UNCOUNTABLY MANY NON-BINARY SHIFTS ON THE HYPERFINITE II₁-FACTOR

BY

MASATOSHI ENOMOTO, MARIE CHODA, AND YASUO WATATANI

ABSTRACT. We shall construct uncountably many nonconjugate nonbinary shifts with index two on the hyperfinite II₁-factor R using rational functions over a finite field.

1. Introduction. R. T. Powers [5] defined a shift on the hyperfinite II_1 -factor R to be an identity preserving *-endomorphism σ of R such that $\bigcap_{k=1}^{\infty} \sigma^k(R) = \mathbb{C}I$ and defined the index of σ as the Jones index [R: $\sigma(R)$] (cf. [3]). Powers called a shift σ of R a binary shift if there is a unitary $u \in R$ with $u^2 = I$ such that $R = \{u, \sigma(u), \sigma^2(u), \cdots\}''$ and $u\sigma^k(u) = \pm \sigma^k(u)u$ for $k \in \mathbb{N}$. The unitary u is called a σ -generator. The index of a binary shift is two. Two shifts σ and τ of R are conjugate (resp. outer conjugate) if $\theta \sigma \theta^{-1} = \tau$ for some automorphism θ of R (resp. $\theta \sigma \theta^{-1} = \tau \cdot Adw$ for some θ and unitary $w \in R$). Powers constructed in [5] a countable infinity of non outer conjugate binary shifts on R, and an uncountable infinity of non conjugate binary shifts on R. M. Choda [2] generalized this to the case of a shift with a generating unitary u such that $u^m = I \ (m \in \mathbb{N})$, and constructed a countable infinity of outer conjugacy classes of shifts on R with any given index ($\in \{4\cos^2(\frac{\pi}{n}); n = 3, 4, ...\} \cup [4, \infty)$). On the other hand, in [6], G. L. Price constructed a shift σ on R of index two which is not a binary shift. Inspired by the construction of Price's non-binary shift with index two, we shall show the existence of uncountable many non-conjugate non-binary shifts on R with index two. To construct such shifts, we shall consider the shift on the group von Neumann algebra $R_m(G)$ of a group G twisted by a multiplier m, induced from a shift on the group G. In our construction, G will be a vector space over the field $\mathbb{Z} / 2\mathbb{Z}$. This method of construction (which includes the examples of Powers and Price) was used by D. Bures and H-S. Yin in [1]. D. Bures and H-S. Yin obtained an intrinsic characterization of such shifts (which they call group shifts), and for those σ satisfying $\sigma(R)' \cap R = \mathbb{C}$, a classification up to conjugacy.

2. Shifts on von Neumann algebras induced from shifts on groups. Let G be a countable discrete abelian group and m a multiplier on G. For $x \in G$, define a unitary operator $\lambda_m(x)$ on $\ell^2(G)$ by

$$(\lambda_m(x)\xi)(y) = m(x, x^{-1}y)\xi(x^{-1}y)$$
 for $\xi \in \ell^2(G)$.

Then λ_m is a projective representation of *G* with respect to *m*. Let $R_m(G)$ denote the von Neumann algebra generated by $\{\lambda_m(x); x \in G\}$. We shall call $R_m(G)$ the (twisted) group von Neumann algebra. We can construct shifts on $R_m(G)$ as follows.

Received August 24, 1988, revised July 21, 1989.

AMS subject classification: 46L10.

⁽c)Canadian Mathematical Society 1990.

[December

Let σ be a shift on a group *G*, that is, an injective homomorphism σ on *G* such that $\bigcap_{k=1}^{\infty} \sigma^k(G) = \{1\}$. Suppose that σ preserves the multiplier *m*, that is, that $m(\sigma(x), \sigma(y))$ = m(x, y) for $x, y \in G$. Then σ induces a shift σ_m on the (twisted) group von Neumann algebra $R_m(G)$ such that $\sigma_m(\lambda_m(x)) = \lambda_m(\sigma(x))$ for $x \in G$. Furthermore, if $R_m(G)$ is a factor, then $[R_m(G): \sigma_m(R_m(G))] = [G: \sigma(G)]$. Define $\omega_m: G \times G \to \mathbb{T}$ by $\omega_m(x, y) =$ $m(x, y)\overline{m(y, x)}$. Then ω_m is an anti-symmetric bicharacter on G (cf. [4]). It is known that if ω_m is non-degenerate, that is, $\omega_m(x, G) = \{1\}$ implies that x = 1, then $R_m(G)$ becomes a hyperfinite II₁-factor (cf. Slawny [8]). We put

$$X = \prod_{i=0}^{\infty} G_i, \text{ where } G_i \cong \mathbb{Z}_2 = \mathbb{Z} / 2\mathbb{Z} = \{0, 1\}.$$

A sequence $a: \mathbb{Z} \to \{0, 1\}$ with a(0) = 0 and a(n) = a(-n) is called a *signature* sequence ([6], [7]). A signature sequence $a: \mathbb{Z} \to \{0, 1\}$ is periodic if there exists an $n \in \mathbb{Z}$ such that a(j + n) = a(j) for any $j \in \mathbb{Z}$. For x = (x(i)) and y = (y(j)) in X, consider the multiplier m_a (in fact, a bicharacter) defined by

(2.1)
$$m_a(x, y) = (-1)^{\sum_{i>j} a(i-j)x(i)y(j)}.$$

Price [6] showed that the group von Neumann algebra $R_{m_a}(X)$ is a factor if and only if the signature sequence *a* is non-periodic. This was generalized by Price in [7] and by Bures and Yin in [1] to the case of arbitrary integral index.

PROPOSITION 2.1. ([6], Theorem 2.3) Let $X = \coprod_{i=0}^{\infty} G_i, G_i \cong \mathbb{Z}_2$. Let a be a signature sequence on \mathbb{Z} and denote by m_a the corresponding multiplier (2.1). Then the following statements are all equivalent:

(1) the group von Neumann algebra $R_{m_a}(X)$ is a factor;

(2) the anti-symmetric bicharacter ω_{m_a} is non-degenerate;

(3) the signature sequence a is non-periodic.

EXAMPLE 2.2 (binary shifts of Powers [5]). Let α be a binary shift on R with a unitary generator u. Put $S = \{k \in \mathbb{N} ; u\alpha^k(u) = -\alpha^k(u)u\}$.

Define the sequence $a: \mathbb{Z} \to \{0, 1\}$ by a(n) = 1 if $|n| \in S$ and a(n) = 0 if $|n| \notin S$. Suppose that *a* is not periodic. Let m_a be as in (2.1).

For $x = (x(0), \ldots, x(n), 0, 0, \ldots) \in X = \coprod_{i=0}^{\infty} G_i, G_i \cong \mathbb{Z}_2$, we put $u(x) = u^{x(0)} \alpha(u)^{x(1)} \alpha^2(u)^{x(2)} \cdots \alpha^n(u)^{x(n)}$. Then there exists an isomorphism $\theta : R \to R_{m_a}(X)$ such that $\theta(u(x)) = \lambda_{m_a}(x)$.

Define the canonical shift σ on the group X by $(\sigma(x))(j) = x(j-1)$ for $j \ge 1$ and $(\sigma(x))(0) = 0$. Since $m_a(\sigma(x), \sigma(y)) = m_a(x, y)$, σ induces a shift σ_{m_a} on the von Neumann algebra $R_{m_a}(X)$. Then, with θ as above, $\theta \alpha \theta^{-1} = \sigma_{m_a}$. Thus the binary shift α is exactly σ_{m_a} under the isomorphism θ .

3. Uncountably many non-binary shifts of index two. Powers [5] completely classified binary shifts up to conjugacy on a hyperfinite II₁-factor R. Subsequently, Price [6] ingeniously found a non-binary shift with index two on R. We shall now construct uncountably many non-binary shifts on R of index two.

Let $a: \mathbb{Z} \to \{0, 1\}$ be a signature sequence. Let $X = \coprod_{i=0}^{\infty} G_i$, $G_i \cong \mathbb{Z}_2$. Let m_a be the corresponding multiplier on X. Let σ be the canonical shift. Then clearly σ preserves this multiplier m_a . Similarly, let $Y = \coprod_{i=0}^{\infty} H_i$, $H_i \cong \mathbb{Z}_2$. Let F[t] denote the polynomial ring over the finite field $F = \{0, 1\}$. Fix a monic polynomial $p(t) = c_0 + c_1 t + \cdots + c_k t^k \in F[t]$ with $c_0 = 1$. Set $F[t]/p(t) = \{f(t)/p(t); f(t) \in F[t]\}$. Consider the embedding $\Psi: F[t] \to F[t]/p(t)$ defined by $\Psi(f(t)) = p(t)f(t)/p(t) = f(t)$. First recall the following elementary fact. Let G be a countable discrete group such that $g^2 = 1$ for any $g \in G$. Then G is isomorphic to $\coprod_{i=0}^{\infty} G_i$, $G_i \cong \mathbb{Z}_2$. We shall denote the group operation by addition. Clearly, G is a vector space over F. In fact the sum is given by the addition of G and the scalar multiplication is given by $0 \cdot x = 0$ and $1 \cdot x = x$.

Define a group isomorphism $\theta: X \to F[t]$ by, for $x = (x(i)) \in X$, $\theta(x) = \sum_{i \ge 0} x(i)t^i \in F[t]$ and also define a group isomorphism

$$\gamma: Y \longrightarrow F[t]/p(t)$$
 by, for $y = (y(i)) \in Y$, $\gamma(y) = (\sum_{i \ge 0} y(i)t^i)/p(t)$.

DEFINITION 3.1. For $X = \coprod_{i=0}^{\infty} G_i$, $Y = \coprod_{i=0}^{\infty} H_i$, where $G_i \cong H_i \cong \mathbb{Z}_2$, and a given polynomial $p(t) \in F[t]$, consider the group injection $\Phi_p: X \to Y$, $\Phi_p = \gamma^{-1}\Psi\theta$, where γ, Ψ , and θ are as above. Then, for x = (x(i)), $(\Phi_p(x))(n) = \sum_{i+j=n} c_i x(j)$. The group injection $\Phi_p: X \to Y$ will be called the one defined by (multiplication by) the polynomial p.

Consider the multiplication operator σ_t by t on F[t] (or F[t]/p(t)): $\sigma_t(f(t)) = tf(t)/o(t) = tf(t)/o(t)$ for $f(t) \in F[t]$. Then $\sigma_t = \theta \sigma \theta^{-1}$ on F[t] and $\sigma_t = \gamma \sigma \gamma^{-1}$ on F[t]/o(t). Thus the canonical shift is realized as the multiplication by t. Therefore $\Phi_p \cdot \sigma = \sigma \cdot \Phi_p$ on X.

The following lemma is a refinement of a result of Price's (Theorem 5.1 of [6]).

LEMMA 3.2. Let $a: \mathbb{Z} \to \{0, 1\}$ be a non-periodic signature sequence and $p \in F[t]$ a monic polynomial with a nonzero constant term. Then there exists a non-periodic signature sequence $b: \mathbb{Z} \to \{0, 1\}$ such that

$$m_b(\Phi_p(x), \Phi_p(y)) = m_a(x, y)$$
 for any $x, y \in X$.

PROOF. For brevity (and clarity), consider Φ_p to be just multiplication by $p = \sum_{i=0}^{k} c_i t^i$ on F[t]. The conditions on b are exactly the following:

(1) $m_b(p, pt^n) = m_a(1, t^n), n = 0, 1, 2, ...;$

(2) $m_b(t^n p, p) = m_a(t^n, 1), n = 1, 2, \dots$

On expanding, these conditions become

(1) $\sum_{i=0}^{k-n} q(n+j)b(j) = 0, \ n = 0, 1, \dots, k,$

(2) $\sum_{i=0}^{n} q(i)b(n-i) + \sum_{i=1}^{k} q(i)b(n+i) = a(n), n = 1, 2, \dots,$

where $q(0) = c_0c_0 + \cdots + c_kc_k$, $q(1) = c_1c_0 + \cdots + c_kc_{k-1}$, $q(k) = c_kc_0$.

Condition (1) is certainly satisfied if $b(0) = \cdots = b(k) = 0$. From $q(k) \neq 0$ it follows immediately that there is a unique solution of (2) such that $b(0) = \cdots = b(k) = 0$. Clearly, by (2), *a* is periodic if *b* is. Q. E. D.

Given a signature sequence a and a sequence of monic polynomials $p_{\ell}(t) = c_{\ell,0} + c_{\ell,1}t + \cdots + c_{\ell,k(\ell)}t^{k(\ell)}$ with $c_{\ell,0} = 1$, defining $X_{\ell} = \coprod_{i=0}^{\infty} G_i^{(\ell)}$ with $G_i^{(\ell)} \cong \mathbb{Z}_2$ for

l = 1, 2, ..., we may apply Lemma 3.2 repreatedly to get a sequence of group injections $\Phi_{p_{\ell}}: X_{\ell} \to X_{\ell+1}$, defined by the polynomials p_{ℓ} , and multipliers $m_{a_{\ell}}$ on X_{ℓ} induced by non-periodic signature sequences a_{ℓ} on \mathbb{Z} , which satisfy $m_{a_{\ell+1}}(\Phi_{p_{\ell}}(x), \Phi_{p_{\ell}}(y)) = m_{a_{\ell}}(x, y)$ for $x, y \in X_{\ell}$ and $a_1 = a$. (Of course, the sequence $\{a_{\ell}; \ell = 1, 2, ...\}$ is not unique, unless we require the initial conditions specified in the proof of Lemma 3.2)

Now, set $X_{[p]} = \lim_{n \to \infty} (X_l, \Phi_{p_l})$. Define a multiplier $m_{[a,p]}$ on $X_{[p]}$ by $m_{[a,p]}(x, y) = m_{a_\ell}(x, y)$ if $x, y \in X_\ell$. Then $R_{m_{[a,p]}}(X_{[p]})$ is the hyperfinite II₁-factor, since the antisymmetric bicharacter $\omega_{m_{[a,p]}}$ is non-degenerate by Proposition 2.1. The canonical group endomorphism $\sigma_{[p]}$ is a shift on $X_{[p]}$. Hence $\sigma_{[p]}$ induces a shift $\sigma_{[a,p]}$ on $R_{m_{[a,p]}}(X_{[p]})$.

DEFINITION 3.3. With the above notation, for sequences $p = (p_1, p_2, ...)$ of monic polynomials p_{ℓ} with nonzero constant terms and a non-periodic signature sequence a, the shifts $\sigma_{[a,p]}$ on $R_{m_{[a,p]}}(X_{[p]})$ are called *shifts of Price type*.

The normalizer of a shift σ on a hyperfinite II₁-factor *R*, denoted by $N(\sigma)$ (cf. [5]), consists of those unitary elements $u \in R$ such that $u\sigma^k(R)u^* = \sigma^k(R)$ for all k = 1, 2, ... The normalizer of a shift of Price type is the set of elements of the underlying group up to scalar multiples. This fact is proved by Price in [6], [7].

PROPOSITION 3.4. Let there be given two sequences of monic polynomials with nonzero constant terms, $p = (p_i)$ and $q = (q_i)$ for i = 1, 2, ..., and two non-periodic signature sequences a and b. If the two shifts of Price type $\sigma_{[a,p]}$ and $\sigma_{[b,q]}$ are conjugate on the hyperfinite II_1 -factor, then $(\sigma_{[p]}, X_{[p]})$ and $(\sigma_{[q]}, X_{[q]})$ are conjugate, where $\sigma_{[p]}$ denotes the shift induced by $\sigma_{[a,p]}$ on $X_{[p]}$.

PROOF. The shifts $\sigma_{[a,p]}$ on $R_{m_{[a,p]}}(X_{[p]})$ induce shifts $\tilde{\sigma}_{[a,p]}: N(\sigma_{[a,p]})/\mathbb{T} \to N(\sigma_{[a,p]})/\mathbb{T}$. By the above fact, $N(\sigma_{[a,p]})/\mathbb{T} \cong X_{[p]}$ and $\tilde{\sigma}_{[a,p]} = \sigma_{[p]}$. Therefore if $\sigma_{[a,p]}$ and $\sigma_{[b,q]}$ are conjugate, then $(\sigma_{[p]}, X_{[p]})$ and $(\sigma_{[q]}, X_{[q]})$ are conjugate. Q. E. D.

In the following we shall construct uncountably many non-binary shifts. First, choose a sequence of distinct irreducible monic polynomials $p_k(t) \neq t$, k = 1, 2, ... Let $c = (c(1), c(2), c(3), ...) \in \prod_{i=1}^{\infty} \mathbb{Z}_2$. Put

$$X^{c} = \left\{ g(t) / f(t); g(t), f(t) \in F[t], \\ \text{and if } f(t) = p_{1}(t)^{k_{1}} \cdots p_{n}(t)^{k_{n}}, k_{i} \neq 0, \text{ then } c(i) \neq 0. \right\}$$

That is, X^c is the set of rational functions whose denominator may have $p_i(t)$ as a factor only if $c(i) \neq 0$. X^c is, of course, isomorphic to $\coprod_{i=0}^{\infty} G_i$, where $G_i \cong \mathbb{Z}_2$. Let us denote the shift σ_t on X^c by σ^c .

LEMMA 3.5. Let c and d be elements in $\prod_{i=1}^{\infty} \mathbb{Z}_2$. Then c = d if and only if (σ^c, X^c) and (σ^d, X^d) are conjugate.

PROOF. If $c \neq d$, then there exists an n_0 such that either $(c(n_0) = 1 \text{ and } d(n_0) = 0)$ or $(c(n_0) = 0 \text{ and } d(n_0) = 1)$. Hence we may suppose that $c(n_0) = 1$ and $d(n_0) = 0$. If σ^c and σ^d are conjugate, then $p_{n_0}(\sigma^c)$ and $p_{n_0}(\sigma^d)$ are conjugate. But $\operatorname{Im}(p_{n_0}(\sigma^c)) = X^c$ and $\operatorname{Im}(p_{n_0}(\sigma^d)) \neq X^d$. In fact, take an element $g(t)/f(t) \in X^c$. Then $g(t)/(p_{n_0}(t)f(t)) \in X^c$ and $g(t)/f(t) = p_{n_0}(t)g(t)/p_{n_0}(t)f(t) \in \operatorname{Im}(p_{n_0}(\sigma^c))$. Hence $\operatorname{Im}(p_{n_0}(\sigma^c)) = X^c$. On the other hand, $1 \in X^d$, but $1 \notin \operatorname{Im}(p_{n_0}(\sigma^d))$. If $p_{n_0}(t)g(t)/f(t) = 1$, then $p_{n_0}(t)g(t) = f(t)$.

But $p_{n_0}(t)$ does not divide f(t). This is a contradiction; therefore $1 \notin \text{Im}(p_{n_0}(\sigma^d))$. Thus $\text{Im}(p_{n_0}(\sigma^d)) \neq X^d$. Q. E. D.

Put $X_0^c = F[t], X_1^c = F[t]/p_1(t)^{c(1)}, \ldots, X_\ell^c = F[t]/(p_1(t)^{c(1)}p_2(t)^{c(2)}\cdots p_\ell(t)^{c(\ell)})^\ell$. Then we have $\bigcup_{\ell=0}^{\infty} X_\ell^c = X^c$. Furthermore, the embedding from X_ℓ^c to $X_{\ell+1}^c$ is defined by multiplication by the polynomial $p_1(t)^{c(1)}p_2(t)^{c(2)}\cdots p_\ell(t)^{c(\ell)}p_{\ell+1}(t)^{(\ell+1)c(\ell+1)}$. In particular, the Powers binary shifts are associated to the sequence $c = (c(1), c(2), \ldots) = (0, 0, 0, \ldots)$, by Example 2.2. Thus we get the following theorem.

THEOREM 3.6. There exist uncountable many non-conjugate non-binary shifts of index two on the hyperfinite II_1 -factor.

REMARK. A similar result to this theorem holds in the case of general index. We shall publish it elsewhere.

ACKNOWLEDGEMENT. We would like to thank the referee for many helpful suggestions and careful readings. The referee's comments improve our original manuscript considerabley. We would to thank Professors H. Suzuki and T. Oyama for their suggestions on vector spaces over finite fields.

REFERENCES

1. D. Bures and H-S. Yin, Shifts on the hyperfinite factor of type II_1 , to appear in J. Operator Theory.

2. M. Choda, Shifts on the hyperfinite II1-factor, J. Operator Theory 17 (1987) 223-235.

3. V. F. R. Jones, Index for subfactors, Invent. Math. 72 (1983) 1-25.

4. A. Kleppner, Multipliers on abelian groups, Math. Ann. 158 (1965) 11-34.

5. R. T. Powers, An index theory for semigroups of *-endomorphisms of B(H) and type II_1 -factors, Canad. J. Math. **40** (1988) 86–114.

6. G. L. Price, Shifts on type II1-factors, Canad. J. Math. 39 (1987) 492-511.

7. —, Shifts of integer index on the hyperfinite II₁-factor, Pacific J. Math. 132 (1988) 379–390.

8. J. Slawny, On factor representations and the C^* -algebra of canonical commutation relations, Comm. Math. Phys. **24** (1972) 151–170.

College of Business Administration and Information Science Koshien University, Takarazuka, Hyogo, 665, Japan.

Department of Mathematics Osaka Kyoiku University, Tennoji, Osaka, 543, Japan.

Department of Mathematics Osaka Kyoiku University, Tennoji, Osaka, 543, Japan.