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Abstract. In this paper, we show new results on slant submanifolds of an
almost contact metric manifold. We study and characterize slant submanifolds of K-
contact and Sasakian manifolds. We also study the special class of three-dimen-
sional slant submanifolds. We give several examples of slant submanifolds.
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0. Introduction. Slant immersions in complex geometry were defined by B.-Y.
Chen as a natural generalization of both holomorphic immersions and totally real
immersions [2]. Examples of slant immersions into complex Euclidean spaces C? and
C* were given by Chen and Tazawa [2, 4, 5], while slant immersions of Kéhler C-
spaces into complex projective spaces were given by Maeda, Ohnita and Udagawa
[9].

In a recent paper [7], A. Lotta has introduced the notion of slant immersion of a
Riemannian manifold into an almost contact metric manifold and he has proved
some properties of such immersions. A. Lotta and A. M. Pastore have obtained
examples of slant submanifolds in the Sasakian-space-form R*"*! as the leaves of a
harmonic Riemannian 3-dimensional foliation [8]. Finally, A. Lotta has also studied
some properties about the intrinsic geometry of 3-dimensional non-anti-invariant
slant submanifolds of K-contact manifolds [6].

The purpose of the present paper is to study slant immersions in K-contact and
Sasakian manifolds. We first review, in Section 1, basic formulas and definitions for
almost contact metric manifolds and their submanifolds, which we shall use later. In
Section 2, we recall the definition of a slant submanifold of an almost contact metric
manifold and we show a first characterization theorem. In Section 3, we give many
interesting examples of slant submanifolds in almost contact metric manifolds and
in Sasakian manifolds. Then, we characterize slant submanifolds by means of the
covariant derivative of the square of the tangent projection 7 over the submanifold
of the almost contact structure of a K-contact manifold. Later, we study the first
interesting class of slant submanifolds: the three-dimensional slant submanifolds.
We show some results concerning the tangent 7" and the normal N projections. We
also use the given examples in order to remark some facts concerning the main the-
orems of the paper. We study slant submanifolds in K-contact manifolds and three-
dimensional slant submanifolds in Sections 4 and 5 respectively.
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1. Preliminaries. Let (]\7, g) be an odd-dimensional Riemannian manifold and
denote by TM the Lie algebra of vector fields in M. Then, M is said to be an almost
contact metric manifold [1] if there exists on M a tensor ¢ of type (1, 1) and a global
vector field & (structure vector field) such that, if n is the dual 1-form of &, then

¢2X: -X+ U(X)%" g(X’ é].) = T](X),
g(PX, ¢Y) = g(X, Y) — n(X)n(Y), (1.1)
forany X, Y € TM. In this case,

g(@X,Y)+g(X,¢Y) =0, (1.2)

for any X, Y € TM. Let ® denote the 2-form in M given by ®(X, ¥) = g(X, ¢Y) for
all X, Y € TM. The 2-form & is called the fundamental 2-form in M and the manifold
is said to be a contact metric manifold if ® = dn. If & is a Killing vector field with
respect to g, the contact metric structure is called a K-contact structure. It is easy to
prove that a contact metric manifold is K-contact if and only if VXS = —¢X, for any
X € TM, where V denotes the Levi- Civita connection of M.

The almost contact structure of A is said to be normal if [0, 0] +2dn®&E =0,
where [¢, ¢] is the Nijenhuis torsion of ¢. A Sasakian manifold is a normal contact
metric manifold. Every Sasakian manifold is a K-contact manifold. It is easy to
show that an almost contact metric manifold is a Sasakian manifold if and only if

(Vxd)Y = g(X, Y)§ — n(Y)X, (1.3)

forany X, Y e M. -

Now, let M be a submanifold immersed in M. We also denote by g the induced
metric on M. Let TM be the Lie algebra of vector fields in M and T+ M the set of all
vector fields normal to M. Denote by V the Levi-Civita connection of M. Then, the
Gauss—Weingarten formulas are given by

VyY=VyY+o(X,Y), VyV=—AyX+DyV,

for any X, Y € TM and any V € T*M, where D is the connection in the normal
bundle, o is the second fundamental form of M and Ay is the Weingarten endo-
morphism associated with V.

The mean curvature vector H is defined by H = (1/m) trace o, where m is the
dimension of M. M is said to be minimal if H vanishes identically.

For any X € TM, we write

¢X = TX + NX, (1.4)

where TX is the tangential component of ¢X and NX is the normal component of
¢X. Similarly, for any V € T+ M, we have

OV =1tV +nV, (1.5)

where ¢tV (resp. nV) is the tangential component (resp. normal component) of ¢ V.
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From (1.2) and (1.4), we get

g(TX, Y) = —g(X, TY), (1.6)

forany X, Y e TM.

The submanifold M is said to be invariant if N is identically zero, that is,
¢X € TM, for any X € TM. On the other hand, M is said to be an anti-invariant
submanifold if 7 is identically zero, that is, X € T+ M, for any X € TM.

From now on, we put Q = 72. We define VQ, VT and VN by (VyQ)Y =
Vx(QY) — O(VxY), (VxT)Y = Vy(TY) — T(VyY) and (VxN)Y = DyNY — NVyY,
forany X, Y e TM.

It can be proved by a direct calculation that if there exists a function A such that

(VxT)Y = AMg(X, V)& — n(Y)X), (1.7)
for any X, Y € TM, then

(VxQ)Y = Mg(X, TY)E — n(Y)TX), (1.8)

for any X, Y € TM. ~

Suppose now that M is a submanifold of a Sasakian manifold M. Then, by
applying the formulas of Gauss and Weingarten and using formulas (1.3), (1.4)
and (1.5), we may obtain (VyT)Y = to(X, Y)+ AnyX + g(X, Y)§ — n(Y)X and
(VxN)Y = no(X, Y) —o(X, TY), for any vectors X, Y tangent to M. Hence, if 1 is a
function, then, it can be proved that

(VxT)Y = AMg(X, V)& — n(Y)X), (1.9)
for any X, Y € TM, if and only if
AyyX = Ayy Y + (1 — MR(X, Y)E, (1.10)

for any X, Y € TM. Similarly, we can see that

(VxN)Y =2n(X)NTY + n(Y)NTX,

for any X, Y € TM if and only if

AyTY = =AY + 2g(Y, nV)é + n(Y)tnV, (1.11)

for any Y € TM and any V € TM*.

2. Slant submanifolds. In [7], A. Lotta has introduced the following notion of
slant immersion in almost contact metric manifolds. A submanifold M is said to be
slant if for any x € M and any X € T, M, linearly independent on &, the angle
between ¢X and T, M is a constant 0 € [0, /2], called the slant angle of M in M.

Invariant and anti-invariant immersions are slant immersions with slant angle
0 =0 and 6 = /2 respectively. A slant immersion which is not invariant nor
anti-invariant is called a proper slant immersion.
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Lotta’s definition includes both £ € TM and £ € T*M cases. Nevertheless, he
proves the following theorem, which generalizes a well-known result of Yano and
Kon (see Proposition 7.3 of [10]):

THEOREM 2.1. [7] Let M be a submanifold of a contact metric manifold M. If&is
orthogonal to M, then M is anti-invariant.

Given that we are interested in the study of proper slant submanifolds in contact
metric manifolds, from now on we suppose that the structure vector field is tangent
to M. Hence, if we denote by D the orthogonal distribution to & in TM, we can
consider the orthogonal direct decomposition: TM =D @ < & >.

We have already noted down that invariant and anti-invariant submanifolds are
special classes of slant submanifolds. In the first case, we know that N = 0, so that
T = ¢ and therefore 7> = ¢*> = —I+ n® £. For an anti-invariant submanifold, we
have 7> =0. If M is a proper slant submanifold, with slant angle 6, Lotta has
proved in [7] that T>X = — cos? 8(X — n(X)&), for any X € TM. It is clear that this
expression includes invariant and anti-invariant cases, for 6 =0 and 6 = /2,
respectively. In fact, the following result shows that it characterizes slant immersions.

THEOREM 2.2. Let M be a submanifold of an almost contact metric manifold M
such that & € TM. Then, M is slant if and only if there exists a constant A € [0, 1] such
that:

T’ =-AI-1n®%). (2.1
Furthermore, in such case, if 0 is the slant angle of M, it satisfies that A = cos?6.

Proof. We only have to prove the sufficient condition. Suppose that there exists
a constant A such that 72 = —A(/ — n ® £). Then, for any X € TM— < £ > we have:

g(¢X. TX)  gX,T°X) _ _, 8 ¢’X) _ , [¢X

o(X) = = = = .
cos ) = S xTx] X[ TX] X TX] " |TX]

2.2)

On the other hand, cosé(X) = |TX|/|¢pX|, and so, by using (2.2), we obtain
cos? 0(X) = A. Hence, 6(X) is a constant and so M is slant.

COROLLARY 2.3. Let M be a slant submanifold of a almost contact metric mani-
fold M, with slant angle 6. Then, for any X, Y € TM, we have:

g(TX, TY) = cos® 6(g(X, ¥) — n(X)n(Y), (2.3)

g(NX, NY) = sin 6(g(X, Y) — n(X)n(Y)). 24

Proof. From (1.6) and (2.1), a direct expansion gives (2.3). To prove (2.4), it is
enough to take into account (1.1) and (1.4).
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3. Examples. In this section we give some examples of slant submanifolds in
almost contact metric manifolds. Our goal is to find interesting examples of proper
slant submanifolds in Sasakian manifolds.

An important work in the study of slant submanifolds in the almost complex
case is the characterization of slant surfaces. Examples and properties of slant sur-
faces are given in [2, 3, 4, 5]. However, Lotta has proved that a non-anti-invariant
slant submanifold of a contact metric manifold must have an odd dimension and so,
it follows that surfaces are not interesting in our research. Then, to obtain examples
of slant submanifolds in our case, we must look for submanifolds with dimension
greater or equal to 3. Lotta has already found the following example:

_ ExamprE 3.1. [7] If M is a slant submanifold in an almost Hermitian manifold
M, then M x R is a slant submanifold in the almost contact metric manifold M x R
with the usual product structure.

Thus, each example of [2, 3, 4, 5], provides an example of slant submanifold in
an almost contact metric manifold.
_Then, we could think that, if M is a slant submanifold of a Kaehlerian manifold
M, M x R would be a slant submanifold in a certain Sasakian manifold. However,
we have the following proposition.

PROPOSITION 3.2. Let M be a submanifold of a contact metric manifold M. Then,
M is anti-invariant if and only if the distribution D is integrable.

Proof. It is enough to take into account that, if M is contact metric, then, for
any X, Y € TM:

28(X, TY) = 2dn(X, ¥) = X(n(Y)) — Y(n(X)) — n([X, Y)).

In particular, 2g(X, TY) = —n([X, Y]) for any X, Y € D, which implies that D is
integrable if and only if 7= 0.

Hence, if M is a slant submanifold in an almost Hermitian manifold, M x R can
not be a proper slant submanifold in a contact metric manifold. Note that M x R is
not contact metric and so there is not any contradiction with Example 3.1.

From now on, (R, ¢, &, 0, g) will denote the manifold R*"*! with its usual
Sasakian structure given by

m ,' ; a
n=1/2(dz — ;y dx), §=2,

g=n®n+ 1/4(Z(dx" ®dx'+dy' ® dy’)),

i=1

m

& a a a d d & -0
X—+Y—)+72—)= Yi—— Xi— Yiy'—,
¢0(;( ox! + ayl) + 82) ;( ox' By’) + ; Y 0z
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where (X', )%, z), i = 1...m are the cartesian coordinates. It is well known that
d ;0
—, 2=+,
{255 265105 &

is an orthonormal basis of TR*"*! such that ¢0(2 ) = Z(W + y ) Such a basis is
called a ¢y-basis.
When m is even, we define the endomorphism ¢; given by:

¢1(X17"'7XI1‘[1 Yl""s Ymvz):(_X27X13"'1_XH1’XH1—17
Y2a _Yla ey Ym7 _Ym—l»szl _leZ +--- +ym m—1 _yM71Xm)~

It is easy to show that (R*"!, ¢,, & 1, g) is an almost contact metric manifold.
Nevertheless, (R?"*!, ¢, &, 1, g) is not a contact metric manifold. We obtain this as a
particular case of the following proposition:

PROPOSITION 3.3. Let (M ¢, &,1m,8) be a contact metric manifold. If there exists
another almost contact metric structure (¢, &, 1, g) on M such that (M b, 6, 1,2) is a
contact metric manifold, then ¢ = ¢.

Proof. The result follows easily from the equation ® = dy = ®, where ® and ®
denote the fundamental 2-forms of (M, ¢, £, n, g) and (M, ¢, £, n, g), respectively.

It can be also proved that (R*"*! ¢, & n,g) is not normal, since [¢1, ¢1] =
2dn ® &. Moreover, the fundamental 2-form ®; is closed and so, we can obtain

e(Vxp))Y, Z) = —20(X)dn(Z, ¢1 Y) — n(Y)dn(Z, ¢1 X) — n(Z)dn(X, ¢1 Y),

for any X, Y, Z € TR
By using the above structures, we find the following method to obtain slant
submanifolds, with given slant angle, in a certain almost contact metric manifold.

ExaMPLE 3.4. For any constant 8, we define ¢y ¢ and ¢, ¢ by
$o.0 = (cos)gg + (sind)¢i,

$1,0 = (cosb)g; + (sinb)gy,

respectively. Then, (¢o0,&,7n,g) and (¢10,&, n,g) are two almost contact metric
structures on R?"*!, for any even number m. In particular, if m =2, then, any
invariant submanifold M of dimension 3 in (R, ¢y, £, 1, g) (resp. (R>, ¢y, £, 7, g)) is a
minimal slant submanifold (resp. slant submanifold), with slant angle 6, in

(R59 ¢0,0’ E’ n, g) (resp' (RS, ¢1.07 ga n, g))

To obtain examples in a Sasakian manifold, we can prove, by a direct calcula-
tion, the following theorem.
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THEOREM 3.5. Suppose that

x(u, v) = (fi(u, v), fo(u, v), f3(u, v), fa(u, v))

defines a slant surface S in C* with its usual Kaehlerian structure, such that 9/du and
d/9v are non-zero and perpendicular. Then,

Y, v, 1) = 201w, v), fo(u, v), f3(u, v), fa(u, v), 1)

defines a three-dimensional slant submanifold M in (R®, ¢o, £, 1, g), such that, if we put

:—+(2f3%+ f42f2 Y
and ) ]
o=t ropi o, By

then {ey, ez, &} is an orthogonal basis of the tangent bundle of the submanifold.

REMARK 3.6. Note that if S is not totally real, then, the distribution spanned by
e; and e; is not integrable and so, M cannot be the Riemannian product of S by R.
This fact is coherent with Proposition 3.2.

Then, from Theorem 3.5 and Examples 2.1, 2.3, 2.4 and 2.5 of [2], we obtain the
following examples in R> with its usual Sasakian structure:

ExampLE 3.7. For any 6 € [0, 7/2],

x(u, v, t) = 2(ucos b, usiné, v, 0, t)

defines a minimal three-dimensional slant submanifold with slant angle 6 and with
scalar curvature T = —(cos’ 6)/3.

ExampLE 3.8. For any constant k,

x(u,v, 1) = 2(ek” cos ucos v, e sinucos v, € cos usin v, ¢ sin usin v, 7)

defines a slant submanifold of dimension 3 with slant angle # = cos™!(|k|/+/1 + k2),
scalar curvature v = —k?/(3(1 + k%)) and non-constant mean curvature given by
|H| = 2¢~%/(3+/1 + k2). Hence, the submanifold is not minimal.

ExAMPLE 3.9. For any constant k&,

x(u, v, t) = 2(u, kcosv, v, ksinv, t)

defines a slant submanifold M with slant angle cos™!(1/+/1 + k2), constant mean
curvature |H| = |k|/(3(1 + k%)) and scalar curvature v = —1/(3(1 4+ k?)). Moreover,
the following statements are equivalent: (a) k = 0, (b) M is invariant, (c) M is mini-
mal and (d) M has parallel mean curvature vector.
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ExaMPLE 3.10. Let k& be any positive number and (g(s), /(s)) a unit speed plane
curve. Then,

x(u, s, t) = 2(—kssinu, g(s), ks cos u, h(s), t)

defines a non-minimal proper slant submanifold with slant angle k/+/1 + k2.
In a similar way, we also can obtain examples of slant submanifolds with higher
dimension.
ExaMmPLE 3.11. For any k > 0,
x(u, v, w, s, t) = 2(u, v, ksinw, ksins, kw, ks, kcosw, kcos s, t)

defines a slant submanifold with slant angle /4 in (R’, ¢, &, 1, g).

ExampLE 3.12. For any 6 € [0, /2],

x(u, v, w, s, t) = 2(u, 0, w,0,vcosh, vsinh, scos b, ssinb, f)

defines a S5-dimensional minimal slant submanifold in (R’, ¢, &, 1, g), with slant
angle 6.
Moreover, we have the following examples of three-dimensional slant sub-
manifolds in (R, ¢, &, 1, 2):
ExampLE 3.13. For any 6 € [0, /2],
x(u, v, t) = 2(u, 0,0, vcosh, vsinb, 0, t)

defines a 3-dimensional minimal slant submanifold, with slant angle 6, in R’ with its
usual Sasakian structure.

By proceeding as in Theorem 3.5 we find examples of slant submanifolds in the
almost contact metric manifold (R>, ¢1, &, 1, g).

ExAMPLE 3.14. For any nonzero real numbers p and ¢, we consider the follow-
ing immersion from R x (0, o0) x R into R> defined by:

x(u, v, t) = 2(pvsinu, pvcos u, vsin qu, v cos qu, t).

Then, the immersion x gives a slant three-dimensional submanifold in the almost
contact metric manifold (R°, ¢, £, 1, g).

ExaMPLE 3.15. For any 6 € [0, 7/2],

x(u, v, t) = 2(ucos b, v, usin6, 0, t)

defines a minimal slant submanifold with slant angle 6 in (R>, ¢y, &, 1, 2).
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ExaMPLE 3.16. For any 6 € [0, 7/2],

x(u, v, t) = 2(ucos b, v, 0, usin b, t)

defines a minimal slant submanifold with slant angle 6 in (R>, ¢y, &, 1, 2).

With respect to Example 3.16, it can be proved that, for any 6 € [0, /2], we also
obtain a slant submanifold in (R>, ¢y, &, 1, g), with slant angle /2 — 6. Hence, if
0 = /4, then we have slant immersions in two different almost contact metric
manifolds, with the same slant angle.

Finally, we show another example of slant submanifold in R’ with its usual
Sasakian structure, which is not given by the method of Theorem 3.5.

ExampLE 3.17. For any 6 € [0, /2],

x(u, v, t) = 2(u, 0, vcosh, vsind, 2uvcosd + 1)

defines a slant submanifold in R® with slant angle 6.

4. Slant submanifolds of K-contact manifolds. In this section, we will study the
value of VQ for slant submanifolds of a K-contact manifold, in order to obtain a
characterization theorem for such submanifolds.

In the complex case, slant submanifolds satisfy the expression VQ = 0 (see [2]).
Now, in the K-contact case, the situation is quite different.

PROPOSITION 4.1. Let M be a slant submanifold of a K-contact manifold M. Then,
VO =0 if and only if M is an anti-invariant submanifold.

Proof. Denote by 6 the slant angle of M. Given X, Y € TM, (2.1) implies:
QVyY = —cos?OVy Y + cos® On(Vy Y)&. 4.1)
On the other hand, by taking the covariant derivative of (2.1), we have

VyQY = —cos? OVy Y + cos® On(Vy V)& +

+cos? 0g(Y, Vy€)E + cos® On(Y)VE, 4.2)

since X(n(Y)) = n(Vx¥) + (¥, V).

Hence, VO = 0 if and only if (4.1) equals (4.2), which is equivalent to Vyé =0
for any X € TM. But, since M is a K-contact manifold, we have Vy& = —TX and so,
the result holds.

In fact, by using (4.1), (4.2) and Vy& = —TX, we can see that, if M is a slant
submanifold of a K-contact manifold M, then

(VxQ)Y = cos” (g(X, TY)E — n(Y)TX). (4.3)
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for any X, Y € TM, where 6 denotes the slant angle of M. This expression will be
useful to characterize slant submanifolds.
The following lemma has been proved in [7]:

_ LemMA 4.2. Let M be a slant submanifold of an almost contact metric manifold
M. Denote by 0 the slant angle of M. Then, at each point x of M, Q|p has only one
eigenvalue ., = — cos> 6.

THEOREM 4.3. Let M be a submanifold of a K-contact manifold M such that
&€ TM. Then, M is slant if and only if

1. The endomorphism Q|p has only one eigenvalue at each point of M.
2. There exists a function A : M — [0, 1] such that

(VxQ)Y = A(g(X, TY)§ — n(Y)TX)

forany X, Y € TM.
Moreover, in this case, if 0 is the slant angle of M, we have ) = cos? 6.

Proof. Statements 1 and 2 follow directly from Lemma 4.2 and (4.3), respec-
tively. Conversely, let A;(x) be the only eigenvalue of Q|p at each point x € M. Let
Y € D be an unit eigenvector associated with Ay, i.e., QY = A; Y. Then, by virtue of
statement 2, we have

XY + 1 VxY = Vy(QY) = O(VxY) + Ag(X, TY)E,

for any X € TM, since Y € D. Since both VyY and Q(VxY) are perpendicular to Y,
we conclude that A, is constant on M.

By virtue of (2.1), to prove that M is slant it is enough to show that there is a
constant p such that Q = —ul+un®§&. Let X be in TM. Then, X = X + n(X)§,
where X' = X —n(X)§ € D. Hence, QX = QX. Since Q|p = A1/, we have QX =11 X
and so QX =1 X =1 X—An(X)E By taking u = —A;, we obtain the result.
Moreover, if M is slant, by virtue of (4.3), it must be A = —A; = u = cos” @, where 0
denotes the slant angle of M.

_ CoRrOLLARY 4.4. Let M be a submanifold of dimension 3 of a K-contact manifold
M such that &€ € TM. Then, M is slant if and only if there exists a function
A M — [0, 1] such that

(VxQ)Y = A(g(X, TY)§ — n(Y)TX)

for any X, Y € TM. Moreover, in this case, if 0 is the slant angle of M, we have
X = cos?#.

Proof. Tt follows directly from Theorem 4.3 since it iseasy to prove that, if
dim M = 3, then Q|p has only one eigenvalue at each point of M.
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5. Slant submanifolds with dimension 3. Three-dimensional slant submanifolds
make up the first non-trivial class of slant submanifolds in almost contact metric
manifolds. Now, we are going to characterize these submanifolds by giving the
values of VT and VN.

THEOREM 5.1. Let M be a submanifold of dimension 3 in a K-contact manifold M
such that &€ € TM. Then, the following three statements are equivalent:

1. M is neither an invariant nor an anti-invariant submanifold and there exists
a function A : M — [0, 1] such that

(VxT)Y = A(g(X, Y)E — n(1)X)

forany X,Y € TM.
2. M is a proper slant submanifold such that

(VxD)Y = cos® B(g(X, Y)§ — n(Y)X), (5.1)

for any X, Y € TM, where 6 denotes the slant angle.
3. M is proper slant.

Proof. By virtue of Corollary 4.4 and the relation between (1.7) and (1.8), it
follows that statements 1 and 2 are equivalent. It is obvious that 2 implies 3. The
converse has been proved by A. Lotta (see Theorem 2.2 of [6]).

REMARK 5.2. The conditions of Theorem 5.1 are sufficient but not necessary. In
fact, we can prove that 5-dimensional slant submanifolds given by Examples 3.11
and 3.12 satisfy (5.1). N

Similarly, we can see that it is not necessary for M to have a K-contact structure.
If = 7/4, Example 3.16 defines a 7r/4-slant submanifold in (R>, ¢y, £, 5, ) such that
it satisfies (5.1).

However, Theorem 5.1 does not hold in any almost contact metric manifold. To
show this, it is enough to see that submanifolds given by Example 3.15 satisfy
VT =0.

Note that the proof of Theorem 5.1 also works when M is an invariant sub-
manifold, since it is enough to have cos@ # 0. In the anti-invariant case, 7= 0 and
s0, (VxT)Y =0 = cos”(g(X, V)& — n(Y)X), for any X,Y e TM, since 6 =m/2.
Moreover, in this case, we do not need for M to have dimension 3.

Combining this fact with Theorem 5.1 and the equivalence between (1.9) and
(1.10), we obtain the following characterization of slant submanifolds with dimen-
sion 3 in terms of the Weingarten map.

COROLLARY 5.3. Let M be a 3-dimensional submanifold in a Sasakian manifold M
such that £ € TM. Then, M is slant if and only if it exists a function C : M — [0, 1]
such that

AnyX = AyyY + CR(X, Y)E

for any X, Y € TM. Moreover, in this case, if 0 is the slant angle of M, then we have
C =sin’6.
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If M is an invariant submanifold of a Sasakian manifold, then (5.1) holds with
6 = 0 and VN = 0 automatically. On the other hand, if M is an anti-invariant sub-
manifold, it is obvious that VI'= 0, i.e., (5.1) holds with 6 = /2. We also know
that (VxN)Y = no(X, Y) for any X, Y € TM. The following lemma show us suffi-
cient conditions to obtain VN = 0.

LEMMA 5.4. Let M be an anti-invariant submanifold of a Sasakian manifold M.
Suppose that dim M =3, dim M =5 and &€ € TM. Then, VN = 0.

Proof. By virtue of (2.4), if we choose a local orthonormal frame {ej, e5, &} of
TM, then we have that {Ne;, Ne,} is a local orthonormal frame of 7-M and so,
n = 0. Consequently, we obtain VN = 0.

Now, we are going to study the value of VN for a three-dimensional slant sub-
manifold M of a Sasakian manifold M with dim M = 5.

Suppose that M is proper slant with slant angle 6. Then, for a unit tangent vec-
tor field e; of M, perpendicular to &, we put

e = (secH)Tey, e3=E& e4=(cscO)Ne; and es = (cscO)Ne;.

Then, e¢; = —(secH)Te, and, by virtue of (2.3) and (2.4), ey, ez, €3, €4, ¢5 form an
orthonormal frame such that e, e;, e3 are tangent to M and ey, e5 are normal to M.
We call such an orthonormal frame an adapted slant frame. We also have:

teq = —sinfey, tes = —sinfe,, nes = —cosbes, nes = cosbey.

If we put o, =g(o(ei, ), ¢,), i,j=1,2,3, r=4,5, then we have the following
lemma:

LEMMA 5.5. In the above conditions, we have:
4 _ 5 4 _ 5
01 = Oy 05y = 019, (5.2)
4 _ 5 _ 4 _ 5 _ 4 _ 5 _
Ol =05, = —sen, 03, =0j; =033 =033, =0. (5.3)

Proof. We obtain (5.2) by virtue of Corollary 5.3 while (5.3) holds because M is
a K-contact manifold.

THEOREM 5.6. Let M be a submanifold of a Sasakian manifold M such that
Ee TM,dim M = 3 and dim M = 5.

1. If M is a minimal proper slant submanifold of M, then

(V¥N)Y = 20(X)NTY + n(Y)NTX, (5.4)

forany X,Y € TM.

2. Conversely, suppose that there is an eigenvalue A of Q|p at each point of M such
that ) € (=1,0). In this case, if (5.4) holds then M is a minimal proper slant
submanifold of M.
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Proof. To prove statement 1, we choose ey, ..., es an adapted slant frame. Then,
from (1.10), (5.2), (5.3) and a direct computation we may obtain (5.4).

To see statement 2, we choose an unit local vector field e, perpendicular to &,
such that

T2€1 = — 0082 9161 s

where 0; = 6(e;) € (0, /2) denotes the Wirtinger angle of e;. Define ey, ..., es by:

ey = (SCCO])TQ], €3 = E, €4 = (CSCG])NG] and es = (CSCQ])N(,’Q.

It is easy to prove that ey, ..., es is a local orthonormal frame and:

tes = —sinbie;, ney = —cosbies, tes=— sin ;e Yy nes = cos 0¢e4.

Since (VxN)Y =2n(X)NTY + n(Y)NTX, for any X, Y € TM, we know that

AyTY = =AY + 2g(Y, nV)e + n(Y)tnV,

for any Y € TM and any V € TM*. Therefore, we find:

ANelez = secH SiIlQ]Ae4 Te; = tan@lAmTel = Sil’l@]Aejel = ANezel-

Moreover, we have Ay, e3 =sinf;A4,e3 = — sin® 0ye; and Ane,e3 = —sen’6e;.
Hence, by a direct computation, we can prove that

AnyX = AxxY —sin® 0i(n(X)Y — n(Y)X),

for any X, Y € TM and so, by applying Corollary 5.3, we know that M is proper
slant, with slant angle 0;. It is easy to show that M is also minimal.

Note that (5.4) holds directly in the invariant and anti-invariant cases, since
VN =0.

REMARK 5.7. The dimension conditions of Theorem 5.6 are sufficient but not
necessary. To show this, it is enough to see that every slant submanifold given by
Examples 3.13 and 3.12 satisfies (5.4). _

Similarly, it is not necessary for M to have a Sasakian structure. If 6 = /4,
Example 3.16 defines a minimal 7/4-slant submanifold M in (RS, o1, &, 1, g), such
that M satisfies (5.4).

However, Theorem 5.6 does not hold in any almost contact metric manifold, as
we can see in Example 3.15. In this example, we find three-dimensional minimal
proper slant submanifolds in (R, ¢y, £, 1, g) such that VN = 0.
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