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UNCOUNTABLY MANY NON-BINARY SHIFTS 
ON THE HYPERFINITE II,-FACTOR 

BY 

MASATOSHI ENOMOTO, MARIE CHODA, AND YASUO WATATANI 

ABSTRACT. We shall construct uncountably many nonconjugate non-
binary shifts with index two on the hyperfinite II i-factor R using rational 
functions over a finite field. 

1. Introduction. R. T. Powers [5] defined a shift on the hyperfinite IIi -factor R to be 
an identity preserving *-endomorphism a of R such that flj^i crk(R) — CI and defined 
the index of a as the Jones index [R: a(R)] (cf. [3]). Powers called a shift a of R a 
binary shift if there is a unitary u £ R with u2 = / such that R = { u, a(u), cr2(u), • • •} " 
and uak(u) — ztak{u)u for k G N. The unitary u is called a a-generator. The index of 
a binary shift is two. Two shifts a and r of R are conjugate (resp. outer conjugate) if 
OCJO~X = T for some automorphism 9 of R (resp. 6a0~l = r • Adw for some 6 and 
unitary w G R). Powers constructed in [5] a countable infinity of non outer conjugate 
binary shifts on R, and an uncountable infinity of non conjugate binary shifts on R. 
M. Choda [2] generalized this to the case of a shift with a generating unitary u such that 
um — I (m G N ), and constructed a countable infinity of outer conjugacy classes of shifts 
on R with any given index (G { 4 cos2(^); n = 3,4,...} U [4, oo)). On the other hand, 
in [6], G. L. Price constructed a shift a on R of index two which is not a binary shift. 
Inspired by the construction of Price's non-binary shift with index two, we shall show 
the existence of uncountable many non-conjugate non-binary shifts on R with index two. 
To construct such shifts, we shall consider the shift on the group von Neumann algebra 
Rm(G) of a group G twisted by a multiplier m, induced from a shift on the group G. In our 
construction, G will be a vector space over the field Z / 2Z. This method of construction 
(which includes the examples of Powers and Price ) was used by D. Bures and H-S. Yin 
in [1]. D. Bures and H-S. Yin obtained an intrinsic characterization of such shifts (which 
they call group shifts), and for those a satisfying cr(R)' D R = C, a classification up to 
conjugacy. 

2. Shifts on von Neumann algebras induced from shifts on groups. Let G be a 
countable discrete abelian group and m a multiplier on G. For x G G, define a unitary 
operator \m(x) on l2(G) by 

(A.WOW = m(x,x-1y)£(*~,y) for Ç G £2(G). 

Then Xm is a projective representation of G with respect to m. Let Rm(G) denote the 
von Neumann algebra generated by { Xm(x);x G G}. We shall call Rm(G) the (twisted) 
group von Neumann algebra. We can construct shifts on Rm(G) as follows. 
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Let a be a shift on a group G, that is, an injective homomorphism a on G such that 
nj£i vk(G) — { 1 } . Suppose that o preserves the multiplier ra, that is, that m(cr(x), cr(v)) 
= m(x, v) for x,y G G. Then a induces a shift crm on the (twisted) group von Neumann 
algebra Rm(G) such that am(Xm(x)) = Am(a(x)) for je G G. Furthermore, if Rm(G) is a 
factor, then [Rm(G): am(Rm(G))] = [G:a(G)]. Define ujm:G x G —> T by o;m(;c,v) = 
m(jc, y)m(y, x). Then a;m is an anti-symmetric bicharacter on G (cf. [4]). It is known that if 
ujm is non-degenerate, that is, ujm(x, G) = {1} implies that x = 1, then Rm(G) becomes 
a hyperfinite IIj-factor (cf. Slawny [8]). We put 

CO 

X=\jGh where Gt ^ Z2 = Z / 2 Z - { 0 , 1 } . 
/=o 

A sequence a: Z —•> {0 ,1} with «(0) = 0 and #(rc) = #(—n) is called a signature 
sequence ([6], [7]). A signature sequence a: Z —* {0 ,1} is periodic if there exists an 
n G Z such that <?(/ + rc) = <z(/) for any j G Z. For x = (x(i)) and y = (}>(/)) m X, 
consider the multiplier mfl (in fact, a bicharacter ) defined by 

(2.1) ma(x,y) = (-l^j^-J^yU. 

Price [61 showed that the group von Neumann algebra Rma(X) is a factor if and only if 
the signature sequence a is non-periodic. This was generalized by Price in [7] and by 
Bures and Yin in [1] to the case of arbitrary integral index. 

PROPOSITION 2.1. ([6], Theorem 2.3) LetX= U ^ 0 G/, Gt = Z2. Let a be a signature 
sequence on Z and denote by ma the corresponding multiplier (2.1). Then the following 
statements are all equivalent: 

(1) the group von Neumann algebra Rma(X) is a factor; 
(2) the anti-symmetric bicharacter ujma is non-degenerate; 
(3) the signature sequence a is non-periodic. 

EXAMPLE 2.2 (binary shifts of Powers [5]). Let a be a binary shift on R with a unitary 
generator u. Put S = { k G N ; uak(u) = — ak(u)u}. 

Define the sequence a:Z —> { 0,1} by a(n) = 1 if |n| G S and a(n) — 0 if |« | É̂ S. 
Suppose that a is not periodic. Let ma be as in (2.1). 

F o r * = ( J C ( 0 ) , . . . , J C ( « ) , 0 , 0 , . . . ) G X = I Ig 0 G/ , G/ = Z2 , we put M(JC) = 
tf*(0)a(w)41)a2(w)*(2) • • • an(u)x{n). Then there exists an isomorphism 6:R —> flmfl(X) 
such that 0(«(JC)) = Am^(jc). 

Define the canonical shift a on the group X by (a(*))(/) = x(j — I) for y > 1 and 
(a(x))(0) = 0. Since ma(cr(x),cr(j)) = ma(x, v), cr induces a shift ama on the von Neu
mann algebra Rma(X). Then, with 6 as above, 6a6~l — oma. Thus the binary shift a is 
exactly ama under the isomorphism 0. 

3. Uncountably many non-binary shifts of index two. Powers [5] completely 
classified binary shifts up to conjugacy on a hyperfinite IIi -factor R. Subsequently, Price 
[6] ingeniously found a non-binary shift with index two on R. We shall now construct 
uncountably many non-binary shifts on R of index two. 
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Let a: Z —> { 0,1} be a signature sequence. Let X = Ug0 ^/, G/ = Z2. Let ma be the 
corresponding multiplier on X. Let a be the canonical shift. Then clearly a preserves this 
multiplier ma. Similarly, let Y = U^0 Ht, Ht = Z2. Let F[f] denote the polynomial ring 
over the finite field F — { 0,1}. Fix a monic polynomial /?(0 = c$ + c\ t + • • • + Q/* G 
F[f] with c0 = 1. Set F[t]/p(t) = {/(*)/'p(t)\f(t) G F[t]}. Consider the embedding 
*F: F[f] —• F[t]/p(t) defined by W W ) = P(0f(t)/ p(t) = f(t). First recall the following 
elementary fact. Let G be a countable discrete group such that g2 = 1 for any g G G. 
Then G is isomorphic to Ug0 G/, G/ = Z2. We shall denote the group operation by 
addition. Clearly, G is a vector space over F. In fact the sum is given by the addition of 
G and the scalar multiplication is given by 0 • x — 0 and 1 • x — x. 

Define a group isomorphism 9 : X —+ F[t] by, for x — (x(i)) G X, 0 (x) = £ JC(/>Z G 
*>0 

F[>] and also define a group isomorphism 

7: F — FM//*/) by, for j = WO) G F, 7(y) = (£3<0O/p(0-
i>0 

DEFINITION 3.1. For X = Ug0 G„ Y = I I£0#/ , w h e r e G< - #< - z2> a n d a ê i v e n 

polynomial/?(0 G F[f], consider the group injection O^.X —* y, O^ = 7~lxF#, where 
7,*P, and 0 are as above. Then, for x = (x(i)), (<&p(x))(n) = Yli+j=nCix(j). The group 
injection ®p: X —+ Y will be called the one defined by (multiplication by) the polynomial 

P-
Consider the multiplication operator at by t on F[t] (or F[t]/ p(t)): at(f(t)) = tf(t) (or 

°t(f(t)/p(t)) = tf(t)/p(t)) forf(t) G F[t]. Then a, - QaQ~x on F[f] and a, = 7<x7~1 

on F[r]/p(0- Thus the canonical shift is realized as the multiplication by t. Therefore 
O^ • a = a • Q>p on X. 

The following lemma is a refinement of a result of Price's (Theorem 5.1 of [6]). 

LEMMA 3.2. Let a: J. —• {0,1} be a non-periodic signature sequence and p G F[t] 
a monic polynomial with a nonzero constant term. Then there exists a non-periodic 
signature sequence b'.J. —• { 0,1} such that 

mb(Q>p(x)9®p(y)) = ma(x,y) for any x, y G X. 

PROOF. For brevity (and clarity), consider <&p to be just multiplication by p — Y$=0 ctt
l 

on F[t]. The conditions on b are exactly the following: 
(1) mb(p,pf) = ma(l, f1), n = 0,1,2,. . . ; 
(2) mb(fp,p) = ma(f, 1), n = 1,2,.... 
On expanding, these conditions become 
(1) Z£=S q(n +j)b(j) = 0, n = 0 , 1 , . . . , k, 
(2) E?=o 4(0b(n - i) + £?=1 q(i)b(n + i) = a(n), * = 1,2,..., 
where g(0) = c0c0 + • • • + Q Q , q{\) = CXCQ + • • • + Q Q _ I , #(&) = ckc0. 
Condition (1) is certainly satisfied if b(0) = • • • = b(k) — 0. From q{k) ^ 0 it follows 

immediately that there is a unique solution of (2) such that Z?(0) = • • • = b(k) — 0. 
Clearly, by (2), a is periodic if b is. Q. E. D. 

Given a signature sequence a and a sequence of monic polynomials p^{t) = ci$ + 
Q,I* + • • • + c w / ( ° w i t h c^,o = 1, defining X£ = U~0

 G / ° w i t h G ; ° - Z2 f°r 
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/ = 1,2,..., we may apply Lemma 3.2 repreatedly to get a sequence of group injections 
QPl:Xt —> Xt+\, defined by the polynomials pi, and multipliers mat on Xt induced 
by non-periodic signature sequences ai on Z, which satisfy mai^(QPl(x),QPl(y)) — 
™>at (X y) for je, y G Xi and a\ — a. (Of course, the sequence {at; I = 1,2,...} is not 
unique, unless we require the initial conditions specified in the proof of Lemma 3.2) 

Now, set X[p] = \im(Xi,Q>Pl). Define a multiplier m^p\ on X\p\ by m^p\{x,y) = 

mat(x,y) if x,y G Xt. Then Rm[ap\(X[p]) is the hyperfinite IIi-factor, since the anti
symmetric bicharacter u;m, is non-degenerate by Proposition 2.1. The canonical group 
endomorphism a\p\ is a shift on X\p\. Hence cr̂ j induces a shift o\a,p\ on Rm{ap](X[P]). 

DEFINITION 3.3. With the above notation, for sequences p = (p\,p2, • - •) of monic 
polynomials /?£ with nonzero constant terms and a non-periodic signature sequence a, 
the shifts (J[a,p\ on /^^(X^j) are called shifts of Price type. 

The normalizer of a shift a on a hyperfinite Hi -factor R, denoted by N(a) (cf. [5]), 
consists of those unitary elements u G R such that uak(R)u* — ok(R) for all k = 1,2, 
The normalizer of a shift of Price type is the set of elements of the underlying group up 
to scalar multiples. This fact is proved by Price in [61, [7]. 

PROPOSITION 3.4. Let there be given two sequences of monic polynomials with nonzero 
constant terms, p = (pt) and q — (qi)for i — 1,2,..., and two non-periodic signature 
sequences a and b. If the two shifts of Price type 0[a,p] and <J[b,q\ are conjugate on the 
hyperfinite II\-factor, then (cr^Xjy?]) and (a\q],X[q]) are conjugate, where a\p\ denotes 
the shift induced by (J[a,p] on X^j. 

PROOF. The shifts a{a,p\ onRmM(x[pÙ induce shifts âM:N((j[a,p])/ T —> N(a[aiP])/ T. 
By the above fact, N(a{a,P})/ T = X^] and ô\a,p\ — &ip}- Therefore if 0[a,p) and G[b,q\ are 
conjugate, then (o-^X^j) and (cj[q\,X\q\) are conjugate. Q. E. D. 

In the following we shall construct uncountably many non-binary shifts. First, choose 
a sequence of distinct irreducible monic polynomials Pk(t)(^ t),k — 1,2, Let c — 
(cd),c(2),c(3), . . . )Gn£,Z2 .Put 

Xc={g(t)/f(t);g(tlf(t)eF[tl 

and if/(/) = px(t)
k} • • -Pn(t)k\ki ^ 0, then c(i) ^ 0.} 

That is, Xe is the set of rational functions whose denominator may have/?/(0 as a factor 
only if c(i) ^ 0. Xe is, of course, isomorphic to UjSo ^ " w n e r e Gi = 7^. Let us denote 
the shift at on Xe by ac. 

LEMMA 3.5. Let c and d be elements in n ^ i ^2- Then c — d if and only if(crc,Xc) 
and (ad, Xd) are conjugate. 

PROOF. If c ^ d, then there exists an no such that either (c(fto) = 1 and d(no) = 0) or 
(c(no) = 0 and d(no) = 1). Hence we may suppose that c(no) = 1 and d(no) — 0. If ac 

and ad are conjugate, then/?no(crc) and pni)(a
d) are conjugate. But lm(pn{)(a

c)) = Xe and 
Im(pno(a^)) ^ Xd. In fact, take an element g(t)/f(t) G Xe. Then g(t)/(pn{)(t)f(t)) G Xe 

and g(f)//(0 = Pn0(t)g(t)/pni)(t)f(t) G Imfo^oO). Hence Im(/?rt()(<7c)) = Xe. On the 
other hand, 1 G XJ, but 1 £ I m f o J ^ ) ) . If pn{)(t)g(t)/f(t) = 1, then/?„0(%(0 - /(f). 
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But pno(t) does not divide f{t). This is a contradiction; therefore 1 fi lm(pno(a
d)). Thus 

lm(pno(a
d)) Ï Xd. Q. E. D. 

PutX£ = F[tlX\ = F[t]/P](t)«
l\...,Xc

£ = m/(Pi(t)«l)p2(t)
c(2)'>'Pdt)«i))i. 

Then we have UfLo^ — ^c- Furthermore, the embedding from X\ to Xc
ux is defined 

by multiplication by the polynomialp\(t)c(l)p2(t)
c(2) • • •/>/(0*°P*+i(0('+1)c('+1). In par

ticular, the Powers binary shifts are associated to the sequence c = (c(l), c(2),...) = 
(0,0,0,...), by Example 2.2. Thus we get the following theorem. 

THEOREM 3.6. There exist uncountable many non-conjugate non-binary shifts of index 
two on the hyperfinite II\ -factor. 

REMARK. A similar result to this theorem holds in the case of general index. We shall 
publish it elsewhere. 
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