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ON THE DUAL OF PROJECTIVE VARIETIES 

E. BALLICO 

ABSTRACT. Here we give examples and classifications of varieties with strange 
behaviour for the enumeration of contacts (answering a question raised by Fulton, 
Kleiman, MacPherson). Then we give upper and lower bounds (in terms of the degree) 
for the non-zero ranks of a projective variety. 

Fulton, Kleiman and MacPherson [2] prove a very nice theorem about the number of 
varieties in a /7-parameter family touching p varieties g\{V\),...,g*(Vp) with Vt C P^ 
and gt G Aut(P^). (There are no restrictions on the V; and g{). We will refer to this result 
as the main theorem of [2]. The authors in [2] discuss the enumerative significance of 
their formula and the type of contact for general g/'s. In Section 4 they present a number 
of open questions. The aim of the first section of this note is to give an answer (not the 
answer) to the first question raised there concerning (c, iv) of the main theorem of [2], At 
the bottom of page 180 of [2], this question is recast in the following form: 

Find integral varieties A, A! in P^ (possibly A = A') with the same dimension, say 
dim(A) = m (with m > 2), such that there is an irreducible E C A x A! with dim(£) = 
2m — 1, and such that for all (x,y) G E TXA ^ TyA\ TXA D TyA

f contains the line [x;y] 
thru x and y and AU Af does not contain [x\ y]. 

We will say that a variety A (resp. a pair (A, A') with A ^ A') has property (&) (resp. 
(&&)) if (A, A) (resp. (A, A')) satisfies the condition just given. The bitangency problem 
in [2] arises when one of the schemes involved, say V\, contains integral components A, 
A' with A satisfying (&) or {A, A') satisfying (&&). 

For the notions used (dual variety, reflexivity, ranks,...) and their properties, see the 
nice papers [2],[3],[5] and [6]. 

In § 1 (see Remark 1.1) we will show that when the algebraically closed base field F 
has characteristic 2, for every even m there are explicit examples (first found in [1] and 
used there for other purposes) of ra-dimensional varieties with property (&). Then we 
will show (see Theorem 1.2) that the only ordinary varieties with property (&) are the 
ones described in 1.1. At the beginning of the proof of 1.2 we will discuss also where the 
restrictions on char(F) and the dimension m come from. In 1.3 we will describe (when 
char(F) = 2) a class of pairs (A, A') satisfying (&&) with A and A' ordinary varieties. 
Theorem 1.3 will show that there is no other pair (A,Af) satisfying (&&) with A and A' 
ordinary varieties. 

In the first part of §2 we prove a result (Proposition 2.1) about the dual variety of 
the Veronese embedding of a projective variety. Then we prove a result (Theorem 2.2) 
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which gives information about the dual variety of the Segre embedding obtained from 
two embeddings of a variety in projective spaces. 

In § 3 we assume char(F) = 0 and give a quantitative version (see Theorem 3.1) of 
a non-vanishing theorem of Hefez and Kleiman ([3], 4.13, or see [6], th. (7) on p. 190) 
about the ranks of a projective variety; Theorem 3.1 gives a lower bound and an up
per bound (both in terms of the degree) for the non-zero ranks of a projective variety. 
Theorem 3.1 improves very much [7], Prop. 5.3. 

1. In this paper every scheme will be algebraic over an algebraically closed field F; 
essentially the only interesting cases for this section (and for the first part of Proposi
tion 2.1) arise when char(F) = 2. 

Now we describe a nice class of hypersurfaces (defined if char(F) = 2) introduced in 
[1] for other purposes (there it was proved that they are exactly the only varieties satisfy
ing a certain property ($)). Fix an even integer m. The examples will be hypersurfaces of 
Pm+1. Set 2r—2 : = m and fix homogeneous coordinates z\,..., zr, y\,.. •, yr of Pm+1. Fix 
an even integer d (the degree of the hypersurfaces) and two homogeneous polynomials 
h and b in the variables Zi, yt with deg(fr) = deg(ft) + 1 = dj 2. Set 

(1) / = ( | > s ) f c 2 + f t 2 . 

Set X := {/ = 0} . There are many examples of polynomials/ given by (1) for which X 
is reduced and irreducible. Any such X will be said to be described by (1) (i.e. char(F) = 
2, m — 2r — 2, X is a hypersurface in P™4"1 and its equation is given by (1) for suitable d, 
b, and h). 

REMARK 1.1. The integral varieties described by (1) have property (&). 

PROOF. It was proved in [1], § 1, that every integral variety X described by (1) has 
the following property (%): 

(%) For every x G Xreg and every y G (Xreg) D TXX, we have x G TyX. 

In particular by (%) TXXD TyX contains the line [JC; y]. Since dim(ZD TXX) — m—\ and 
X PI (TXX) is not a cone with vertex x (for general x), we see that X has property (&). • 

This remark settles the existence asked in [2], beginning of § 4. But of course we want 
more: under (very strong) assumptions (i.e., that the variety is ordinary) we will show 
that these are the only examples with property (&) (see Theorem 1.2). Then in 1.3 and 
1.4 we will do essentially the same for the property (&&). 

THEOREM 1.2. Let V be an ordinary nondegenerate variety with property (&). Then 
char(F) = 2 and V is described by (1). 

PROOF. Fix an ordinary (hence reflexive) nondegenerate variety V C P^, V sat
isfying (&), with m := dim(V) < N. By [2], end of part (c) of the statement of the 
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theorem in § 2, we have char(F) = 2. By a result of N. Katz ([4], note on p. 3, or see [6], 
Corollary (18) on p. 189) m is even. 

(a) First assume N = m + l. Let H be a general hyperplane of F"+1. Set Y : = VPi H. 
Fix a general z G Y. By the assumption (&) (TZV)(1V contains a variety B with dim(Z?) = 
m — 1, and such that for every v G 5, z G T^V. We distinguish two subcases: m = 2 or 
m > 2. 

(al) First assume m = 2, hence dim(Z?) = 1. By the last part of condition (&) B is 
not a line. Thus 5 spans TZV, i.e. {(rzV) D (T^V) : u e B} = {[z;u] : u e B} is an 
infinite set of lines thru z and contained in Tz V. By the second half of step 1 in § 2 of [1] 
this implies that V is described by (1). 

(a2) Assume m > 2. By the case m = 2, we see that the intersection of V with a 
general 3-dimensional linear space is described by (1). In particular this gives the irre-
ducibility of (TzV)D Vfor general V, hence that B is an open subset of (TzV)nV and that 
the set {(TZV) PI (TUV) : u G B} is open in the set of hyperplanes of TZV containing z. 
Again, by the last part of the proof of step 1 in § 2 of [1], this implies that V is described 
by(l). 

(b) Now assume N > m+1. A general projection of V in P"14"1 is reflexive and ordinary 
([6], th. (5) on p. 189) and of course satisfies (&). Fix a general linear subspace L C P^, 
dim(L) — N — m — 2, and a general z G Vreg; denote by tL: ¥N\ L —» Pm+1 the projection 
from L. Denote by [U; U'] the spanning in P^ of the subsets U and U'. Fix a general 
ye V n [L; rzV]. By part (a), tL(V) is given (in suitable coordinates) by (1) and in 
particular it satisfies the condition (%) ([1],§ 1). Thus z G [L; ryV]. Take a general linear 
subspace L' of [L; Tz V] with dim(L') = dim(L). Since [Z/; T, V] = [L; T,V] and we know 
that ^L'(V) satisfies (1), we get easily that either TyV C [L; TZV\ or z G 7^ V. First assume 
z G Ty V (for all such general z and v). Thus V satisfies (1) (use that V is reflexive, hence 
V and [L; TZV] have order of contact 2 at z, and that V is not a quadric hypersurface), 
contradicting [1]. Now assume TyY C [/; rzZ]. Thus the tangent space to ÎL(V) at ̂ (z) is 
tangent to tL(V) along its (m — l)-dimensional intersection with fzXV), contradicting for 
instance the fact that ÎL{V) is ordinary. • 

Now we may show that, if char(F) — 2 and m is even, there are pairs (A, A') of 
ordinary m-dimensional hypersurfaces satisfying (&&). In 1.4 we will show that these 
are the only such examples (up to projective transformations). 

REMARK 1.3. Assume char(F) = 2; fix an even integer m; set 2r — 2 := m. Fix 
a system of homogeneous coordinates y/, z,-, 1 < / < r, 6>/Pm+1. Fix homogeneous 
polynomials h, by h', b' with deg(Z?) = deg(/ï) + 1, deg(Z/) = deg(hf) + 1 and call A (resp. 
A') the hypersurface with equation (1) (resp. with equation (1) with (h\ b') instead of 
(h,b)). Assume A ^ A' and that A and A' are integral. Then (A, A') has property (&&). 

PROOF. We describe here one (equivalent and not depending on any choice of coor
dinates) description of every variety X described by (1). There is a linear isomorphism (a 
null-correlation) t: Pw+1 —-• Pm+1* such that for every z G Pm+1 all the tangent spaces to X 
at the points of (Xreg) H t(z) pass thru z; if XD t(z) is reduced, this means that XH t(z) is a 
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strange variety with z as strange point. The isomorphism t does not depend on X satisfy
ing ( 1 ) if we have fixed the coordinates (i.e. depends only on the part £ ytzt of ( 1 )). Thus 
the isomorphisms t, t1 induced by A and A' are the same. Thus {A, A') has the property 
(&&), taking as E the set {(x,y) G A x A' : y G t(x)} = {(x,y) G A x A' : x G t(y)} 
(the last equality being a consequence of the fact that fis a null-correlation). • 

THEOREM 1.4. Fix a pair {A, A') satisfying (&&) with A and A' ordinary varieties. 
Then char(F) = 2, m := dim(A) is even and {A, A!) is, up to a projective transformation, 
one of the pairs described in 1.3. 

PROOF. By [2], part c(iv) of the main theorem, we have char(F) = 2; thus, as quoted 
at the beginning of the proof 1.2 ([4]) m is even. For a general x G A (resp. y G A'), call 
E(x, ) (resp. £(, y)) the (m— 1)-dimensional subvariety Ed ({ x} xA') (resp. EH (A x { y} ), 
with E C A x A' as in the definition of the property (&&). 

(i) First assume m — 2 and N = 3. Since A and A! are reflexive and A ^ A' { TXA : 
JC G Areg} and { TyA' : y G A(.eg} are different varieties. Thus for general x G A, TXA 
is transversal to A'. We get that we may assume that for general x G A, (rxA) Pi A' is 
irreducible; hence we may assume E(x, ) dense in (TXA) Pi A'. Similarly for general y 
E(,y) is dense in (TyA') Pi A. For general a, b € A, and every y G £(tf, ) D E(b, ), TyA' 
is the linear span [{ a, b, y} ] of the set { a, b, u} ; note that by the density just asserted 
and the generality of a and b, E(a, ) Pi E(b, ) = A1 Pi (TaA Pi T^A). Similarly for general 
w, v in A'. Thus we see that the Gauss map g;:Ajeg —• P3* maps 3 general collinear 
points to 3 collinear points (i.e. to 3 planes thru the same line). As in the proof of [1], 
last part of step 1 in § 2, we get that g7 is induced by a linear isomorphism f1: P3 —-» 
P3* (a null-correlation) and A' is induced by (1) for a suitable choice of homogeneous 
coordinates (and of functions h\ b'). By symmetry the Gauss map of A is induced by 
a linear isomorphism t: P3 —• P3* and A is described by (1) for a (possibly different) 
choice of homogeneous coordinates. The discussion of the meaning of the collineations 
t, f given in the proof of 1.3 and property (&&) show that t = t', i.e. that A and A' 
are described by (1) (for suitable (Kb) and {h'.b')) with respect to the same system of 
coordinates. 

(ii) Now assume m > 2 and Af = m + 1. By step (i) we get the irreducibility of 
(TXA) H A' for general x ÇA, and the same proof as in step 1 works. 

(iii) Assume N > m + 1. We may assume that AU A' spans P^; by the definition of 
(&&) we get easily that either A spans P^ or A spans a hyperplane H. In the second case, 
since dim(£) = 2m — 1, by the definition of (&&) all TXA, x G Areg, contain A' Pi H\ 
this is obviously false for non-linear A'. Thus we may assume that A spans P^. Since we 
know that a general projection of A into Pm+1 satisfies (&) and is described by (1), we 
find a contradiciton as in the last step of the proof of 1.2. • 

2. First we prove the following result. 

PROPOSITION 2.1. Let V be an integral nondegenerate subvariety ofY^, d an integer, 
d>2, andvd the d-ple Veronese embedding ofV, say in P'. Let Vd(V)* be the dual variety 
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ofvd{V). Then Vd(V)* is a hypersurface. More precisely, for every x G Vd(V)reg a general 
hyperplane tangent to Vd(V) at Vd(x) is tangent to vd(V)Teg only at that point. 

PROOF. It is sufficient to prove the second part of 2.1. 
Fix a smooth point x of V and let L := TXV. Let W(d) be the linear system of degree d 

hypersurfaces tangent to V at x. W(2) has no base point on P / v\ { x}. Thus we see easily 
that if d > 3 the linear system W(d) gives an embedding y of P^ \ {x} into a projective 
space P. Let U be the closure of j(V\ {x}) in P. Applying Bertini's theorem to U, we 
see that if d > 3 a general degree d hypersurface tangent to V at x is not tangent to V at 
any point of Vr

reg\ { x}. 
Now assume J = 2. Set G := {g G AuuT^) : g(;c) = x and g(L) = L) and 

^ :— {(y»^0 • y £ P^Xi*} ^ d M is a linear space with dim(Af) = dim(L) and 
y G M}. G acts on Y and its orbits are distinguished by the dimensions of [L; y] and 
[L;M]. Fix (y,M) G F. First assume y j£ L. Using reducible quadrics we see that the 
codimension in W(2) of the set of quadrics thru y and tangent to M at y is m + 1. Now 
assume y G L. Set M' := M D L and & := dim(M'). Aut(L) acts on the possible pairs 
(y, M') (with k fixed) with exactly 2 orbits (if & < m), distinguished by the condition that 
[x; y] C M' or not. Since every element of Aut(L) is the restriction of some element of 
Aut(Pn), we see that (even when k = m) the codimension in W(2) of the set of quadrics 
tangent to M' at y is k if [JC; y] C Mf, k+\ otherwise. Then use reducible quadrics to pass 
from M' to M and show that (even if k = m) the set of quadrics in W(2) containing y 
and tangent to M has codimension m in W(2) if [x; y]QM (i.e. x G M) and codimension 
m + 1 otherwise. Since V is not a linear space, dim(V n L) < dim(V). Thus the thesis 
follows from a dimensional count. • 

The first part of 2.1 was known ([4], th. 2.5, or see [6], th. (20) on p. 180) except when 
char(F) = 2 and dim(V) is odd. 

Now we prove the following theorem related to the Segre embedding. 

THEOREM 2.2. Let V be an integral complete variety and i: V —• P*, j : V —> Pr 

two embeddings; set m := dim(V). Let u be the embedding ofV in a projective space P 
corresponding to the composition of(iJ) with the Segre embedding. Then: 

(a) //'char(F) ^ 2 or m is even, then u(V) is ordinary; 
(b) if char(F) = 2 and m is odd, then u{V) is semiordinary. 

PROOF. The proof is an easy modification of the proof of [6], th. (20) on p. 180. Fix 

P e Vreg. 
(a) Choose systems of inhomogeneous coordinates T\,..., Tk at i(P) (resp. L\,..., Lr 

aty'(F)) such that T\,...,Tm (resp. L\,... ,Lm) form a regular system of parameters for 
i(V) (resp.y(V)) at i(P) (resp.y(F)) and such that i*(Lt) = f{Ti) modulo the square of 
the maximal ideal of P in V. In P the form corresponding to T\L\ + • • • + TmLm (resp. 
T\Ls+\ + • • • + TsLm if char(F) = 2 and m = 2s) satisfies the Hessian criterion of [3], 
3.2, (or see [6], th. (12) on p. 176) at u(P). Thus u{V) is reflexive. Hence the general 
tangent hyperplane to u( V) is tangent along a linear space; since u( V) contains no positive 
dimensional linear space, u(Vf is a hypersurface. Thus u(V) is ordinary. 
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(b) Assume m odd, say m = 2s + 1. Then use the same form on P as in the case m 
even, char(F) = 2. • 

3. Now we want to give (when char(F) = 0) a quantitative bound for a result of 
Hefez and Kleiman ([3], 4.13, or see [6], th. (7) on p. 190) about the non-vanishing of 
the ranks of any variety W C P ^ . 

THEOREM 3.1. Assume char(F) = 0. Fix an integral variety V C P^; set n := 
dim(V), d \— rn{V) (the degree ofV) and let c be the maximal integer with rn-c(V) ^ 0 
(the codefect ofV). Then for every i with n — c < i < nywe have 

(2) n(V) < d(d - If'1 andd < r/(V)(r/(V) - l)*"1 

PROOF. Taking general hyperplane sections, we may assume c — 0 ([6], th. (5) on 
p. 189) and reduce both inequalities to the case / = 0 ([6], th. (5) on p. 189). Taking 
a general projection, we may assume that V is a hypersurface in F*+1 ([6], th. (5) on 
p. 189). Thus V is in the closure of the family of smooth hyper surf aces. For every smooth 
hypersurface Y of degree d, we have r0(Y) — d(d — If. Fix a general linear space L with 
dim(L) = n — 1; we assume that there are exactly ro(V) hyperplanes containing L and 
tangent to V (at points of VTQg). There is an open subset U of the family S(d) of smooth 
degree d hypersurfaces for which this is true. For u G U, let Vu be the corresponding 
hypersurface. Set T := {(//, u) G Pn+1* x U : L C H and H is tangent to Vu}. Every 
hyperplane H containing L and tangent to V is such that (//, u) is in the closure in P"+1* x 
S(d) of r (and even there is a subvariety J of U with [V] in its closure in S(d) and (//, u) G 
T for every u G J). Thus r0(V) < d(d - If. Note that d = r„(V) ([6], prop. (2)(i) on 
p. 156). Thus we have the first inequality in 3.1. Since char(F) = 0, every variety X 
is reflexive and, if X has dimension «, rt(X) = rn_,-(X*) ([6], th. (4) on p. 189). Thus 
applying the first part to V*, we get the second inequality. • 
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