this process
the virtual lost demand time.

It is easy to see that the time between lost demands is a delayed renewal process. Let
the origin be a time of a lost demand and D be the time between lost demands. Then,
using the analogy to the queueing system (see also Section 5 of [2]), Wt • 1{O~t<D} is
stochastically equal to the virtual waiting time in an M/ G/l queueing system with arrival
rate A., and service time distribution B, in which customers join the system if they have
to wait for x units of time with probability 1- H(x), and leave with probability H(x).
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A lost demand
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Figure lea), (b) and (c). The arrival, demand, virtual lost demand time, and number of items
processes

Remark. The complete analogy between the queueing and the inventory systems is as
follows. The time that a customer is ready to wait against the lifetime of an item, the
arrival of customers against the arrival of items, and the service time against the times
between successive demands. (For a typical realization see Figure 1(a) and (b).) Hence,
the time between successive lost demands is stochastically equal to the busy period - R
in the above-mentioned M/G/1 queueing system.

From the point of view of the distribution of R, it does not matter if the customer
who arrives into the system leaves it immediately, when the virtual waiting time is
greater than the time he is ready to wait, or whether he joins the system and leaves it
after the time he is ready to wait has elapsed. We thus consider a queueing system in
which every customer always joins it and focus on the analogy between K(t)-the
number of customers in the above-mentioned queueing system at time t, and K(t)-the
number of items in the inventory system, at that time. There is, however, a difference
between the two processes due to the fact that in the queueing model, the beginning of
a busy cycle is the time of the first arrival to an empty system, while in the inventory
model the beginning of a renewal cycle is the time of a lost demand. Let N be the
number of customers who arrived during a busy cycle in the queueing model, and let N
be the number of items in the inventory system which arrived between two lost
demands; the random variable N has the same distribution as N -1. There is another
difference between the queueing system and the inventory system. The time that a

https://doi.org/10.2307/1427063 Published online by Cambridge University Press

https://doi.org/10.2307/1427063


236 Letters to the editor

customer spends in the queueing system is Y, . l{wn>Yn} + (Wn + Sn) . l{wn~Yn} where S; is
the service time of the nth customer, Y, is the time that the nth customer is ready to
wait, and Wn is the actual waiting time. The time that an item spends in the inventory
system is Vn = min [Wm Yn] where Yn is the maximal lifetime of the nth item, and w, is
the actual lost demand time. With the above in mind, we now obtain the limiting
expectation of the number of items in the system. The following theorem is analogous to
that of Theorem 3.6.2 in [3] (p, 83), but due to the principle difference between the
inventory and the queueing systems, we give the proof in full.

Theorem.

EK = AJoc(1- Fw(x ))( l - H(x)) dx
o

where H is the distribution of Ym EK = lim, __oc EK(t), and Fw(x) = lim, __oc P(Wt ~ x) is
given in Theorem 5.11 of [2] where A and I-L change roles with each other.

Proof. At a time of lost demand, the inventory system is empty; thus K(t) is a
regenerative process, with respect to the lost demand stopping times. It therefore
follows from the key renewal theorem (see also [1] and [2]) that EK =
(l/ED)E J:? K(t) dt. Imagine that a reward at rate K(t) is earned at time t. Then,
E J~ K(t) dt = E I~=l Vi, since Vi represents the reward on day j (see Figure l(c); both
V 1 + V2 + ... + VN and J~ K(t) dt represent the area of the enclosed curve). Now, D and
R have the same distribution, so that ED = EC - EX where C is the busy cycle, X is
the interarrival time and R is the busy period in the queueing system. Therefore

N
E I Vj

- j=l -. --
EK = = AEV = lim E(Wm Yn).1 1 n __OC

-EN--
A A

_Since the arrival of items of Poisson "process, Wn_has the same limiting distribution as
Wt, i.e. limn __ocP(Wn~x)=limt __ocP(Wt~x)=P(W~x).

Now, {Yn} is a sequence of i.i.d. random variables having distribution H, independent
of W, so that EV = J~ peW> x)P(Y> x) dx, and the theorem is proven.

In the special case when Yn ---- exp (,,) and Sn ---- exp (I-L), we can obtain the limiting
distribution of K(t) itself. In that case K(t) is a birth and death process whose
steady-state probabilities PI< satisfy the set of equations API< = [I-L + (K + 1)" ]PI<+b
K = 0, 1,2, .... We can also obtain the Laplace transform of D as we did in the dual
system in Section 5 of [2].
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