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Abstract. In this paper, we show new results on slant submanifolds of an
almost contact metric manifold. We study and characterize slant submanifolds of K-
contact and Sasakian manifolds. We also study the special class of three-dimen-
sional slant submanifolds. We give several examples of slant submanifolds.
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0. Introduction. Slant immersions in complex geometry were de®ned by B.-Y.
Chen as a natural generalization of both holomorphic immersions and totally real
immersions [2]. Examples of slant immersions into complex Euclidean spaces C2 and
C4 were given by Chen and Tazawa [2, 4, 5], while slant immersions of KaÈ hler C-
spaces into complex projective spaces were given by Maeda, Ohnita and Udagawa
[9].

In a recent paper [7], A. Lotta has introduced the notion of slant immersion of a
Riemannian manifold into an almost contact metric manifold and he has proved
some properties of such immersions. A. Lotta and A. M. Pastore have obtained
examples of slant submanifolds in the Sasakian-space-form R2m�1 as the leaves of a
harmonic Riemannian 3-dimensional foliation [8]. Finally, A. Lotta has also studied
some properties about the intrinsic geometry of 3-dimensional non-anti-invariant
slant submanifolds of K-contact manifolds [6].

The purpose of the present paper is to study slant immersions in K-contact and
Sasakian manifolds. We ®rst review, in Section 1, basic formulas and de®nitions for
almost contact metric manifolds and their submanifolds, which we shall use later. In
Section 2, we recall the de®nition of a slant submanifold of an almost contact metric
manifold and we show a ®rst characterization theorem. In Section 3, we give many
interesting examples of slant submanifolds in almost contact metric manifolds and
in Sasakian manifolds. Then, we characterize slant submanifolds by means of the
covariant derivative of the square of the tangent projection T over the submanifold
of the almost contact structure of a K-contact manifold. Later, we study the ®rst
interesting class of slant submanifolds: the three-dimensional slant submanifolds.
We show some results concerning the tangent T and the normal N projections. We
also use the given examples in order to remark some facts concerning the main the-
orems of the paper. We study slant submanifolds in K-contact manifolds and three-
dimensional slant submanifolds in Sections 4 and 5 respectively.
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1. Preliminaries. Let � eM; g� be an odd-dimensional Riemannian manifold and
denote by T eM the Lie algebra of vector ®elds in eM. Then, eM is said to be an almost
contact metric manifold [1] if there exists on eM a tensor � of type �1; 1� and a global
vector ®eld � (structure vector ®eld) such that, if � is the dual 1-form of �, then

�2X � ÿX� ��X��; g�X; �� � ��X�;

g��X; �Y� � g�X;Y� ÿ ��X���Y�; �1:1�

for any X;Y 2 T eM. In this case,

g��X;Y� � g�X; �Y� � 0; �1:2�

for any X;Y 2 T eM. Let � denote the 2-form in eM given by ��X;Y� � g�X; �Y� for
all X;Y 2 T eM. The 2-form � is called the fundamental 2-form in eM and the manifold
is said to be a contact metric manifold if � � d�. If � is a Killing vector ®eld with
respect to g, the contact metric structure is called a K-contact structure. It is easy to
prove that a contact metric manifold is K-contact if and only if erX� � ÿ�X, for any
X 2 T eM, where er denotes the Levi-Civita connection of eM.

The almost contact structure of eM is said to be normal if ��; �� � 2d�
 � � 0,
where ��; �� is the Nijenhuis torsion of �. A Sasakian manifold is a normal contact
metric manifold. Every Sasakian manifold is a K-contact manifold. It is easy to
show that an almost contact metric manifold is a Sasakian manifold if and only if

�erX��Y � g�X;Y�� ÿ ��Y�X; �1:3�

for any X;Y 2 T eM.
Now, let M be a submanifold immersed in eM. We also denote by g the induced

metric on M. Let TM be the Lie algebra of vector ®elds in M and T?M the set of all
vector ®elds normal to M. Denote by r the Levi-Civita connection of M. Then, the
Gauss±Weingarten formulas are given by

erXY � rXY� ��X;Y�; erXV � ÿAVX�DXV;

for any X;Y 2 TM and any V 2 T?M, where D is the connection in the normal
bundle, � is the second fundamental form of M and AV is the Weingarten endo-
morphism associated with V.

The mean curvature vector H is de®ned by H � �1=m� trace �, where m is the
dimension of M. M is said to be minimal if H vanishes identically.

For any X 2 TM, we write

�X � TX�NX; �1:4�

where TX is the tangential component of �X and NX is the normal component of
�X. Similarly, for any V 2 T?M, we have

�V � tV� nV; �1:5�

where tV (resp. nV) is the tangential component (resp. normal component) of �V.
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From (1.2) and (1.4), we get

g�TX;Y� � ÿg�X;TY�; �1:6�

for any X;Y 2 TM.
The submanifold M is said to be invariant if N is identically zero, that is,

�X 2 TM, for any X 2 TM. On the other hand, M is said to be an anti-invariant
submanifold if T is identically zero, that is, �X 2 T?M, for any X 2 TM.

From now on, we put Q � T2. We de®ne rQ, rT and rN by �rXQ�Y �
rX�QY� ÿQ�rXY�, �rXT�Y � rX�TY� ÿ T�rXY� and �rXN�Y � DXNYÿNrXY,
for any X;Y 2 TM.

It can be proved by a direct calculation that if there exists a function � such that

�rXT�Y � ��g�X;Y�� ÿ ��Y�X�; �1:7�
for any X;Y 2 TM, then

�rXQ�Y � ��g�X;TY�� ÿ ��Y�TX�; �1:8�
for any X;Y 2 TM.

Suppose now that M is a submanifold of a Sasakian manifold eM. Then, by
applying the formulas of Gauss and Weingarten and using formulas (1.3), (1.4)
and (1.5), we may obtain �rXT�Y � t��X;Y� � ANYX� g�X;Y�� ÿ ��Y�X and
�rXN�Y � n��X;Y� ÿ ��X;TY�, for any vectors X;Y tangent to M. Hence, if � is a
function, then, it can be proved that

�rXT�Y � ��g�X;Y�� ÿ ��Y�X�; �1:9�

for any X;Y 2 TM, if and only if

ANYX � ANXY� �1ÿ ��eR�X;Y��; �1:10�

for any X;Y 2 TM. Similarly, we can see that

�rXN�Y � 2��X�NTY� ��Y�NTX;

for any X;Y 2 TM if and only if

AVTY � ÿAnVY� 2g�Y; tnV�� � ��Y�tnV; �1:11�

for any Y 2 TM and any V 2 TM?.

2. Slant submanifolds. In [7], A. Lotta has introduced the following notion of
slant immersion in almost contact metric manifolds. A submanifold M is said to be
slant if for any x 2M and any X 2 TxM, linearly independent on �, the angle
between �X and TxM is a constant � 2 �0; �=2�, called the slant angle of M in eM.

Invariant and anti-invariant immersions are slant immersions with slant angle
� � 0 and � � �=2 respectively. A slant immersion which is not invariant nor
anti-invariant is called a proper slant immersion.
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Lotta's de®nition includes both � 2 TM and � 2 T?M cases. Nevertheless, he
proves the following theorem, which generalizes a well-known result of Yano and
Kon (see Proposition 7.3 of [10]):

Theorem 2.1. [7] Let M be a submanifold of a contact metric manifold eM. If � is
orthogonal to M, then M is anti-invariant.

Given that we are interested in the study of proper slant submanifolds in contact
metric manifolds, from now on we suppose that the structure vector ®eld is tangent
to M. Hence, if we denote by D the orthogonal distribution to � in TM, we can
consider the orthogonal direct decomposition: TM � D � < � >.

We have already noted down that invariant and anti-invariant submanifolds are
special classes of slant submanifolds. In the ®rst case, we know that N � 0, so that
T � � and therefore T2 � �2 � ÿI� �
 �. For an anti-invariant submanifold, we
have T2 � 0. If M is a proper slant submanifold, with slant angle �, Lotta has
proved in [7] that T2X � ÿ cos2 ��Xÿ ��X���, for any X 2 TM. It is clear that this
expression includes invariant and anti-invariant cases, for � � 0 and � � �=2,
respectively. In fact, the following result shows that it characterizes slant immersions.

Theorem 2.2. Let M be a submanifold of an almost contact metric manifold eM
such that � 2 TM. Then, M is slant if and only if there exists a constant � 2 �0; 1� such
that:

T2 � ÿ��Iÿ �
 ��: �2:1�

Furthermore, in such case, if � is the slant angle of M, it satis®es that � � cos2�.

Proof. We only have to prove the su�cient condition. Suppose that there exists
a constant � such that T2 � ÿ��Iÿ �
 ��. Then, for any X 2 TMÿ < � > we have:

cos ��X� � g��X;TX�
j�XjjTXj � ÿ

g�X;T2X�
j�XjjTXj � ÿ�

g�X; �2X�
j�XjjTXj � �

j�Xj
jTXj : �2:2�

On the other hand, cos ��X� � jTXj=j�Xj, and so, by using (2.2), we obtain
cos2 ��X� � �. Hence, ��X� is a constant and so M is slant.

Corollary 2.3. Let M be a slant submanifold of a almost contact metric mani-
fold eM, with slant angle �. Then, for any X;Y 2 TM, we have:

g�TX;TY� � cos2 ��g�X;Y� ÿ ��X���Y��; �2:3�

g�NX;NY� � sin2 ��g�X;Y� ÿ ��X���Y��: �2:4�

Proof. From (1.6) and (2.1), a direct expansion gives (2.3). To prove (2.4), it is
enough to take into account (1.1) and (1.4).
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3. Examples. In this section we give some examples of slant submanifolds in
almost contact metric manifolds. Our goal is to ®nd interesting examples of proper
slant submanifolds in Sasakian manifolds.

An important work in the study of slant submanifolds in the almost complex
case is the characterization of slant surfaces. Examples and properties of slant sur-
faces are given in [2, 3, 4, 5]. However, Lotta has proved that a non-anti-invariant
slant submanifold of a contact metric manifold must have an odd dimension and so,
it follows that surfaces are not interesting in our research. Then, to obtain examples
of slant submanifolds in our case, we must look for submanifolds with dimension
greater or equal to 3. Lotta has already found the following example:

Example 3.1. [7] If M is a slant submanifold in an almost Hermitian manifoldeM, then M� R is a slant submanifold in the almost contact metric manifold eM� R
with the usual product structure.

Thus, each example of [2, 3, 4, 5], provides an example of slant submanifold in
an almost contact metric manifold.

Then, we could think that, if M is a slant submanifold of a Kaehlerian manifoldeM, M� R would be a slant submanifold in a certain Sasakian manifold. However,
we have the following proposition.

Proposition 3.2. Let M be a submanifold of a contact metric manifold eM. Then,
M is anti-invariant if and only if the distribution D is integrable.

Proof. It is enough to take into account that, if eM is contact metric, then, for
any X;Y 2 TM:

2g�X;TY� � 2d��X;Y� � X���Y�� ÿ Y���X�� ÿ ���X;Y��:

In particular, 2g�X;TY� � ÿ���X;Y�� for any X;Y 2 D, which implies that D is
integrable if and only if T � 0.

Hence, if M is a slant submanifold in an almost Hermitian manifold, M� R can
not be a proper slant submanifold in a contact metric manifold. Note that eM� R is
not contact metric and so there is not any contradiction with Example 3.1.

From now on, �R2m�1; �0; �; �; g� will denote the manifold R2m�1 with its usual
Sasakian structure given by

� � 1=2�dzÿ
Xm
i�1

yidxi�; � � 2
@

@z
;

g � �
 �� 1=4
Xm
i�1
�dxi 
 dxi � dyi 
 dyi�

 !
;

�0�
Xm
i�1
�Xi

@

@xi
� Yi

@

@yi
� � Z

@

@z
� �

Xm
i�1
�Yi

@

@xi
ÿ Xi

@

@yi
� �

Xm
i�1

Yiy
i @

@z
;
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where �xi; yi; z�; i � 1 . . .m are the cartesian coordinates. It is well known that

f2 @
@yi
; 2� @

@xi
� yi

@

@z
�; �g

is an orthonormal basis of TR2m�1 such that �0�2 @
@yi� � 2� @@xi � yi @@z�. Such a basis is

called a �0-basis.
When m is even, we de®ne the endomorphism �1 given by:

�1�X1; . . . ;Xm;Y1; . . . ;Ym;Z� � �ÿX2;X1; . . . ;ÿXm;Xmÿ1;

Y2;ÿY1; . . . ;Ym;ÿYmÿ1; y2X1 ÿ y1X2 � � � � � ymXmÿ1 ÿ ymÿ1Xm�:

It is easy to show that �R2m�1; �1; �; �; g� is an almost contact metric manifold.
Nevertheless, �R2m�1; �1; �; �; g� is not a contact metric manifold. We obtain this as a
particular case of the following proposition:

Proposition 3.3. Let � eM; �; �; �; g� be a contact metric manifold. If there exists
another almost contact metric structure ��; �; �; g� on eM such that � eM; �; �; �; g� is a
contact metric manifold, then � � �.

Proof. The result follows easily from the equation � � d� � �, where � and �
denote the fundamental 2-forms of � eM; �; �; �; g� and � eM; �; �; �; g�, respectively.

It can be also proved that �R2m�1; �1; �; �; g� is not normal, since ��1; �1� �
2d�
 �. Moreover, the fundamental 2-form �1 is closed and so, we can obtain

g��erX�1�Y;Z� � ÿ2��X�d��Z; �1Y� ÿ ��Y�d��Z; �1X� ÿ ��Z�d��X; �1Y�;
for any X;Y;Z 2 TR2m�1.

By using the above structures, we ®nd the following method to obtain slant
submanifolds, with given slant angle, in a certain almost contact metric manifold.

Example 3.4. For any constant �, we de®ne �0;� and �1;� by

�0;� � �cos���0 � �sin���1;

�1;� � �cos���1 � �sin���0;

respectively. Then, ��0;�; �; �; g� and ��1;�; �; �; g� are two almost contact metric
structures on R2m�1, for any even number m. In particular, if m � 2, then, any
invariant submanifold M of dimension 3 in �R5; �0; �; �; g� (resp. �R5; �1; �; �; g�) is a
minimal slant submanifold (resp. slant submanifold), with slant angle �, in
�R5; �0;�; �; �; g� (resp. �R5; �1;�; �; �; g�).

To obtain examples in a Sasakian manifold, we can prove, by a direct calcula-
tion, the following theorem.

130 J. L. CABRERIZO ET AL.

https://doi.org/10.1017/S0017089500010156 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500010156


Theorem 3.5. Suppose that

x�u; v� � �f1�u; v�; f2�u; v�; f3�u; v�; f4�u; v��

de®nes a slant surface S in C2 with its usual Kaehlerian structure, such that @=@u and
@=@v are non-zero and perpendicular. Then,

y�u; v; t� � 2�f1�u; v�; f2�u; v�; f3�u; v�; f4�u; v�; t�

de®nes a three-dimensional slant submanifold M in �R5; �0; �; �; g�, such that, if we put

e1 � @

@u
� �2f3 @f1

@u
� 2f4

@f2
@u
� @
@t

and

e2 � @

@v
� �2f3 @f1

@v
� 2f4

@f2
@v
� @
@t
;

then fe1; e2; �g is an orthogonal basis of the tangent bundle of the submanifold.

Remark 3.6. Note that if S is not totally real, then, the distribution spanned by
e1 and e2 is not integrable and so, M cannot be the Riemannian product of S by R.
This fact is coherent with Proposition 3.2.

Then, from Theorem 3.5 and Examples 2.1, 2.3, 2.4 and 2.5 of [2], we obtain the
following examples in R5 with its usual Sasakian structure:

Example 3.7. For any � 2 �0; �=2�,
x�u; v; t� � 2�u cos �; u sin �; v; 0; t�

de®nes a minimal three-dimensional slant submanifold with slant angle � and with
scalar curvature � � ÿ�cos2 ��=3.

Example 3.8. For any constant k,

x�u; v; t� � 2�eku cos u cos v; eku sin u cos v; eku cos u sin v; eku sin u sin v; t�

de®nes a slant submanifold of dimension 3 with slant angle � � cosÿ1�jkj= �������������
1� k2
p �,

scalar curvature � � ÿk2=�3�1� k2�� and non-constant mean curvature given by
jHj � 2eÿku=�3 �������������

1� k2
p �. Hence, the submanifold is not minimal.

Example 3.9. For any constant k,

x�u; v; t� � 2�u; k cos v; v; k sin v; t�

de®nes a slant submanifold M with slant angle cosÿ1�1= �������������
1� k2
p �, constant mean

curvature jHj � jkj=�3�1� k2�� and scalar curvature � � ÿ1=�3�1� k2��. Moreover,
the following statements are equivalent: (a) k � 0, (b) M is invariant, (c) M is mini-
mal and (d) M has parallel mean curvature vector.
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Example 3.10. Let k be any positive number and �g�s�; h�s�� a unit speed plane
curve. Then,

x�u; s; t� � 2�ÿks sin u; g�s�; ks cos u; h�s�; t�

de®nes a non-minimal proper slant submanifold with slant angle k=
�������������
1� k2
p

.
In a similar way, we also can obtain examples of slant submanifolds with higher

dimension.

Example 3.11. For any k > 0,

x�u; v;w; s; t� � 2�u; v; k sinw; k sin s; kw; ks; k cosw; k cos s; t�

de®nes a slant submanifold with slant angle �=4 in �R9; �0; �; �; g�.

Example 3.12. For any � 2 �0; �=2�,

x�u; v;w; s; t� � 2�u; 0;w; 0; v cos �; v sin �; s cos �; s sin �; t�

de®nes a 5-dimensional minimal slant submanifold in �R9; �0; �; �; g�, with slant
angle �.

Moreover, we have the following examples of three-dimensional slant sub-
manifolds in �R7; �0; �; �; g�:

Example 3.13. For any � 2 �0; �=2�,
x�u; v; t� � 2�u; 0; 0; v cos �; v sin �; 0; t�

de®nes a 3-dimensional minimal slant submanifold, with slant angle �, in R7 with its
usual Sasakian structure.

By proceeding as in Theorem 3.5 we ®nd examples of slant submanifolds in the
almost contact metric manifold �R5; �1; �; �; g�.

Example 3.14. For any nonzero real numbers p and q, we consider the follow-
ing immersion from R� �0;1� � R into R5 de®ned by:

x�u; v; t� � 2�pv sin u; pv cos u; v sin qu; v cos qu; t�:

Then, the immersion x gives a slant three-dimensional submanifold in the almost
contact metric manifold �R5; �1; �; �; g�.

Example 3.15. For any � 2 �0; �=2�,
x�u; v; t� � 2�u cos �; v; u sin �; 0; t�

de®nes a minimal slant submanifold with slant angle � in �R5; �1; �; �; g�.
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Example 3.16. For any � 2 �0; �=2�,
x�u; v; t� � 2�u cos �; v; 0; u sin �; t�

de®nes a minimal slant submanifold with slant angle � in �R5; �1; �; �; g�.

With respect to Example 3.16, it can be proved that, for any � 2 �0; �=2�, we also
obtain a slant submanifold in �R5; �0; �; �; g�, with slant angle �=2ÿ �. Hence, if
� � �=4, then we have slant immersions in two di�erent almost contact metric
manifolds, with the same slant angle.

Finally, we show another example of slant submanifold in R5 with its usual
Sasakian structure, which is not given by the method of Theorem 3.5.

Example 3.17. For any � 2 �0; �=2�,
x�u; v; t� � 2�u; 0; vcos�; vsin�; 2uvcos� � t�

de®nes a slant submanifold in R5 with slant angle �.

4. Slant submanifolds of K-contact manifolds. In this section, we will study the
value of rQ for slant submanifolds of a K-contact manifold, in order to obtain a
characterization theorem for such submanifolds.

In the complex case, slant submanifolds satisfy the expression rQ � 0 (see [2]).
Now, in the K-contact case, the situation is quite di�erent.

Proposition 4.1. Let M be a slant submanifold of a K-contact manifold eM. Then,
rQ � 0 if and only if M is an anti-invariant submanifold.

Proof. Denote by � the slant angle of M. Given X;Y 2 TM, (2.1) implies:

QrXY � ÿ cos2 �rXY� cos2 ���rXY��: �4:1�

On the other hand, by taking the covariant derivative of (2.1), we have

rXQY � ÿ cos2 �rXY� cos2 ���rXY�� �

� cos2 �g�Y;rX��� � cos2 ���Y�rX�; �4:2�

since X���Y�� � ��rXY� � g�Y;rX��.
Hence, rQ � 0 if and only if (4.1) equals (4.2), which is equivalent to rX� � 0

for any X 2 TM. But, since eM is a K-contact manifold, we have rX� � ÿTX and so,
the result holds.

In fact, by using (4.1), (4.2) and rX� � ÿTX, we can see that, if M is a slant
submanifold of a K-contact manifold eM, then

�rXQ�Y � cos2 ��g�X;TY�� ÿ ��Y�TX�: �4:3�
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for any X;Y 2 TM, where � denotes the slant angle of M. This expression will be
useful to characterize slant submanifolds.

The following lemma has been proved in [7]:

Lemma 4.2. Let M be a slant submanifold of an almost contact metric manifoldeM. Denote by � the slant angle of M. Then, at each point x of M, QjD has only one
eigenvalue �1 � ÿ cos2 �.

Theorem 4.3. Let M be a submanifold of a K-contact manifold eM such that
� 2 TM. Then, M is slant if and only if

1. The endomorphism QjD has only one eigenvalue at each point of M.
2. There exists a function � : M! �0; 1� such that

�rXQ�Y � ��g�X;TY�� ÿ ��Y�TX�

for any X;Y 2 TM.

Moreover, in this case, if � is the slant angle of M, we have � � cos2 �.

Proof. Statements 1 and 2 follow directly from Lemma 4.2 and (4.3), respec-
tively. Conversely, let �1�x� be the only eigenvalue of QjD at each point x 2M. Let
Y 2 D be an unit eigenvector associated with �1, i.e., QY � �1Y. Then, by virtue of
statement 2, we have

X��1�Y� �1rXY � rX�QY� � Q�rXY� � �g�X;TY��;

for any X 2 TM, since Y 2 D. Since both rXY and Q�rXY� are perpendicular to Y,
we conclude that �1 is constant on M.

By virtue of (2.1), to prove that M is slant it is enough to show that there is a
constant � such that Q � ÿ�I� ��
 �. Let X be in TM. Then, X � eX� ��X��,
where eX � Xÿ ��X�� 2 D. Hence, QX � QeX. Since QjD � �1I, we have QeX � �1eX
and so QX � �1eX � �1Xÿ �1��X��. By taking � � ÿ�1, we obtain the result.
Moreover, if M is slant, by virtue of (4.3), it must be � � ÿ�1 � � � cos2 �, where �
denotes the slant angle of M.

Corollary 4.4. Let M be a submanifold of dimension 3 of a K-contact manifoldeM such that � 2 TM. Then, M is slant if and only if there exists a function
� : M! �0; 1� such that

�rXQ�Y � ��g�X;TY�� ÿ ��Y�TX�

for any X;Y 2 TM. Moreover, in this case, if � is the slant angle of M, we have
� � cos2 �.

Proof. It follows directly from Theorem 4.3 since it iseasy to prove that, if
dimM � 3, then QjD has only one eigenvalue at each point of M.

134 J. L. CABRERIZO ET AL.

https://doi.org/10.1017/S0017089500010156 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500010156


5. Slant submanifolds with dimension 3. Three-dimensional slant submanifolds
make up the ®rst non-trivial class of slant submanifolds in almost contact metric
manifolds. Now, we are going to characterize these submanifolds by giving the
values of rT and rN.

Theorem 5.1. Let M be a submanifold of dimension 3 in a K-contact manifold eM
such that � 2 TM. Then, the following three statements are equivalent:

1. M is neither an invariant nor an anti-invariant submanifold and there exists
a function � : M! �0; 1� such that

�rXT�Y � ��g�X;Y�� ÿ ��Y�X�

for any X;Y 2 TM.
2. M is a proper slant submanifold such that

�rXT�Y � cos2 ��g�X;Y�� ÿ ��Y�X�; �5:1�

for any X;Y 2 TM, where � denotes the slant angle.
3. M is proper slant.

Proof. By virtue of Corollary 4.4 and the relation between (1.7) and (1.8), it
follows that statements 1 and 2 are equivalent. It is obvious that 2 implies 3. The
converse has been proved by A. Lotta (see Theorem 2.2 of [6]).

Remark 5.2. The conditions of Theorem 5.1 are su�cient but not necessary. In
fact, we can prove that 5-dimensional slant submanifolds given by Examples 3.11
and 3.12 satisfy (5.1).

Similarly, we can see that it is not necessary for eM to have a K-contact structure.
If � � �=4, Example 3.16 de®nes a �=4-slant submanifold in �R5; �1; �; �; g� such that
it satis®es (5.1).

However, Theorem 5.1 does not hold in any almost contact metric manifold. To
show this, it is enough to see that submanifolds given by Example 3.15 satisfy
rT � 0.

Note that the proof of Theorem 5.1 also works when M is an invariant sub-
manifold, since it is enough to have cos � 6� 0. In the anti-invariant case, T � 0 and
so, �rXT�Y � 0 � cos2 ��g�X;Y�� ÿ ��Y�X�, for any X;Y 2 TM, since � � �=2.
Moreover, in this case, we do not need for M to have dimension 3.

Combining this fact with Theorem 5.1 and the equivalence between (1.9) and
(1.10), we obtain the following characterization of slant submanifolds with dimen-
sion 3 in terms of the Weingarten map.

Corollary 5.3. Let M be a 3-dimensional submanifold in a Sasakian manifold eM
such that � 2 TM. Then, M is slant if and only if it exists a function C : M! �0; 1�
such that

ANYX � ANXY� CeR�X;Y��
for any X;Y 2 TM. Moreover, in this case, if � is the slant angle of M, then we have
C � sin2 �.
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If M is an invariant submanifold of a Sasakian manifold, then (5.1) holds with
� � 0 and rN � 0 automatically. On the other hand, if M is an anti-invariant sub-
manifold, it is obvious that rT � 0, i.e., (5.1) holds with � � �=2. We also know
that �rXN�Y � n��X;Y� for any X;Y 2 TM. The following lemma show us su�-
cient conditions to obtain rN � 0.

Lemma 5.4. Let M be an anti-invariant submanifold of a Sasakian manifold eM.
Suppose that dimM � 3, dim eM � 5 and � 2 TM. Then, rN � 0.

Proof. By virtue of (2.4), if we choose a local orthonormal frame fe1; e2; �g of
TM, then we have that fNe1;Ne2g is a local orthonormal frame of T?M and so,
n � 0. Consequently, we obtain rN � 0.

Now, we are going to study the value of rN for a three-dimensional slant sub-
manifold M of a Sasakian manifold eM with dim eM � 5.

Suppose that M is proper slant with slant angle �. Then, for a unit tangent vec-
tor ®eld e1 of M, perpendicular to �, we put

e2 � �sec ��Te1; e3 � �; e4 � �csc ��Ne1 and e5 � �csc ��Ne2:

Then, e1 � ÿ�sec ��Te2 and, by virtue of (2.3) and (2.4), e1; e2; e3; e4; e5 form an
orthonormal frame such that e1; e2; e3 are tangent to M and e4; e5 are normal to M.
We call such an orthonormal frame an adapted slant frame. We also have:

te4 � ÿ sin �e1; te5 � ÿ sin �e2; ne4 � ÿ cos �e5; ne5 � cos �e4:

If we put �rij � g���ei; ej�; er�, i; j � 1; 2; 3, r � 4; 5, then we have the following
lemma:

Lemma 5.5. In the above conditions, we have:

�412 � �511; �422 � �512; �5:2�
�413 � �523 � ÿsen�; �423 � �513 � �433 � �533 � 0: �5:3�

Proof. We obtain (5.2) by virtue of Corollary 5.3 while (5.3) holds because eM is
a K-contact manifold.

Theorem 5.6. Let M be a submanifold of a Sasakian manifold eM such that
� 2 TM, dimM � 3 and dim eM � 5.

1. If M is a minimal proper slant submanifold of eM, then

�rXN�Y � 2��X�NTY� ��Y�NTX; �5:4�

for any X;Y 2 TM.
2. Conversely, suppose that there is an eigenvalue � of QjD at each point of M such

that � 2 �ÿ1; 0�. In this case, if (5.4) holds then M is a minimal proper slant
submanifold of eM.
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Proof. To prove statement 1, we choose e1; . . . ; e5 an adapted slant frame. Then,
from (1.10), (5.2), (5.3) and a direct computation we may obtain (5.4).

To see statement 2, we choose an unit local vector ®eld e1, perpendicular to �,
such that

T2e1 � ÿ cos2 �1e1;

where �1 � ��e1� 2 �0; �=2� denotes the Wirtinger angle of e1. De®ne e1; . . . ; e5 by:

e2 � �sec �1�Te1; e3 � �; e4 � �csc �1�Ne1 and e5 � �csc �1�Ne2:

It is easy to prove that e1; . . . ; e5 is a local orthonormal frame and:

te4 � ÿ sin �1e1; ne4 � ÿ cos �1e5; te5 � ÿ sin �1e2 y ne5 � cos �1e4:

Since �rXN�Y � 2��X�NTY� ��Y�NTX, for any X;Y 2 TM, we know that

AVTY � ÿAnVY� 2g�Y; tnV�� � ��Y�tnV;

for any Y 2 TM and any V 2 TM?. Therefore, we ®nd:

ANe1e2 � sec �1 sin �1Ae4Te1 � tan �1Ae4Te1 � sin �1Ae5e1 � ANe2e1:

Moreover, we have ANe1e3 � sin �1Ae4e3 � ÿ sin2 �1e1 and ANe2e3 � ÿsen2�1e2.
Hence, by a direct computation, we can prove that

ANYX � ANXYÿ sin2 �1���X�Yÿ ��Y�X�;

for any X;Y 2 TM and so, by applying Corollary 5.3, we know that M is proper
slant, with slant angle �1. It is easy to show that M is also minimal.

Note that (5.4) holds directly in the invariant and anti-invariant cases, since
rN � 0.

Remark 5.7. The dimension conditions of Theorem 5.6 are su�cient but not
necessary. To show this, it is enough to see that every slant submanifold given by
Examples 3.13 and 3.12 satis®es (5.4).

Similarly, it is not necessary for eM to have a Sasakian structure. If � � �=4,
Example 3.16 de®nes a minimal �=4-slant submanifold M in �R5; �1; �; �; g�, such
that M satis®es (5.4).

However, Theorem 5.6 does not hold in any almost contact metric manifold, as
we can see in Example 3.15. In this example, we ®nd three-dimensional minimal
proper slant submanifolds in �R5; �1; �; �; g� such that rN � 0.
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