ON THE DUAL OF PROJECTIVE VARIETIES

E. BALLICO

Abstract

Here we give examples and classifications of varieties with strange behaviour for the enumeration of contacts (answering a question raised by Fulton, Kleiman, MacPherson). Then we give upper and lower bounds (in terms of the degree) for the non-zero ranks of a projective variety.

Fulton, Kleiman and MacPherson [2] prove a very nice theorem about the number of varieties in a p-parameter family touching p varieties $g_{1}^{*}\left(V_{1}\right), \ldots, g_{p}^{*}\left(V_{p}\right)$ with $V_{i} \subset P^{N}$ and $g_{i} \in \operatorname{Aut}\left(P^{N}\right)$. (There are no restrictions on the V_{i} and g_{i}). We will refer to this result as the main theorem of [2]. The authors in [2] discuss the enumerative significance of their formula and the type of contact for general g_{i} 's. In Section 4 they present a number of open questions. The aim of the first section of this note is to give an answer (not the answer) to the first question raised there concerning ($c, i v$) of the main theorem of [2]. At the bottom of page 180 of [2], this question is recast in the following form:

Find integral varieties A, A^{\prime} in \mathbf{P}^{N} (possibly $A=A^{\prime}$) with the same dimension, say $\operatorname{dim}(A)=m$ (with $m \geq 2$), such that there is an irreducible $E \subset A \times A^{\prime}$ with $\operatorname{dim}(E)=$ $2 m-1$, and such that for all $(x, y) \in E T_{x} A \neq T_{y} A^{\prime}, T_{x} A \cap T_{y} A^{\prime}$ contains the line $[x ; y]$ thru x and y and $A \cup A^{\prime}$ does not contain $[x ; y]$.

We will say that a variety A (resp. a pair (A, A^{\prime}) with $A \neq A^{\prime}$) has property (\&) (resp. $(\& \&))$ if $(A, A)\left(\right.$ resp. $\left.\left(A, A^{\prime}\right)\right)$ satisfies the condition just given. The bitangency problem in [2] arises when one of the schemes involved, say V_{1}, contains integral components A, A^{\prime} with A satisfying (\&) or (A, A^{\prime}) satisfying (\&\&).

For the notions used (dual variety, reflexivity, ranks, ...) and their properties, see the nice papers [2],[3],[5] and [6].

In $\S 1$ (see Remark 1.1) we will show that when the algebraically closed base field \mathbf{F} has characteristic 2, for every even m there are explicit examples (first found in [1] and used there for other purposes) of m-dimensional varieties with property (\&). Then we will show (see Theorem 1.2) that the only ordinary varieties with property (\&) are the ones described in 1.1. At the beginning of the proof of 1.2 we will discuss also where the restrictions on $\operatorname{char}(\mathbf{F})$ and the dimension m come from. In 1.3 we will describe (when $\operatorname{char}(\mathbf{F})=2$) a class of pairs $\left(A, A^{\prime}\right)$ satisfying ($\left.\& \&\right)$ with A and A^{\prime} ordinary varieties. Theorem 1.3 will show that there is no other pair $\left(A, A^{\prime}\right)$ satisfying ($\left.\& \&\right)$ with A and A^{\prime} ordinary varieties.

In the first part of $\S 2$ we prove a result (Proposition 2.1) about the dual variety of the Veronese embedding of a projective variety. Then we prove a result (Theorem 2.2)

[^0]which gives information about the dual variety of the Segre embedding obtained from two embeddings of a variety in projective spaces.

In §3 we assume $\operatorname{char}(\mathbf{F})=0$ and give a quantitative version (see Theorem 3.1) of a non-vanishing theorem of Hefez and Kleiman ([3], 4.13, or see [6], th. (7) on p. 190) about the ranks of a projective variety; Theorem 3.1 gives a lower bound and an upper bound (both in terms of the degree) for the non-zero ranks of a projective variety. Theorem 3.1 improves very much [7], Prop. 5.3.

1. In this paper every scheme will be algebraic over an algebraically closed field \mathbf{F}; essentially the only interesting cases for this section (and for the first part of Proposition 2.1) arise when $\operatorname{char}(\mathbf{F})=2$.

Now we describe a nice class of hypersurfaces (defined if $\operatorname{char}(\mathbf{F})=2$) introduced in [1] for other purposes (there it was proved that they are exactly the only varieties satisfying a certain property (\$)). Fix an even integer m. The examples will be hypersurfaces of \mathbf{P}^{m+1}. Set $2 r-2:=m$ and fix homogeneous coordinates $z_{1}, \ldots, z_{r}, y_{1}, \ldots, y_{r}$ of \mathbf{P}^{m+1}. Fix an even integer d (the degree of the hypersurfaces) and two homogeneous polynomials h and b in the variables z_{i}, y_{i} with $\operatorname{deg}(b)=\operatorname{deg}(h)+1=d / 2$. Set

$$
\begin{equation*}
f=\left(\sum_{i=1}^{r} y_{i} z_{i}\right) h^{2}+b^{2} \tag{1}
\end{equation*}
$$

Set $X:=\{f=0\}$. There are many examples of polynomials f given by (1) for which X is reduced and irreducible. Any such X will be said to be described by (1) (i.e. $\operatorname{char}(\mathbf{F})=$ $2, m=2 r-2, X$ is a hypersurface in \mathbf{P}^{m+1} and its equation is given by (1) for suitable d, b, and h).

REMARK 1.1. The integral varieties described by (1) have property (\&).

Proof. It was proved in [1], § 1, that every integral variety X described by (1) has the following property (\%):
(\%) For every $x \in X_{\text {reg }}$ and every $y \in\left(X_{\text {reg }}\right) \cap T_{x} X$, we have $x \in T_{y} X$.
In particular by (\%) $T_{x} X \cap T_{y} X$ contains the line $[x ; y]$. Since $\operatorname{dim}\left(X \cap T_{x} X\right)=m-1$ and $X \cap\left(T_{x} X\right)$ is not a cone with vertex x (for general x), we see that X has property (\&).

This remark settles the existence asked in [2], beginning of $\S 4$. But of course we want more: under (very strong) assumptions (i.e., that the variety is ordinary) we will show that these are the only examples with property (\&) (see Theorem 1.2). Then in 1.3 and 1.4 we will do essentially the same for the property (\&\&).

THEOREM 1.2. Let V be an ordinary nondegenerate variety with property (\&). Then $\operatorname{char}(\mathbf{F})=2$ and V is described by (1).

Proof. Fix an ordinary (hence reflexive) nondegenerate variety $V \subset \mathbf{P}^{N}, V$ satisfying (\&), with $m:=\operatorname{dim}(V)<N$. By [2], end of part (c) of the statement of the
theorem in § 2, we have char $(\mathbf{F})=2$. By a result of N. Katz ([4], note on p. 3, or see [6], Corollary (18) on p. 189) m is even.
(a) First assume $N=m+1$. Let H be a general hyperplane of \mathbf{P}^{m+1}. Set $Y:=V \cap H$. Fix a general $z \in Y$. By the assumption $(\&)\left(T_{z} V\right) \cap V$ contains a variety B with $\operatorname{dim}(B)=$ $m-1$, and such that for every $y \in B, z \in T_{y} V$. We distinguish two subcases: $m=2$ or $m>2$.
(a1) First assume $m=2$, hence $\operatorname{dim}(B)=1$. By the last part of condition (\&) B is not a line. Thus B spans $T_{z} V$, i.e. $\left\{\left(T_{z} V\right) \cap\left(T_{u} V\right): u \in B\right\}=\{[z ; u]: u \in B\}$ is an infinite set of lines thru z and contained in $T_{z} V$. By the second half of step 1 in $\S 2$ of [1] this implies that V is described by (1).
(a2) Assume $m>2$. By the case $m=2$, we see that the intersection of V with a general 3-dimensional linear space is described by (1). In particular this gives the irreducibility of $\left(T_{z} V\right) \cap V$ for general V, hence that B is an open subset of $\left(T_{z} V\right) \cap V$ and that the set $\left\{\left(T_{z} V\right) \cap\left(T_{u} V\right): u \in B\right\}$ is open in the set of hyperplanes of $T_{z} V$ containing z. Again, by the last part of the proof of step 1 in $\S 2$ of [1], this implies that V is described by (1).
(b) Now assume $N>m+1$. A general projection of V in \mathbf{P}^{m+1} is reflexive and ordinary ([6], th. (5) on p. 189) and of course satisfies (\&). Fix a general linear subspace $L \subset \mathbf{P}^{N}$, $\operatorname{dim}(L)=N-m-2$, and a general $z \in V_{\text {reg }} ;$ denote by $t_{L}: \mathbf{P}^{N} \backslash L \rightarrow \mathbf{P}^{m+1}$ the projection from L. Denote by $\left[U ; U^{\prime}\right.$] the spanning in \mathbf{P}^{N} of the subsets U and U^{\prime}. Fix a general $y \in V \cap\left[L ; T_{z} V\right]$. By part (a), $t_{L}(V)$ is given (in suitable coordinates) by (1) and in particular it satisfies the condition $(\%)([1], \S 1)$. Thus $z \in\left[L ; T_{y} V\right]$. Take a general linear subspace L^{\prime} of $\left[L ; T_{z} V\right]$ with $\operatorname{dim}\left(L^{\prime}\right)=\operatorname{dim}(L)$. Since $\left[L^{\prime} ; T_{z} V\right]=\left[L ; T_{z} V\right]$ and we know that $t_{L^{\prime}}(V)$ satisfies (1), we get easily that either $T_{y} V \subset\left[L ; T_{z} V\right]$ or $z \in T_{y} V$. First assume $z \in T_{y} V$ (for all such general z and y). Thus V satisfies (1) (use that V is reflexive, hence V and $\left[L ; T_{z} V\right]$ have order of contact 2 at z, and that V is not a quadric hypersurface), contradicting [1]. Now assume $T_{y} Y \subset\left[l ; T_{z} Z\right]$. Thus the tangent space to $t_{L}(V)$ at $t_{L}(z)$ is tangent to $t_{L}(V)$ along its $(m-1)$-dimensional intersection with $t_{L}(V)$, contradicting for instance the fact that $t_{L}(V)$ is ordinary.

Now we may show that, if $\operatorname{char}(\mathbf{F})=2$ and m is even, there are pairs $\left(A, A^{\prime}\right)$ of ordinary m-dimensional hypersurfaces satisfying (\&\&). In 1.4 we will show that these are the only such examples (up to projective transformations).

Remark 1.3. Assume $\operatorname{char}(\mathbf{F})=2$; fix an even integer m; set $2 r-2:=m$. Fix a system of homogeneous coordinates $y_{i}, z_{i}, 1 \leq i \leq r$, of \mathbf{P}^{m+1}. Fix homogeneous polynomials $h, b, h^{\prime}, b^{\prime}$ with $\operatorname{deg}(b)=\operatorname{deg}(h)+1, \operatorname{deg}\left(b^{\prime}\right)=\operatorname{deg}\left(h^{\prime}\right)+1$ and call $A(r e s p$. $\left.A^{\prime}\right)$ the hypersurface with equation (1) (resp. with equation (1) with (h^{\prime}, b^{\prime}) instead of (h, b)). Assume $A \neq A^{\prime}$ and that A and A^{\prime} are integral. Then $\left(A, A^{\prime}\right)$ has property ($\left.\& \&\right)$.

Proof. We describe here one (equivalent and not depending on any choice of coordinates) description of every variety X described by (1). There is a linear isomorphism (a null-correlation) $t: \mathbf{P}^{m+1} \rightarrow \mathbf{P}^{m+1^{*}}$ such that for every $z \in \mathbf{P}^{m+1}$ all the tangent spaces to X at the points of $\left(X_{\text {reg }}\right) \cap t(z)$ pass thru z; if $X \cap t(z)$ is reduced, this means that $X \cap t(z)$ is a
strange variety with z as strange point. The isomorphism t does not depend on X satisfying (1) if we have fixed the coordinates (i.e. depends only on the part $\sum y_{i} z_{i}$ of (1)). Thus the isomorphisms t, t^{\prime} induced by A and A^{\prime} are the same. Thus (A, A^{\prime}) has the property (\&\&), taking as E the set $\left\{(x, y) \in A \times A^{\prime}: y \in t(x)\right\}=\left\{(x, y) \in A \times A^{\prime}: x \in t(y)\right\}$ (the last equality being a consequence of the fact that t is a null-correlation).

THEOREM 1.4. Fix a pair $\left(A, A^{\prime}\right)$ satisfying $(\& \&)$ with A and A^{\prime} ordinary varieties. Then $\operatorname{char}(\mathbf{F})=2, m:=\operatorname{dim}(A)$ is even and $\left(A, A^{\prime}\right)$ is, up to a projective transformation, one of the pairs described in 1.3.

Proof. By [2], part c(iv) of the main theorem, we have $\operatorname{char}(\mathbf{F})=2$; thus, as quoted at the beginning of the proof 1.2 ([4]) m is even. For a general $x \in A$ (resp. $y \in A^{\prime}$), call $E(x),($ resp. $E(, y))$ the $(m-1)$-dimensional subvariety $E \cap\left(\{x\} \times A^{\prime}\right)$ (resp. $E \cap(A \times\{y\})$, with $E \subset A \times A^{\prime}$ as in the definition of the property (\&\&).
(i) First assume $m=2$ and $N=3$. Since A and A^{\prime} are reflexive and $A \neq A^{\prime}\left\{T_{x} A\right.$: $\left.x \in A_{\text {reg }}\right\}$ and $\left\{T_{y} A^{\prime}: y \in A_{\text {reg }}^{\prime}\right\}$ are different varieties. Thus for general $x \in A, T_{x} A$ is transversal to A^{\prime}. We get that we may assume that for general $x \in A,\left(T_{x} A\right) \cap A^{\prime}$ is irreducible; hence we may assume $E\left(x\right.$,) dense in $\left(T_{x} A\right) \cap A^{\prime}$. Similarly for general y $E(, y)$ is dense in $\left(T_{y} A^{\prime}\right) \cap A$. For general $a, b \in A$, and every $y \in E(a,) \cap E(b),, T_{y} A^{\prime}$ is the linear span $[\{a, b, y\}]$ of the set $\{a, b, u\}$; note that by the density just asserted and the generality of a and $b, E(a,) \cap E(b)=,A^{\prime} \cap\left(T_{a} A \cap T_{b} A\right)$. Similarly for general u, v in A^{\prime}. Thus we see that the Gauss map $\mathbf{g}^{\prime}: A_{\mathrm{reg}}^{\prime} \rightarrow \mathbf{P}^{3^{*}}$ maps 3 general collinear points to 3 collinear points (i.e. to 3 planes thru the same line). As in the proof of [1], last part of step 1 in $\S 2$, we get that \mathbf{g}^{\prime} is induced by a linear isomorphism $t^{\prime}: \mathbf{P}^{3} \rightarrow$ $\mathbf{P}^{3^{*}}$ (a null-correlation) and A^{\prime} is induced by (1) for a suitable choice of homogeneous coordinates (and of functions h^{\prime}, b^{\prime}). By symmetry the Gauss map of A is induced by a linear isomorphism $t: \mathbf{P}^{3} \rightarrow \mathbf{P}^{3^{*}}$ and A is described by (1) for a (possibly different) choice of homogeneous coordinates. The discussion of the meaning of the collineations t, t^{\prime} given in the proof of 1.3 and property ($\& \&$) show that $t=t^{\prime}$, i.e. that A and A^{\prime} are described by (1) (for suitable (h,b) and (h^{\prime}, b^{\prime})) with respect to the same system of coordinates.
(ii) Now assume $m>2$ and $N=m+1$. By step (i) we get the irreducibility of $\left(T_{x} A\right) \cap A^{\prime}$ for general $x \in A$, and the same proof as in step 1 works.
(iii) Assume $N>m+1$. We may assume that $A \cup A^{\prime}$ spans \mathbf{P}^{N}; by the definition of (\&\&) we get easily that either A spans \mathbf{P}^{N} or A spans a hyperplane H. In the second case, since $\operatorname{dim}(E)=2 m-1$, by the definition of ($\& \&)$ all $T_{x} A, x \in A_{\text {reg }}$, contain $A^{\prime} \cap H$; this is obviously false for non-linear A^{\prime}. Thus we may assume that A spans \mathbf{P}^{N}. Since we know that a general projection of A into \mathbf{P}^{m+1} satisfies (\&) and is described by (1), we find a contradiciton as in the last step of the proof of 1.2.
2. First we prove the following result.

Proposition 2.1. Let V be an integral nondegenerate subvariety of \mathbf{P}^{N}, d an integer, $d \geq 2$, and v_{d} the d-ple Veronese embedding of V, say in \mathbf{P}^{t}. Let $v_{d}(V)^{*}$ be the dual variety
of $v_{d}(V)$. Then $v_{d}(V)^{*}$ is a hypersurface. More precisely, for every $x \in v_{d}(V)_{\mathrm{reg}}$ a general hyperplane tangent to $v_{d}(V)$ at $v_{d}(x)$ is tangent to $v_{d}(V)_{\mathrm{reg}}$ only at that point.

Proof. It is sufficient to prove the second part of 2.1.
Fix a smooth point x of V and let $L:=T_{x} V$. Let $W(d)$ be the linear system of degree d hypersurfaces tangent to V at x. $W(2)$ has no base point on $\mathbf{P}^{N} \backslash\{x\}$. Thus we see easily that if $d \geq 3$ the linear system $W(d)$ gives an embedding j of $\mathbf{P}^{N} \backslash\{x\}$ into a projective space \mathbf{P}. Let U be the closure of $j(V \backslash\{x\})$ in \mathbf{P}. Applying Bertini's theorem to U, we see that if $d \geq 3$ a general degree d hypersurface tangent to V at x is not tangent to V at any point of $V_{\text {reg }} \backslash\{x\}$.

Now assume $d=2$. Set $G:=\left\{g \in \operatorname{Aut}\left(\mathbf{P}^{N}\right): g(x)=x\right.$ and $\left.g(L)=L\right)$ and $Y:=\left\{(y, M): y \in \mathbf{P}^{N} \backslash\{x\}\right.$ and M is a linear space with $\operatorname{dim}(M)=\operatorname{dim}(L)$ and $y \in M\} . G$ acts on Y and its orbits are distinguished by the dimensions of $[L ; y]$ and $[L ; M]$. Fix $(y, M) \in Y$. First assume $y \notin L$. Using reducible quadrics we see that the codimension in $W(2)$ of the set of quadrics thru y and tangent to M at y is $m+1$. Now assume $y \in L$. Set $M^{\prime}:=M \cap L$ and $k:=\operatorname{dim}\left(M^{\prime}\right)$. $\operatorname{Aut}(L)$ acts on the possible pairs $\left(y, M^{\prime}\right)$ (with k fixed) with exactly 2 orbits (if $k<m$), distinguished by the condition that $[x ; y] \subset M^{\prime}$ or not. Since every element of $\operatorname{Aut}(L)$ is the restriction of some element of $\operatorname{Aut}\left(\mathbf{P}^{n}\right)$, we see that (even when $k=m$) the codimension in $W(2)$ of the set of quadrics tangent to M^{\prime} at y is k if $[x ; y] \subset M^{\prime}, k+1$ otherwise. Then use reducible quadrics to pass from M^{\prime} to M and show that (even if $k=m$) the set of quadrics in $W(2)$ containing y and tangent to M has codimension m in $W(2)$ if $[x ; y] \subseteq M$ (i.e. $x \in M$) and codimension $m+1$ otherwise. Since V is not a linear space, $\operatorname{dim}(V \cap L)<\operatorname{dim}(V)$. Thus the thesis follows from a dimensional count.

The first part of 2.1 was known ([4], th. 2.5 , or see [6], th. (20) on p. 180) except when $\operatorname{char}(\mathbf{F})=2$ and $\operatorname{dim}(V)$ is odd.

Now we prove the following theorem related to the Segre embedding.
THEOREM 2.2. Let V be an integral complete variety and $i: V \rightarrow \mathbf{P}^{k}, j: V \rightarrow \mathbf{P}^{r}$ two embeddings; set $m:=\operatorname{dim}(V)$. Let u be the embedding of V in a projective space \mathbf{P} corresponding to the composition of (i, j) with the Segre embedding. Then:
(a) if $\operatorname{char}(\mathbf{F}) \neq 2$ or m is even, then $u(V)$ is ordinary;
(b) if $\operatorname{char}(\mathbf{F})=2$ and m is odd, then $u(V)$ is semiordinary.

Proof. The proof is an easy modification of the proof of [6], th. (20) on p. 180. Fix $P \in V_{\text {reg }}$.
(a) Choose systems of inhomogeneous coordinates T_{1}, \ldots, T_{k} at $i(P)$ (resp. L_{1}, \ldots, L_{r} at $j(P)$) such that T_{1}, \ldots, T_{m} (resp. L_{1}, \ldots, L_{m}) form a regular system of parameters for $\mathrm{i}(\mathrm{V})($ resp. $j(V))$ at $i(P)($ resp. $j(P))$ and such that $i^{*}\left(L_{i}\right) \equiv j^{*}\left(T_{i}\right)$ modulo the square of the maximal ideal of P in V. In \mathbf{P} the form corresponding to $T_{1} L_{1}+\cdots+T_{m} L_{m}$ (resp. $T_{1} L_{s+1}+\cdots+T_{s} L_{m}$ if $\operatorname{char}(\mathbf{F})=2$ and $m=2 s$) satisfies the Hessian criterion of [3], 3.2, (or see [6], th. (12) on p. 176) at $u(P)$. Thus $u(V)$ is reflexive. Hence the general tangent hyperplane to $u(V)$ is tangent along a linear space; since $u(V)$ contains no positive dimensional linear space, $u(V)^{*}$ is a hypersurface. Thus $u(V)$ is ordinary.
(b) Assume m odd, say $m=2 s+1$. Then use the same form on \mathbf{P} as in the case m even, $\operatorname{char}(\mathbf{F})=2$.
3. Now we want to give (when $\operatorname{char}(\mathbf{F})=0$) a quantitative bound for a result of Hefez and Kleiman ([3], 4.13, or see [6], th. (7) on p. 190) about the non-vanishing of the ranks of any variety $W \subset \mathbf{P}^{N}$.

Theorem 3.1. Assume $\operatorname{char}(\mathbf{F})=0$. Fix an integral variety $V \subset \mathbf{P}^{\mathrm{N}}$; set $n:=$ $\operatorname{dim}(V), d:=r_{n}(V)$ (the degree of V) and let c be the maximal integer with $r_{n-c}(V) \neq 0$ (the codefect of V). Then for every i with $n-c \leq i<n$, we have

$$
\begin{equation*}
r_{i}(V) \leq d(d-1)^{n-i} \text { and } d \leq r_{i}(V)\left(r_{i}(V)-1\right)^{n-i} \tag{2}
\end{equation*}
$$

Proof. Taking general hyperplane sections, we may assume $c=0$ ([6], th. (5) on p. 189) and reduce both inequalities to the case $i=0$ ([6], th. (5) on p. 189). Taking a general projection, we may assume that V is a hypersurface in \mathbf{P}^{n+1} ([6], th. (5) on p. 189). Thus V is in the closure of the family of smooth hypersurfaces. For every smooth hypersurface Y of degree d, we have $r_{0}(Y)=d(d-1)^{n}$. Fix a general linear space L with $\operatorname{dim}(L)=n-1$; we assume that there are exactly $r_{0}(V)$ hyperplanes containing L and tangent to V (at points of $V_{\text {reg }}$). There is an open subset U of the family $S(d)$ of smooth degree d hypersurfaces for which this is true. For $u \in U$, let V_{u} be the corresponding hypersurface. Set $\Gamma:=\left\{(H, u) \in \mathbf{P}^{n+1^{*}} \times U: L \subset H\right.$ and H is tangent to $\left.V_{u}\right\}$. Every hyperplane H containing L and tangent to V is such that (H, u) is in the closure in $\mathbf{P}^{n+1^{*}} \times$ $S(d)$ of Γ (and even there is a subvariety J of U with $[V]$ in its closure in $S(d)$ and $(H, u) \in$ Γ for every $u \in J$). Thus $r_{0}(V) \leq d(d-1)^{n}$. Note that $d=r_{n}(V)$ ([6], prop. (2)(i) on p. 156). Thus we have the first inequality in 3.1. Since $\operatorname{char}(\mathbf{F})=0$, every variety X is reflexive and, if X has dimension $n, r_{i}(X)=r_{n-i}\left(X^{*}\right)$ ([6], th. (4) on p. 189). Thus applying the first part to V^{*}, we get the second inequality.

References

1. E. Ballico, On the dual variety in characteristic 2, Compositio Math. 75(1990), 129-134.
2. W. Fulton, S. Kleiman and R. MacPherson, About the enumeration of contacts, in: Algebraic GeometryOpen Problems, Springer Lecture Notes in Math. 997, 156-196.
3. A. Hefez and S. Kleiman, Notes on the duality of projective varieties, in: Geometry Today, Progress in Math. 60, Birkhauser, Boston, 1985, 143-183.
4. N. Katz, Pinceaux de Lefschetz: théorème d'existence, SGA 7 II, Exposé XVII, Springer Lecture Notes in Math. 340, 1973, 212-253.
5. S. Kleiman, About the conormal scheme, in: Complete intersections, Springer Lecture Notes in Math. 1092, 161-197.
6. Tangency and duality, in: Proc. 1984 Vancouver Conference in Algebraic Geometry, CMS-AMS Conference Proceedings, 6, 1985, 163-226.
7. A. Holme, The geometric and numericalproperties of duality in projective algebraic geometry, Manuscripta Math. 61(1988), 145-162.

Department of Mathematics
University of Trento
38050 Povo (TN), Italy
e-mail: ballico@itncisca (bitnet)
itnvax::ballico (decnet)
fax: Italy +461881624

[^0]: Received by the editors April 2, 1990; revised: July 5, 1990
 AMS subject classification: $14 \mathrm{~N} 05,14 \mathrm{~N} 10$.
 (c) Canadian Mathematical Society 1991.

