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A b s t r a c t . Three-dimensional simulations of convection are studied with specific attention to the 
effects of rotation and latitude on different quantities. The latitude-dependence of the strength 
of convection is found to decrease with increasing strength of the turbulence. The Λ-effect is, 
however, still present also in a more turbulent case. 

1. Introduction 

We simulate convection in a rectangular rotating box assuming periodicity in the 
horizontal directions with stress-free upper and lower boundaries. We use a modified 
version of the code by Nordlund L· Stein (1989). Gravity points in the vertical {z) 
direction but the rotation axis is tilted, describing the situation at some latitude 
away from the pole. The calculation starts from a polytropic atmosphere with 
velocity perturbations. Each layer's stability is governed by the polytropic index. 
For details of the system setup, see Pulkkinen et al. (1993). A typical run takes 
about 8 hours of Cray X-MP cpu-time, one time step lasting about 0.3 seconds for 
a grid of 313 and 1.4 seconds for the a larger one of 63 χ 63 χ 37. 

We consider two different cases: case I, a single unstable layer and case II, an un-
stable layer above a stable layer, into which convective motions can penetrate. The 
physics of the system is described by dimensionless numbers, the most important 
of which are the Rayleigh number, the Taylor number, and the Prandtl number: 

R a _ ί ^ λ ^ λ T a 4ü 2 d A (ι) 
a ~ V #«/ C p d z ) z = z J a ~ ι/2 

In Table I we give values of some input parameters and typical values of a few 
quantities obtained from our simulations. 

When simulating stellar convection, the main limitation is the restricted range 
of different time and length scales that can be included. For economical reasons 
we consider models with relatively small ratios of rotation period and sound travel 

123 

F. Krause et al. (eds.), The Cosmic Dynamo, 123-127. 
© 1993 I AU. Printed in the Netherlands. 

https://doi.org/10.1017/S0074180900173978 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900173978


124 
TABLE I 

Summary of the parameters in cases I and II. (The Prandtl number is in all cases unity, 
and Ma is the Mach number). 

quantity case I case II 

grid 31 χ 31 χ 31 63 χ 63 χ 37 
Ra 3 χ 104, 6 χ ΙΟ4 108 

Ta ΙΟ4 107 

Ma 0.03 0.1 
TYot/^sound 5 0 1 0 

R o - 1 3.3 3.2 

time. A more important quantity, however, is the inverse Rossby number, R o - 1 = 
20rCOnv, where rc o n v is the convective turnover time. In case II a rather small value 
for the radiative diffusion κ was chosen in order to decrease the total flux input 
at the bottom. In order to stabilize the code an additional "hyperdiffusion" has 
been included in case II. Although case II is closer to the real convection zone 
with respect to the higher Rayleigh and Taylor numbers it has a smaller separation 
between the time scales than case I. This is because the largest contribution in 
increasing the Rayleigh and Taylor numbers goes to the entropy gradient and to 
angular velocity. Case II is, however, more turbulent than case I, and in that sense 
more realistic. 

2. Theore t i ca l Backg round 

In order to investigate stellar differential rotation driven by turbulent convection 
one usually separates the different scales by dividing the velocity field u in two 
parts, u = (u) + u ' where (u) is the large-scale mean field and u ' is the small-scale 
fluctuation field. Inserting this in the hydrodynamic momentum equation produces, 
after taking a horizontal average over the whole equation, the Reynolds equation 

P + <u> · V(u>) = - V · (PQ) + pg - Vp + V · (r) (2) 

which contains a new term —V · (pQ), where Q is a tensor, the Reynolds stress 
tensor, consisting of the products of different velocity components, Qij = (u'iUj). 
To understand the role of this term we may write down the conservation law for 
angular momentum 

<9 
—(pr2 sin26to) + V · (pr2 sin2 flfi(u) + pr sin Θ^η')) = 0. (3) 
dt 

Thus, the angular momentum is transported not only by meridional circulation, 
but also by Reynolds stresses. 

As we see, Q appears inside a divergence as does the viscosity tensor r . Classi-
cally, the simplest approximation for Q is the Boussinesq-ansatz Qij = — + 
(ujti)). It is then identical to the viscosity tensor, except ν is replaced with an effec-
tive viscosity ι/τ, the "turbulent" or "eddy" viscosity. However, this approximation 
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latitude in degrees south 

Fig. 1. Nusse l t and Reynolds numbers vs. lat i tude. T h e lower curves represent the case for 
R a = 3 0 0 0 0 (solid line for N u and dashed for Re) , and the upper curves are for R a = 6 0 0 0 0 . 

gives the wrong sign for Qg<f> compared with the observations of the solar surface. 
Moreover, physically we need something nondiffusive that maintains the existing 
gradients of the angular velocity and the anisotropy of the turbulence. Rüdiger 
( 1 9 8 9 ) used general arguments, taking as preferred directions those of gravity and 
angular velocity, and was able to derive the latitude-dependence of the Reynolds 
stress components in his A-theory. 

Qij = Aijknk - Nijkid(uk)/dxi + ..., (4) 

+ v(0) + )sin20 + v ^ s i n 4 ^ sintfO, (5) 

+ # ( 1 ) cos Θ sin θ + H^cos θ sin3θ) sin 0Ω. (6) 
\ Ω du J 

The coefficients ..., Η h a v e been derived from simple turbulence models 
using the First-Order-Smoothing approach (e.g. Rüdiger 1989). Given the limita-
tions of this approach it is useful to determine these coefficients independently using 
three-dimensional simulations of convection. 

Οτφ 
l/T 

Qe<$> 
vT 

3. Results of the Simulations 

3 . 1 . C A S E I: SIMULATIONS WITH ONE UNSTABLE LAYER 

We performed a number of simulations, placing the box at eleven different latitudes 
in the southern hemisphere. An interesting tendency is seen in the behaviour of 
convective motions: convection is clearly stronger in the equatorial regions than at 
the pole, which results in larger Nusselt and Reynolds numbers (fig. 1). Gilman 
( 1 9 7 7 ) also finds that convection is most favoured in equatorial regions and Busse 
fe Cuong ( 1 9 7 7 ) note that at the poles and equator pressure gradients can balance 
the Coriolis force and thus help to neutralize the stabilizing effect of rotation, but 
at the poles the Coriolis force has only horizontal components and the enhanced 
gradients increase dissipation there. 
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Fig. 2. Derived values for the horizontal Reynolds stress Qe<t> at different lat i tudes . T h e 
circles denote results from case I and boxes from case II. w\ is 0 .182 and 0.107, and W2 is 
1.02 and 0.163 in those cases, respectively (see eq. 7). 

According to our simulations the horizontal Reynolds stress, QA«/», is negative 
everywhere in the southern hemisphere and changes sign at the equator, in agree-
ment with the expected symmetry requirements. This was also checked by one run 
at 30 degrees north. In fig. 2 we give this correlation translated to the northern 
hemisphere, having therefore positive sign. We can fit the latitudinal profile of Qe<j> 
to the models of differential rotation (e.g. Tuominen L· Rüdiger, 1989) 

<3θφ = ^τΩ* (w\ + W2 sin2 θ) cos θ sin2 θ, (7) 

where we have adopted the rotation law from the solar surface, Ω = A -f Β cos2 θ Ί-
Ο cos4 0, thus, being able to present with just two unknown coefficients, w\ 
and w2 (see fig. 7 in Pulkkinen et al. 1993). This fit agrees well with analysis of 
the Greenwich observations. For comparisons between the simulations and other 
sources see Pulkkinen et al. (1993). 

Because of the stress-free boundary conditions of our model, the correlation Qr(f> 
vanishes at the upper and lower boundaries. Therefore we choose to evaluate it in 
the mid-layer of the box. Fig. 3 shows this correlation as a function of latitude. No 
observations of are available for comparison. Qr<$, is clearly negative and also 
has the same sign in the northern hemisphere, because the radial and latitudinal 
flows do not change their sign at the equator. 

3 . 2 . C A S E I I : SIMULATIONS WITH T W O LAYERS, U P P E R UNSTABLE AND LOWER 

The significance of this simulation is the possibility to study a more turbulent 
situation than the one in Case I, and also the effects caused by a boundary zone 
between the stable and unstable layers. The stratification is also much greater 
(about 20). The lower layer is convectively stable and the upper one unstable. Four 
runs at latitudes 0, 30, 60, and 90 degrees north are considered. 

The latitude-dependence of the strength of convection that was present in case 
I seems to have mostly disappeared, but not because of the stable layer, which is 
found to have little effect on the nature of convection. In this more turbulent case 
the velocity is generally more isotropic, and the horizontal and vertical components 

STABLE 
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Fig. 3. Derived values for the Reynolds stress Qr<p. The V-coefficients (eq. 5) are —0.580, 
0.661, and - 0 . 2 7 9 in case I, and - 0 . 2 2 4 , - 0 . 1 0 0 , and 0.250 in case II, respectively. 

are more or less equal. Only close to the equator the horizontal velocity components 
are somewhat larger than the vertical one. Here, (ufy is largest in the upper part 
of the unstable layer. Nevertheless, the latitude-dependence of Qq^ is qualitatively 
similar to that in case I (see fig. 2), but is about a factor of two smaller. In the 
lower layer, which is convectively stable, has the opposite sign, but much 
smaller magnitude than in the upper parts. As a whole, these results for are 
consistent with the ones of case I, and it appears that the qualitative behaviour of 
the horizontal Reynolds stress only depends weakly on the strength of turbulence. 
Qr<f, shows a somewhat stronger latitudinal variation than in case I; see fig. 3. In 
the unstable layer Qr(p behaves quite similarly than in case I, but the vertical flow 
penetrates into the stable layer causing a non-zero tail for this correlation there. 
At the equator Qrff, goes to zero in the middle of the upper layer which is possibly 
related to the enhanced anisotropy there. 

4. Final remarks 

The behaviour of the Reynolds stress seems to be quite well simulated by computer 
models. The role of the Coriolis force is essential and therefore, a local model 
like the one presented here is valid for describing the latitude-dependence of the 
Reynolds stresses. However, other quantities such as the strength of convection and 
meridional flow may require a global model, or at least more detailed study with 
the present model, accepting its limitations. 
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