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Multiple Zeta-Functions Associated with
Linear Recurrence Sequences and the
Vectorial Sum Formula

Driss Essouabri, Kohji Matsumoto, and Hirofumi Tsumura

Abstract. We prove the holomorphic continuation of certain multi-variable multiple zeta-functions

whose coefficients satisfy a suitable recurrence condition. In fact, we introduce more general vectorial

zeta-functions and prove their holomorphic continuation. Moreover, we show a vectorial sum formula

among those vectorial zeta-functions from which some generalizations of the classical sum formula can

be deduced.

1 Introduction

Let N, N0, R, R+, C be the set of positive integers, non-negative integers, real num-

bers, positive numbers, and complex numbers, respectively.

Recently, various multiple zeta-functions have been studied very actively. One of

the most fundamental multiple zeta-functions is the Euler–Zagier n-fold sum defined

by

(1.1) ζEZ,n(s) =

∑

m=(m1,...,mn)∈Nn

n∏

i=1

1

(m1 + · · · + mi)si
,

where s = (s1, . . . , sn) ∈ C
n. When n = 1, ζEZ,1(s) is nothing but the Riemann

zeta-function ζ(s). The values of ζEZ,n(s) at positive integers are called multiple zeta

values and were originally studied by Hoffman [20] and Zagier [32] independently.

The above series (1.1) is absolutely convergent in

(1.2) Vn := {s = (s1, . . . , sn) ∈ C
n | ℜ(si + · · · + sn) > n + 1 − i, ∀i = 1, . . . , n}

(see [23, Theorem 3]), and can be continued meromorphically to the whole space C
n.

Various proofs of this meromorphic continuation have been published ([1,3,24,33]).

On the other hand, the problem of meromorphic continuation of multiple zeta-

functions of one variable has a much longer history. It was first studied by Barnes

and Mellin at the beginning of the twentieth century. The most general result so far

published is due to the first-named author [14], who considered the multiple series
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of the form

∑

m=(m1,...,mr)∈Nr

1

P(m1, . . . , mr)s
,

where P(·) is a polynomial of complex coefficients. He proved the meromorphic

continuation of this series under a rather weak condition. In [14], only the one-

variable case was discussed; however, already in his unpublished thesis [13], the first-

named author mentioned that his method can be generalized to the multi-variable

situation

(1.3)
∑

m=(m1,...,mr)∈Nr

1

P1(m1, . . . , mr)s1 · · · Pn(m1, . . . , mr)sn
,

where P1, . . . , Pn are polynomials. In particular, the meromorphic continuation of

the Euler–Zagier n-fold sum can be proved by his method.

The analytic continuation of a twisted variant of (1.3) was obtained by M. de

Crisenoy in [7].

The method in [13,14] is not the only method that can treat multiple series of the

form (1.3). In [22], B. Lichtin used the theory of D-module to prove (under a condi-

tion stronger than that in [14]) the meromorphic continuation of (1.3). In [25], the

second-named author showed that the meromorphic continuation of (1.3) (but also

under a condition stronger than that in [14]) can be proved by using Mellin–Barnes

integrals. Another method is the “decalage” argument, introduced by the first-named

author in [15] and further developed in [8], which is a method of proving the con-

tinuation without using integral expressions.

On the right-hand side of (1.1), or even (1.3), there is no non-trivial factor on the

numerators. However, it is sometimes important to treat multiple series with some

(mainly algebraic or arithmetic) coefficients on the numerators.

If the coefficients are purely periodic, then the series can be written as a linear

combination of multiple series of trivial numerators, and hence the problem of mero-

morphic continuation is reduced to the case of trivial numerators. Typical examples

are multiple series with Dirichlet characters in the numerators; see [2, 4].

How should we treat the case of non-periodic coefficients? There are at least two

natural ways of adding non-trivial coefficients to the numerators on the right-hand

side of (1.1), that is

ζ∗n (a; s) :=
∑

m=(m1,...,mn)∈Nn

n∏

i=1

ai(mi)

(m1 + · · · + mi)si

and

ζx

n (a; s) :=
∑

m=(m1,...,mn)∈Nn

n∏

i=1

ai(m1 + · · · + mi)

(m1 + · · · + mi)si
,

where a = (a1, . . . , an) with ai : N → C (1 ≤ i ≤ n). (Here, the notations ∗ and x

come from ∗-products and x-products in the theory of multiple polylogarithms.)
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More generally one can consider multiple zeta-functions defined by

(1.4) ζ∗n (a; P; s) :=
∑

m=(m1,...,mn)∈Nn

n∏

i=1

ai(mi)

Pi(m1, . . . , mi)si

and

(1.5) ζx

n (a; P; s) :=
∑

m=(m1,...,mn)∈Nn

n∏

i=1

ai(m1 + · · · + mi)

Pi(m1, . . . , mi)si
,

where a = (a1, . . . , an) with ai : N → C (1 ≤ i ≤ n), and P = (Pi)i=1,...,n is a suitable

family of polynomials.

As for (1.4), we can apply the method of Mellin–Barnes integrals to reduce the

problem of continuation to the analytic properties of single-sum zeta-functions

∞∑

mi=1

ai(mi)m−si

i (1 ≤ i ≤ n) ([16, 26]).

However, it is more difficult to treat (1.5). It is not known how to treat this type

of multiple sums in general. The first purpose of the present paper is to show that if

the polynomials Pi are elliptic, the holomorphic continuation with moderate growth

of (1.5) can be proved (Theorem 2.1, Corollary 2.2) if we assume a certain recurrence

condition on the coefficients ai (1 ≤ i ≤ n).

To prove the continuation, we introduce a vectorial zeta-function

(1.6) Zn(F; P; s) :=
∑

m=(m1,...,mn)∈Nn

F(m1, . . . , mn)∏n
i=1 Pi(m1, . . . , mi)si

,

where F : N
n → C

q is a vectorial function and where P = (Pi)i=1,...,n is a family of

polynomials such that Pi ∈ R[X1, . . . , Xi] for all i. Our idea is to consider ζx

n (a; P; s)

as a coordinate of Zn(F; P; s). We will prove that Zn(F; P; s) can be continued holo-

morphically under some suitable conditions on F and P = (Pi)i=1,...,n (Theorem 2.3).

The vectorial zeta-function Zn(F; P; s) itself is also an interesting object. For ex-

ample, we can prove a vectorial sum formula in the case n = 2 (Theorem 2.4), from

which some generalizations of the classical sum formula can be deduced. It is the

second purpose of this paper to report such fascinating properties of the vectorial

zeta-function.

In what follows, for any elements x = (x1, . . . , xn) and y = (y1, . . . , yn) of C
n we

write ‖x‖ =
√
|x1|2 + · · · + |xn|2, |x| = |x1|+ · · ·+ |xn|, and 〈x, y〉 = x1 y1 + · · ·+xn yn.

We denote the canonical basis of R
n by (e1, . . . , en). We denote a vector in C

n by

s = (s1, . . . , sn) and write s = σ + iτ , where σ = (σ1, . . . , σn) and τ = (τ1, . . . , τn)

are the real respectively imaginary components of s (i.e., σi = ℜ(si) and τi = ℑ(si)

for all i).

The expression f (λ, y, x)≪
y
g(x) (uniformly in x ∈ X and λ ∈ Λ) means that

there exists A = A(y) > 0, which depends neither on x nor λ, but could depend on

the parameter vector y, such that | f (λ, y, x)| ≤ Ag(x) for any x ∈ X and any λ ∈ Λ.
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2 Statement of Results

We fix in the sequel a family of polynomials P = (Pi)1≤i≤n, where, for all i, Pi ∈
R[X1, . . . , Xi] is a polynomial of degree di ≥ 0 such that Pi(m1, . . . , mi) > 0 for all

m ∈ N
i . Denote by di = deg(Pi) the degree of the polynomial Pi . We assume the

following:

(i) dn ≥ 1.

(ii) Each Pi (1 ≤ i ≤ n) is elliptic on [0,∞)i ; that is

Pi di
(x1, . . . , xi) > 0 for any (x1 . . . , xi) ∈ R

i
+ \ {(0, . . . , 0)},

where Pi di
is the homogeneous part of Pi of degree di .

(iii) There exist D ≥ 0 and C > 0 such that

∣∣∣
n∏

i=1

ai(m1 + · · · + mi)
∣∣∣ ≤ C(m1 + · · · + mn)D

for all m = (m1, . . . , mn) ∈ N
n.

(iv) The coefficients satisfy a recurrence condition, that is, there exist r ∈ N and

constants λ ji ∈ C (1 ≤ i ≤ n, 0 ≤ j ≤ r − 1) such that

(2.1) ai(m + r) =

r−1∑

j=0

λ jiai(m + j) for any m ∈ N.

In order to extend meromorphically the zeta-function ζx

n (a; P; s) beyond its do-

main of convergence, the fundamental idea in this paper is to consider the zeta-

function ζx

n (a; P; s) as a coordinate of a vectorial zeta-function

Zn(A; P; s) :=
∑

m=(m1,...,mn)∈Nn

A(m1, . . . , mn)
n∏

i=1

P(m1, . . . , mi)
−si ,

where A = (A1, . . . , Aq) is a suitable vector-valued function with some “similarity

properties”. More precisely, set q = rn, denote by η1, . . . , ηq the family of all the

maps between {1, . . . , n} and {0, . . . , r − 1}, and define the function A : N
n → C

q

by A(m) := (A1(m), . . . , Aq(m)), where m = (m1, . . . , mn) ∈ N
n and

(2.2) Al(m) =

n∏
i=1

ai(m1 + · · · + mi + ηl(i))

for all l ∈ {1, . . . , q}. It follows from (2.1) that for all k = 1, . . . , n there exists a

matrix Tk ∈ Mq×q(C) such that

(2.3) A(m + rek) = A(m1, . . . , mk−1, mk + r, mk+1, . . . , mn) = Tk A(m)

for any m ∈ N
n.
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Let d = (d1, . . . , dn), where di = deg(Pi) as above. For any R ∈ R set

Vn(d; R) := {s = σ +
√
−1τ ∈ C

n
∣∣

n∑

j=i

diσi > R + n + 1 − i (1 ≤ i ≤ n)},

and

Bn(σ; d; R) := sup
1≤i≤n

(
n + 1 + R − i − (diσi + · · · + dnσn)

)
.

The first main result of this paper is the following.

Theorem 2.1 Besides the above (i)—(iv), assume that 1 is not an eigenvalue of any

of the matrices T1, . . . , Tn. Then the function ζx

n (a; P; s) converges absolutely in the set

Vn(d; D), has a holomorphic continuation to the whole complex space C
n, and for all

σ = (σ1, . . . , σn) ∈ R
n we have

ζx

n (a; P; s) = ζx

n (a; P; σ +
√
−1τ ) ≪a,P,σ 1 + (1 + |τ |)1+Bn(σ;d;D)

uniformly in τ = (τ1, . . . , τn) ∈ R
n.

Remark If P = (X1 + · · · + Xi)1≤i≤n, then

ζx

n (a; P; s) = ζx

n (a; s) =

∑

m=(m1,...,mn)∈Nn

n∏
i=1

ai(m1 + · · · + mi)

(m1 + · · · + mi)si
.

Therefore our Theorem 2.1 can be applied to the classical multiple zeta-functions

ζx

n (a; s). In this particular case one can write ζx

n (a; s) as a combination of twisted

Euler–Zagier sums

ζEZ,n(z; s) =

∑

m=(m1,...,mn)∈Nn

zm1

1 . . . zmn
n∏n

i=1(m1 + · · · + mi)si
,

where z = (z1, . . . , zn). Several methods can then be used in this case (see [1, 3, 9–

12, 19, 23, 25, 28, 29, 33], etc.) to prove meromorphic continuation of twisted Euler–

Zagier sums ζEZ,n(z; s). Therefore, these methods can give the meromorphic contin-

uation of ζx

n (a; s) in some cases. However, these methods can give only the meromor-

phic continuation, and if one wants to prove holomorphic continuation, one needs in

addition to verify that any divisor of (twisted) Euler–Zagier sums that appears in the

sum vanishes after summation. This is generally not an easy task!

Corollary 2.2 Assume that there exist r ∈ N and λ1, . . . , λn ∈ C satisfying

∣∣∣
n∏

j=i

λ j

∣∣∣ ≤ 1 and
n∏

j=i

λ j 6= 1,(2.4)

ai(m + r) = λi ai(m)(2.5)
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for all i = 1, . . . , n and all m ∈ N. Then ζx

n (a; P; s) converges absolutely in

Vn(d; 0), has a holomorphic continuation to the whole complex space C
n, and for any

σ = (σ1, . . . , σn) ∈ R
n the estimate

ζx

n (a; P; s) = ζx

n (a; P; σ +
√
−1τ ) ≪a,P,σ 1 +

(
1 + |τ |

) 1+Bn(σ;d;0)

holds uniformly in τ = (τ1, . . . , τn) ∈ R
n.

Theorem 2.1 follows easily from the following general result on the vectorial zeta-

function Zn(F; P; s), defined by (1.6).

Theorem 2.3 Assume that there exist r ∈ N and n matrices T1, . . . , Tn ∈ Mq×q(C)

such that for all k = 1, . . . , n and for all m ∈ N
n

(2.6) F(m + rek) = F(m1, . . . , mk−1, mk + r, mk+1, . . . , mn) = Tk F(m).

Further assume that there exist D ≥ 0 and C > 0 such that for all

(2.7) ‖F(m1, . . . , mn)‖ ≤ C(m1 + · · · + mn)D

for all m = (m1, . . . , mn) ∈ N
n, and also that 1 is not an eigenvalue of any of the

matrices T1, . . . , Tn. Then

(i) s 7→ Zn(F; P; s) converges absolutely in the set Vn(d; D) and has a holomorphic

continuation to the whole complex space C
n;

(ii) For all σ = (σ1, . . . , σn) ∈ R
n we have

Zn(F; P; s) = Zn(F; P; σ +
√
−1τ ) ≪F,P,σ 1 +

(
1 + |τ |

) 1+Bn(σ;d;D)

uniformly in τ = (τ1, . . . , τn) ∈ R
n.

In the next two sections we will describe the proof of Theorem 2.3.1 Then in

Section 5, we will deduce Theorem 2.1 and Corollary 2.2 from Theorem 2.3.

The vectorial zeta-function Zn(F; P; s) is not just an auxiliary function, but an

interesting object itself. A typical example of the vector F can be constructed by using

Fibonacci numbers. We will discuss the properties of the associated zeta-function in

Section 6.

Another interesting fact on the vectorial zeta-function is the vectorial sum formula.

Recall the Euler double zeta-function

ζEZ,2(s1, s2) =

∞∑

m=1

∞∑

n=1

1

ms1 (m + n)s2
,

which is the case n = 2 of (1.1) and was originally studied by Euler. This is one of

the most well-known multiple zeta-functions (see [17, 32]). A famous formula for

ζEZ,2(s1, s2) is

(2.8)

k+1∑

h=2

ζEZ,2(k + 2 − h, h) = ζ(k + 2) (k ∈ N),

1For technical reasons, we are going to prove Theorem 4.1, which is slightly more general.
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which is called the “sum formula” and was essentially proved by Euler. In particular,

when k = 1, we have ζEZ,2(1, 2) = ζ(3). (For a more detailed discussion, see [5].)

Here we consider the cases n = 1, 2. Let F = ( f1, . . . , fq) : N
1 → C

q be a function.

For a fixed k ∈ N, we assume that f j(m) = O(mk−ε) (1 ≤ j ≤ q), where O implies

the usual O-symbol and ε implies a sufficiently small positive number. Moreover,

we define Fν : N
2 → C

q (1 ≤ ν ≤ 3) by F1(m, n) = F(m), F2(m, n) = F(n) and

F3(m, n) = F(m + n), and, as special cases of (1.6), consider

(2.9) Z1(F; s) =

∞∑

m=1

F(m)

ms
, Z2(Fν ; s1, s2) =

∞∑

m,n=1

Fν(m, n)

ms1 (m + n)s2
(1 ≤ ν ≤ 3).

The vectorial analogue of the sum formula is as follows. Note that we need no

assumption with respect to eigenvalues of Tk given in the statement of Theorem 2.3,

because this result concerns the values in the convergent area.

Theorem 2.4 Let F, F1, F2, F3, and k be defined as above. Then the formula

(2.10)

k+1∑

h=2

Z2(F1; k + 2 − h, h) + Z2(F2; 1, k + 1) − Z2(F3; 1, k + 1) = Z1(F; k + 2)

holds. In particular when k = 1,

∞∑

m=1

∞∑

n=1

F(m) + F(n) − F(m + n)

m(m + n)2
=

∞∑

m=1

F(m)

m3
.

The proof of this theorem will be given in Section 7. Further generalization of

this theorem will be discussed in the last section, where a conjecture on a possible

vectorial sum formula for multiple series will be proposed.

Here we mention several remarkable consequences of this theorem. By applying

Theorem 2.4 in the case F(m) = Mm (m ∈ N) for M ∈ Ml×l(C), we obtain the

following.

Corollary 2.5 Let k ∈ N and M ∈ Ml×l(C) with the assumption that each entry of

Mm is O
(

mk−ε
)

(m → ∞). Then

(2.11)

k+1∑

h=2

{ ∞∑

m=1

∞∑

n=1

Mm

mk+2−h(m + n)h

}
+

∞∑

m=1

∞∑

n=1

Mn

m(m + n)k+1

−
∞∑

m=1

∞∑

n=1

Mm+n

m(m + n)k+1
=

∞∑

m=1

Mm

mk+2
.

Example 2.6 Consider the case when l = 1, that is, M ∈ M1×1(C) = C. It

is clear that if M = 1, then (2.11) coincides with the ordinary sum formula (2.8).
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Moreover, if M = x ∈ C (|x| ≤ 1), then we obtain the sum formula for the double

polylogarithms:

(2.12)

k+1∑

h=2

{ ∞∑

m=1

∞∑

n=1

xm

mk+2−h(m + n)h

}
+

∞∑

m=1

∞∑

n=1

xn

m(m + n)k+1

−
∞∑

m=1

∞∑

n=1

xm+n

m(m + n)k+1
=

∞∑

m=1

xm

mk+2
(k ∈ N).

This is implicitly included in [27]. In fact, as can be seen from the proof of Theo-

rem 2.4 in the last section, we can easily derive (2.12) from [27, Theorem 2.5].

Example 2.7 Let M ∈ Ml×l(C), which satisfies that each entry of Mm is O(mk−ε).

For any fixed i, j, we denote the (i, j)-entry of Mm by c(m) = ci j(m) (m ∈ N).

Needless to say, the explicit expression of c(m) in terms of entries of M is rather

complicated. From (2.11), we find that the formula

(2.13)

k+1∑

h=2

{ ∞∑

m=1

∞∑

n=1

c(m)

mk+2−h(m + n)h

}
+

∞∑

m=1

∞∑

n=1

c(n)

m(m + n)k+1

−
∞∑

m=1

∞∑

n=1

c(m + n)

m(m + n)k+1
=

∞∑

m=1

c(m)

mk+2

holds. It seems not easy to find such a formula without using our vectorial zeta-

function.

3 Three Elementary Lemmas

Now we start the proof of Theorem 2.3. First of all, we state the following elementary

but useful lemmas.

Lemma 3.1 For v ∈ N and N ∈ N0 we define the function Gv,N : C
v×(−1,∞)v → C

by

Gv,N(s; x) :=

v∏

i=1

(1 + xi)
−si −

∑

k∈N
v
0

|k|≤N

(−s

k

)
xk,

where
(
−s
k

)
=

∏v
i=1

(
−si

ki

)
and xk

=
∏v

i=1 xki

i for s = (s1, . . . , sv), x = (x1, . . . , xv),

k = (k1, . . . , kv). Then,

(i) for any x ∈ (−1,∞)v, s 7→ Gv,N (x; s) is holomorphic in C
v;

(ii) for any δ, γ ∈ R such that −1 < δ ≤ γ, we have

|Gv,N (σ + iτ ; x)| ≪δ,γ,N,v,σ

(
1 + (1 + |τ |)N+1

)
|x|N+1,

uniformly in x ∈ [δ, γ]v and τ ∈ R
v.
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Proof Fix s ∈ C
v and x ∈ (−1,∞)v. Define the function ϕ : [0, 1] → C by

(3.1) ϕ(t) :=
v∏

i=1

(1 + txi)
−si (0 ≤ t ≤ 1).

We prove that, for any q ∈ N0, the derivative of ϕ of order q is given by

(3.2) ϕ(q)(t) = q!
∑

k∈N
v
0

|k|=k1+···+kv=q

(−s

k

)
xk

v∏
i=1

(1 + txi)
−si−ki (0 ≤ t ≤ 1).

The proof is by induction on q. If q = 0, then (3.2) is clearly verified. Now assume

that (3.2) is true for q and prove that it remains true for q + 1. Differentiating both

sides of (3.2), we obtain

ϕ(q+1)(t)

= q!
∑

k∈N
v
0

|k|=k1+···+kv=q

(−s

k

)
xk

v∑

i=1

(−si − ki)xi

( v∏
j=1
j 6=i

(1 + tx j)
−s j−k j

)
(1 + txi)

−si−ki−1

= q!

v∑

i=1

∑

k∈N
v
0

|k|=k1+···+kv=q

( −s

k + ei

)
(ki + 1)xk+ei

( v∏
j=1
j 6=i

(1 + tx j)
−s j−k j

)
(1 + txi)

−si−ki−1

= q!

v∑

i=1

∑

k∈N
v
0

|k|=q+1, ki≥1

(−s

k

)
kix

k
( v∏

j=1

(1 + tx j)
−s j−k j

)

= q!
∑

k∈N
v
0

|k|=q+1

(−s

k

)
xk

( v∏
j=1

(1 + tx j)
−s j−k j

) v∑

i=1

ki

= (q + 1)!
∑

k∈N
v
0

|k|=q+1

(−s

k

)
xk

( v∏
j=1

(1 + tx j)
−s j−k j

)
.

Hence we find that (3.2) is also true for q + 1. This ends our induction argument and

completes the proof of (3.2). In particular, for any q ∈ N0 we have

(3.3) ϕ(q)(0) = q!
∑

k∈N
v
0

|k|=k1+···+kv=q

(−s

k

)
xk.

Let (s; x) ∈ C
v × (−1,∞)v and let N ∈ N0. By applying Taylor’s formula (with

remainder) to the one variable function ϕ(t) we get

(3.4) ϕ(1) =

N∑

q=0

ϕ(q)(0)

q!
+

1

N!

∫ 1

0

(1 − t)Nϕ(N+1)(t) dt.
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Since from (3.1) and (3.3) we see that

Gv,N (s; x) = ϕ(1) −
N∑

q=0

ϕ(q)(0)

q!
,

relations (3.2) and (3.4) imply that for all (s; x) ∈ C
v × (−1,∞)v we have

Gv,N(s; x) = (N + 1)
∑

k∈N
v

|k|=N+1

(−s

k

)
xk

∫ 1

0

(1 − t)N
v∏

i=1

(1 + txi)
−si−ki dt.

The lemma easily follows from this expression of Gv,N (s; x).

Lemma 3.2 Let T ∈ Mq×q(C). When the estimate (2.7) holds, the estimate

(3.5) ‖TF(m)‖ ≪F,T (m1 + · · · + mn)D

also holds.

Proof Let F(m) = ( f j(m))1≤ j≤q and T = (ci j)1≤i, j≤q. Then

TF(m) =

( q∑

j=1

ci j f j(m)

)

1≤i≤q

,

and hence

‖TF(m)‖ =

( q∑

i=1

∣∣∣
q∑

j=1

ci j f j(m)
∣∣∣

2
) 1/2

≤
(

max
1≤i, j≤q

|ci j |
)( q∑

i=1

( q∑

j=1

| f j(m)|
) 2) 1/2

≪F,T

( q∑

j=1

| f j(m)|2
) 1/2

= ‖F(m)‖ ≪ (m1 + · · · + mn)D,

which is (3.5).

Lemma 3.3 Let Q ∈ R[X1, . . . , Xn] be an elliptic polynomial of degree d. Then there

exist α > 0, β > 0 and R > 0 such that, for any x = (x1, . . . , xn) ∈ R
n
+ satisfying

|x| = x1 + · · · + xn ≥ R, we have

α(x1 + · · · + xn)d ≤ Q(x) ≤ β(x1 + · · · + xn)d.

Proof Let Qd be the homogeneous part of Q of degree d. Set E = {x ∈ R
n
+ | |x| = 1}.

Since E is compact and Q is elliptic, it follows that α = infy∈E Qd(y) > 0 and β =

supy∈E Qd(y) > 0. Now let x ∈ R
n
+ \ {0}. Since y =

(
x1/|x|, . . . , xn/|x|

)
∈ E,

one has α ≤ Qd

(
x1/|x|, . . . , xn/|x|

)
≤ β, and by homogeneity, we deduce that:

α|x|d ≤ Qd(x) ≤ β|x|d. We conclude by using in addition the fact that Q(x) =

Qd(x) + O(|x|d−1) as |x| → ∞.
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4 Proof of Theorem 2.3

Now we prove by induction on n that Zn(F; P; s) has a holomorphic continuation to

C
n. The basic idea of the argument here is the same as in the “decalage” method of

the first author [8, 15].

For technical reasons, we will prove the following slightly more general theorem

than Theorem 2.3. But before stating this theorem (i.e., Theorem 4.1), we will intro-

duce some notations.

Let u = (u(0), . . . , u(n)) ∈ N
n+1
0 such that u(0) = 0 and u(n) ≥ 1. Let

P = {Pi, j | 1 ≤ i ≤ n, 1 ≤ j ≤ u(i)}

be a family of polynomials such that, for all i, j, Pi, j ∈ R[X1, . . . , Xi] is an elliptic

polynomial in [0,∞)i of degree di, j . Set d = {di, j | 1 ≤ i ≤ n, 1 ≤ j ≤ u(i)} and

di = (di,1, . . . , di,u(i)) for all i. We assume that dn 6= (0, . . . , 0). Set v(i) =
∑i−1

l=0 u(l)

(i = 1, . . . , n + 1), especially v = v(n + 1) =
∑n

l=0 u(l) = |u|. For any T ∈ R set

Vn(u, d; T) :=

{
s = σ +

√
−1τ ∈ C

v
∣∣

n∑

l=i

u(l)∑

j=1

dl, jσv(l)+ j > T + n + 1 − i (1 ≤ i ≤ n)
}

,

and

Bn(σ; u; d; T) := sup
1≤i≤n

(
n + 1 + T − i −

n∑

l=i

u(l)∑

j=1

dl, jσv(l)+ j

)
.

Theorem 4.1 Let F : N
n → C

q be a vectorial function as in Theorem 2.3. Let P =

(Pi, j) be a family of elliptic polynomials as above and let H ∈ R[X1, . . . , Xn] be a

polynomial of degree h. Consider the generalized vectorial multiple zeta-function

(4.1) Zn(F; P; H; s) :=

∑

m=(m1,...,mn)∈Nn

H(m1, . . . , mn) F(m1, . . . , mn)
∏n

i=1

∏u(i)
j=1 Pi, j(m1, . . . , mi)

sv(i)+ j

(
s = (s1, . . . , sv)

)
.

Then

(i) s 7→ Zn(F; P; H; s) converges absolutely in the set Vn(u; d; h + D);

(ii) s 7→ Zn(F; P; H; s) has a holomorphic continuation to the whole complex space C
v;

(iii) for all σ = (σ1, . . . , σv) ∈ R
v we have

(4.2) Zn(F; P; H; s) = Zn(F; P; H; σ +
√
−1τ ) ≪F,P,H,σ 1 +

(
1 + |τ |

) 1+Bn(σ;u;d;D+h)

uniformly in τ = (τ1, . . . , τv) ∈ R
v.
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4.1 Proof of Theorem 4.1(i)

By using Lemma 3.3 and relation (2.7), it is easy to see that, for any s = σ +
√
−1τ ∈

C
v, we have

H(m1, . . . , mn) F(m1, . . . , mn)∏n
i=1

∏ui

j=1 Pi, j(m1, . . . , mi)
svi + j

≪F,P,σ
(m1 + · · · + mn)h+D

∏n
i=1(m1 + · · · + mi)〈di ,σv(i)〉

(m ∈ N
n),

where σv(i) = (σv(i)+1, . . . , σv(i)+u(i)). This fact compared with relation (1.2) com-

pletes the proof of Theorem 4.1(i).

4.2 A Key Lemma

Let F, u, P = (Pi, j), d = (di, j) be as in the statement of Theorem 4.1. Define

u ′
= (u(0) ′, . . . , u(n − 1) ′) ∈ N

n
0 by u(i) ′ = u(i) for all i < n − 1 and u(n − 1) ′ =

u(n − 1) + u(n). For all i = 1, . . . , n set v(i) ′ =
∑i−1

l=0 u(l) ′ and

v ′
= v(n) ′ =

n−1∑

l=0

u(l) ′ = |u ′|(= |u| = v).

For t ∈ {1, . . . , r}, we define

P
t
= {Pt

i, j | 1 ≤ i ≤ n − 1, 1 ≤ j ≤ u(i) ′}

by

(i) Pt
i, j(X1, . . . , Xi) = Pi, j(X1, . . . , Xi) if i < n − 1;

(ii) Pt
n−1, j(X1, . . . , Xn−1) = Pn−1, j(X1, . . . , Xn−1) if i = n−1 and j ∈ {1, . . . , u(n−

1)};

(iii) Pt
n−1, j(X1, . . . , Xn−1) = Pn, j−u(n−1)(X1, . . . , Xn−1, t) if i = n − 1 and

j ∈ {u(n − 1) + 1, . . . , u(n − 1) + u(n) = u(n − 1) ′}.

Set dt
= {dt

i, j | 1 ≤ i ≤ n − 1, 1 ≤ j ≤ u(i) ′}, where dt
i, j = deg(Pt

i, j).

We will also use the notations

(i) ∆rU = U (X + ren) −U (X) for U (X) = U (X1, . . . , Xn) ∈ R[X1, . . . , Xn] ;

(ii) s(k) := s +
∑u(n)

j=1 k jev(n)+ j for all s = (s1, . . . , sv) ∈ C
v and for all k =

(k1, . . . , ku(n)) ∈ N
u(n)
0 ;

and the convention

(4.3) Z0(F; P
t ; H(., t); s) :=

H(t) F(t)
∏u(1)

j=1 P1, j(t)sv(1)+ j

.

Then we have the following key lemma.
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Lemma 4.2 Let n ∈ N and let H ∈ R[X1, . . . , Xn] of degree h. Assume that F and

P = (Pi, j) satisfy all the assumptions of Theorem 4.1. Then for all N ∈ N0 and for all

s = (s1, . . . , sv) ∈ Vn(u, d, h + D), we have

Zn(F; P; H; s)

= (Iq − Tn)−1
r∑

t=1

Zn−1

(
F( · , t); P

t ; H( · , t); s
)

+ (Iq − Tn)−1Tn

∑

k∈N
u(n)
0

1≤|k|≤N

( u(n)∏
j=1

(−sv(n)+ j

k j

))
Zn

(
F; P; H

u(n)∏
j=1

(∆rPn, j)
k j ; s(k)

)

+ (Iq − Tn)−1Tn

∑

k∈N
u(n)
0

|k|≤N

( u(n)∏
j=1

(−sv(n)+ j

k j

))
Zn

(
F; P; (∆rH)

u(n)∏
j=1

(∆rPn, j)
k j ; s(k)

)

+ RN (F; P; H; s),

(4.4)

where Iq is the unit matrix of size q, and s 7→ RN (F; P; H; s) converges absolutely, defines

a holomorphic function in Vn(u; d; h+D−N−1), and satisfies in this region the estimate

(4.5) RN (F; P; H; s) = RN (F; P; H; σ + iτ ) ≪F,P,H,N,σ 1 + (1 + |τ |)N+1 (τ ∈ R
v).

Proof of Lemma 4.2 For all s = (s1, . . . , sv) ∈ Vn(u, d, h + D) we have

Zn(F; P; H; s)

=

∑

m=(m1,...,mn)∈Nn

H(m1, . . . , mn) F(m1, . . . , mn)
∏n

i=1

∏u(i)
j=1 Pi, j(m1, . . . , mi)

sv(i)+ j

=

∑

m=(m ′,mn)∈Nn−1×N

H(m ′, mn) F(m ′, mn)
∏n

i=1

∏u(i)
j=1 Pi, j(m1, . . . , mi)

sv(i)+ j

=

r∑

t=1

∑

m ′∈Nn−1

H(m ′, t) F(m ′, t)(∏n−1
i=1

∏u(i)
j=1 Pi, j(m1, . . . , mi)

sv(i)+ j

) ∏u(n)
j=1 Pn, j(m ′, t)sv(n)+ j

+
∑

m=(m ′,mn)∈Nn−1×N

H(m ′, mn + r) F(m ′, mn + r)(∏n−1
i=1

∏u(i)
j=1 Pi, j(m1, . . . , mi)

sv(i)+ j

) ∏u(n)
j=1 Pn, j(m ′, mn + r)sv(n)+ j

=

r∑

t=1

Zn−1(F( · , t); P
t ; H( · , t); s)

+
∑

m∈Nn

(
H(m) + ∆rH(m)

)
TnF(m)

∏n
i=1

∏u(i)
j=1 Pi, j(m1, . . . , mi)

sv(i)+ j

u(n)∏

j=1

(
1 +

∆rPn, j(m)

Pn, j(m)

)−sv(n)+ j

,
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where we used (2.6) to verify the last equality. Fix N ∈ N0. Applying Lemma 3.1 to

the above, for any s = (s1, . . . , sv) ∈ Vn(u, d, h + D) we have

Zn(F; P; H; s)

=

r∑

t=1

Zn−1(F( · , t); P
t ; H( · , t); s)

+
∑

m∈Nn

H(m) TnF(m)

∏n
i=1

u(i)∏
j=1

Pi, j(m1, . . . , mi)
sv(i)+ j

∑

k∈N
u(n)
0

|k|≤N

u(n)∏
j=1

(−sv(n)+ j

k j

)(
∆rPn, j(m)

Pn, j(m)

) k j

+
∑

m∈Nn

(
∆rH(m)

)
TnF(m)

∏n
i=1

u(i)∏
j=1

Pi, j(m1, . . . , mi)
sv(i)+ j

∑

k∈N
u(n)
0

|k|≤N

u(n)∏
j=1

(−sv(n)+ j

k j

)(
∆rPn, j(m)

Pn, j(m)

) k j

+
∑

m∈Nn

(
H(m) + ∆rH(m)

)
TnF(m)

∏n
i=1

∏u(i)
j=1 Pi, j(m1, . . . , mi)

sv(i)+ j

× Gu(n),N

(
(sv(n)+ j)1≤ j≤u(n);

(
∆rPn, j(m)

Pn, j(m)

)

1≤ j≤u(n)

)

=

r∑

t=1

Zn−1(F( · , t); P
t ; H( · , t); s)

+ Tn

∑

k∈N
u(n)
0

|k|≤N

( u(n)∏
j=1

(−sv(n)+ j

k j

))
Zn

(
F; P; H

u(n)∏
j=1

(∆rPn, j)
k j ; s(k)

)

+ Tn

∑

k∈N
u(n)
0

|k|≤N

( u(n)∏
j=1

(−sv(n)+ j

k j

))
Zn

(
F; P; (∆rH)

u(n)∏
j=1

(∆rPn, j)
k j ; s(k)

)

+
∑

m∈Nn

(
H(m) + ∆rH(m)

)
TnF(m)

∏n
i=1

∏u(i)
j=1 Pi, j(m1, . . . , mi)

sv(i)+ j

× Gu(n),N

(
(sv(n)+ j)1≤ j≤u(n);

(
∆rPn, j(m)

Pn, j(m)

)

1≤ j≤u(n)

)
.

The term corresponding to k = 0 of the second sum on the right-hand side is

TnZn(F; P; H; s). We move this term to the left-hand side. Since 1 is not an eigenvalue
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of Tn, multiplying both sides by (Iq − Tn)−1, we obtain (4.4) with

RN (F; P; H; s) : =

∑

m∈Nn

(
H(m) + ∆rH(m)

)
(Iq − Tn)−1TnF(m)

∏n
i=1

∏u(i)
j=1 Pi, j(m1, . . . , mi)

sv(i)+ j

× Gu(n),N

(
(sv(n)+ j)1≤ j≤u(n);

(
∆rPn, j(m)

Pn, j(m)

)

1≤ j≤u(n)

)

(4.6)

for any s ∈ Vn(u, d, h + D). Let j = 1, . . . , un. The fact that deg
(
∆rPn, j

)
≤

deg(Pn, j) − 1 and Lemma 3.3 implies that (∆rPn, j(m))/Pn, j(m) ≪ |m|−1 uniformly

in m ∈ N
n. This and Lemma 3.1 imply that

s 7→ Gu(n),N

(
(sv(n)+ j)1≤ j≤u(n);

(
∆rPn, j(m)

Pn, j(m)

)

1≤ j≤u(n)

)

is holomorphic in C
u(n) and that

Gu(n),N

(
(sv(n)+ j)1≤ j≤u(n);

(
∆rPn, j(m)

Pn, j(m)

)

1≤ j≤u(n)

)

≪F;P,N,σ

(
1 + (1 + |τ |)N+1

) 1

|m|N+1
,

uniformly in τ ∈ R
n and m ∈ N

n. Applying Lemma 3.2 with T = (Iq − Tn)−1Tn, we

have

(
H(m) + ∆rH(m)

)
(Iq − Tn)−1TnF(m)

∏n
i=1

∏u(i)
j=1 Pi, j(m1, . . . , mi)

sv(i)+ j

× Gu(n),N

(
(sv(n)+ j)1≤ j≤u(n);

(
∆rPn, j(m)

Pn, j(m)

)

1≤ j≤u(n)

)

≪ (m1 + · · · + mn)h+D

∏n
i=1

∏u(i)
j=1(m1 + · · · + mi)

di, jσv(i)+ j

(
1 + (1 + |τ |)N+1

) 1

|m|N+1

=

(
1 + (1 + |τ |)N+1

)

(∏n−1
i=1 (m1 + · · · + mi)〈di ,σv(i)〉

)
(m1 + · · · + mn)〈dn,σv(n)〉−h−D+N+1

.

This, (4.6) and (1.2) imply that s 7→ RN (F; P; H; s) converges absolutely, defines a

holomorphic function in Vn(u; d; h + D − N − 1) and satisfies in this region the

estimate

RN (F; P; H; s) = RN (F; P; H; σ +
√
−1τ ) ≪F,P,H,N,σ 1 + (1 + |τ |)N+1 (τ ∈ R

v).

This concludes the proof of Lemma 4.2.
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4.3 Proof of Theorem 4.1(ii)

We now prove Theorem 4.1(ii). The proof is by induction on n ∈ N; it will be clear,

by using convention (4.3) above, that the proof that “the n − 1 case implies the n

case” also works for the case n = 1. Let n ≥ 1 and we assume that Theorem 4.1(ii) is

true for functions of at most n− 1 indeterminates. We will prove that it remains true

for functions of n indeterminates.

In the following we write f (s) ∈ R(A) if s 7→ f (s) is holomorphic in (or can be

continued holomorphically to) the region A. Let F, u, P = (Pi, j), d = (di, j) be as in

the statement of Theorem 4.1. Set

H :=

{
H

∏u(n)
j=1 P

b j

n, j

∣∣ H ∈ R[X1, . . . , Xn] and b = (b1, . . . , bu(n)) ∈ N
u(n)
0

}
.

For G = H
(∏u(n)

j=1 P
b j

n, j

)−1

∈ H of degree g := deg(H) − 〈dn, b〉 ∈ Z, we define

(4.7) Zn(F; P; G; s) :=

∑

m=(m1,...,mn)∈Nn

G(m1, . . . , mn) F(m1, . . . , mn)
∏n

i=1

∏u(i)
j=1 Pi, j(m1, . . . , mi)

sv(i)+ j

= Zn(F; P; H; s(b)),

where s(b) = s +
∑u(n)

j=1 b jev(n)+ j for s = (s1, . . . , sv). Theorem 4.1(i) implies that

s 7→ Zn(F; P; G; s) converges absolutely in Vn(u; d; g + D), and hence

(4.8) Zn(F; P; G; s) ∈ R(Vn(u; d; g + D)).

Let M ∈ N0 be a fixed integer. We will prove by induction on g = deg(G) that

(4.9) Zn(F; P; G; s) ∈ R(Vn(u; d; D − M)).

Step 1: The case g ≤ −M

In this case, it follows from (4.8) that s 7→ Zn(F; P; G; s) is a holomorphic function

in Vn(u; d; g + D) ⊂ Vn(u; d; D − M). Thus, (4.9) holds for G ∈ H such that

deg(G) ≤ −M.

Step 2: The case g ≥ −M + 1

We will show that if (4.9) holds for all G ∈ H with deg(G) ≤ g − 1, then it also

holds for G ∈ H with deg(G) = g.

Let g ≥ −M + 1 and suppose that (4.9) holds for all G ∈ H such that deg(G) ≤
g − 1. Let G = H

(∏u(n)
j=1 P

b j

n, j

)−1 ∈ H such that deg(G) = g. Denote h = deg(H).

Let N = max(M + g − 1, 0) ∈ N0. By using (4.7), (4.8) and Lemma 4.2, for all
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s ∈ Vn(u; d; g + D) we have

Zn(F; P; G; s) = Zn(F; P; H; s(b))

= (Iq − Tn)−1
r∑

t=1

Zn−1(F( · , t); P
t ; H( · , t); s(b))

+ (Iq − Tn)−1Tn

∑

k∈N
u(n)
0

1≤|k|≤N

(
u(n)∏
j=1

(−sv(n)+ j

k j

))
Zn

(
F; P; Gk; s

)

+ (Iq − Tn)−1Tn

∑

k∈N
u(n)
0

|k|≤N

(
u(n)∏
j=1

(−sv(n)+ j

k j

))
Zn

(
F; P; G ′

k; s
)

+ RN (F; P; H; s(b)),

(4.10)

where

(4.11) Gk := G
u(n)∏
j=1

(
∆rPn, j

Pn, j

) k j

; G ′
k :=

∆rH
∏u(n)

j=1 P
b j

n, j

u(n)∏
j=1

(
∆rPn, j

Pn, j

) k j

for any k ∈ N
u(n)
0 , and s 7→ RN (F; P; H; s) is a holomorphic function in Vn(u; d; h +

D − N − 1).

It is easy to see that s(b) ∈ Vn(u; d; h + D − N − 1) if and only if s ∈ Vn(u; d; g +

D − N − 1). According to our choice of N we have g + D − N − 1 ≤ D − M, and

hence Vn(u; d; D − M) ⊂ Vn(u; d; g + D − N − 1). Consequently,

(4.12) RN

(
F; P; H; s(b)

)
∈ R

(
Vn(u; d; D − M)

)
.

Next, the ellipticity of Pn, j implies (see Lemma3.3) that deg
(

∆rPn, j

Pn, j

)
≤ −1. It follows

then from (4.11) that

deg(Gk) ≤ g − |k| ≤ g − 1 (for k ∈ N
u(n)
0 \ {0}) and

deg(G ′
k) ≤ g − 1 − |k| ≤ g − 1 (for k ∈ N

u(n)
0 ).

Therefore, the induction hypothesis on deg(G) implies that

Zn(F; P; Gk; s) ∈ R(Vn(u; d; D − M))

(for all k ∈ N
u(n)
0 \ {0}) and

Zn(F; P; G ′
k; s) ∈ R(Vn(u; d; D − M))

(for all k ∈ N
u(n)
0 ). Lastly, for any fixed t ∈ {1, . . . , r}, the function F(., t) : N

n−1 →
C

q satisfies

F(m ′ + re ′
k, t) = F(m1, . . . , mk−1, mk + r, mk+1, . . . , mn−1, t) = TkF(m ′, t)
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(1 ≤ k ≤ n − 1). It follows by induction hypothesis on n that

(4.13) Zn−1(F( · , t); P
t ; H( · , t); s(b)) ∈ R(C

v).

Combining (4.12)–(4.13) and (4.10), we conclude that s 7→ Zn−1(F; P; G; s) has a

holomorphic continuation to the set Vn(u; d; D−M). This ends the induction argu-

ment on g = deg(G).

Since M is arbitrary, by letting M → ∞, we obtain that Theorem 4.1(ii) is also

true for n. This also finishes the induction argument on n and completes the proof

of Theorem 4.1(ii).

4.4 Proof of Theorem 4.1(iii)

We proceed also by induction on n ∈ N. As in Subsection 4.3, the following argument

also works for n = 1. Let n ≥ 1 and assume that Theorem 4.1(iii) is true for functions

of at most n− 1 indeterminates. We will prove that it also remains true for functions

of n indeterminates. Actually we prove by induction on N ∈ N0 that estimate (4.2)

holds uniformly in s = σ +
√
−1τ ∈ Vn(u; d; D + h − N).

When N = 0, the result follows from Theorem 4.1(i) and the absolute conver-

gence of the series Zn(F; P; H; s) in Vn(u; d; D + h).

Now assume that the estimate (4.2) is true for N(≥ 0). We show that it also

remains true for N +1. Lemma 4.2 and the analytic continuation proved above imply

that for any s ∈ C
v, we have formula (4.4), whose right-hand side we denote as

(Iq − Tn)−1
Σ1 + (Iq − Tn)−1TnΣ2 + (Iq − Tn)−1TnΣ3 + RN (F; P; H; s).

In the following, we will evaluate each of the above terms.

Step 1

Let k ∈ N
un

0 \ {0}. It is easy to see that

(4.14) hk := deg
(

H
un∏
j=1

(∆rPn, j)
k j

)
≤ h +

un∑

j=1

k j(dn, j − 1) = h + 〈k, dn〉 − |k|.

In addition, it is also easy to check that s ∈ Vn(u; d; D + h − N − 1) if and only if

s(k) = s +

un∑

j=1

k jevn+ j ∈ Vn(u; d; D + h + 〈k, dn〉 − N − 1).

Since

D + h + 〈k, dn〉 − N − 1 ≥ D − N − 1 + hk + |k| ≥ hk + D − N,

we see that if s ∈ Vn(u; d; D + h − N − 1), then s(k) ∈ Vn(u; d; D + hk − N). It

follows then from the above and the induction hypothesis on N that, uniformly in
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s ∈ Vn(u; d; D + h − N − 1), we have

Σ1 ≪F,P,H,σ

∑

k∈N
u(n)
0

1≤|k|≤N

( un∏
j=1

(
1 + |τv(n)+ j |

) k j
)(

1 +
(

1 + |τ |
) 1+Bn(σ(k);u;d;D+hk)

)

≪F,P,H,σ

∑

k∈N
u(n)
0

1≤|k|≤N

{(
1 + |τ |

) |k|
+

(
1 + |τ |

) |k|+1+Bn(σ(k);u;d;D+hk)
}

,

(4.15)

where σ(k) = σ +
∑u(n)

j=1 k j ev(n)+ j . By using (4.14) we have

Bn(σ(k); u; d; D + hk)

= sup
1≤i≤n

(
D + hk + n + 1 − i −

n−1∑

l=i

u(l)∑

j=1

dl, jσv(l)+ j −
u(n)∑

j=1

dn, j(σv(n)+ j + k j)
)

≤ sup
1≤i≤n

(
D + h + 〈k, dn〉 − |k| + n + 1 − i −

n∑

l=i

u(l)∑

j=1

dl, jσv(l)+ j − 〈k, dn〉
)

= Bn(σ; u; d; D + h) − |k|.

(4.16)

The bounds (4.15) and (4.16) imply that

(4.17) Σ1 ≪F,P,H,σ (1 + |τ |)N +
(

1 + |τ |
) 1+Bn(σ;u;d;D+h)

uniformly in s ∈ Vn(u; d; D + h − N − 1).

Step 2

Our argument here is similar to that in Step 1. Let k ∈ N
u(n)
0 . We see that

h ′
k := deg

(
(∆rH)

u(n)∏
j=1

(∆rPn, j)
k j

)
≤ h − 1 +

u(n)∑

j=1

k j(dn, j − 1)(4.18)

= h − 1 + 〈k, dn〉 − |k|
and

D + h + 〈k, dn〉 − N − 1 ≥ D − N + h ′
k + |k| ≥ h ′

k + D − N.

Hence, as before, we find that if s ∈ Vn(u; d; D + h − N − 1), then s(k) ∈ Vn(u; d;

D + h ′
k − N). Therefore, using the induction hypothesis on N, uniformly in s ∈

Vn(u; d; D + h − N − 1), we have

Σ2 ≪F,P,H,σ

∑

k∈N
u(n)
0

|k|≤N

( u(n)∏

j=1

(1 + |τv(n)+ j |)k j

)(
1 +

(
1 + |τ |

) 1+Bn(σ(k);u;d;D+h ′

k )
)

≪F,P,H,σ

∑

k∈N
u(n)
0

|k|≤N

{
(1 + |τ |)|k| +

(
1 + |τ |

) |k|+1+Bn(σ(k);u;d;D+h ′

k )
}

.

(4.19)
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By using (4.18) we have

Bn(σ(k); u; d; D + h ′
k)

= sup
1≤i≤n

(
D + h ′

k + n + 1 − i −
n−1∑

l=i

u(l)∑

j=1

dl, jσv(l)+ j −
u(n)∑

j=1

dn, j(σv(n)+ j + k j)
)

≤ sup
1≤i≤n

(
D + h − 1 + 〈k, dn〉 − |k| + n + 1 − i −

n∑

l=i

u(l)∑

j=1

dl, jσv(l)+ j − 〈k, dn〉
)

≤ Bn(σ; u; d; D + h) − |k|.

(4.20)

The bounds (4.19) and (4.20) imply that

(4.21) Σ2 ≪F,P,H,σ (1 + |τ |)N +
(

1 + |τ |
) 1+Bn(σ;u;d;D+h)

uniformly in s ∈ Vn(u; d; D + h − N − 1).

Step 3

In this step we will use all the notations of Lemma 4.2 introduced at the beginning

of Subsection 4.2. The induction hypothesis on n implies that for any t = 1, . . . , r,

we have

(4.22) Zn−1(F( · , t); P
t ; H( · , t); s) ≪F,P,H,σ 1 +

(
1 + |τ |

) 1+Bn−1(σ;u ′ ;dt ;D+ht )
,

where ht := deg
(

H( · , t)
)

. Also we see that

Bn−1(σ; u ′; dt ; D + ht )(4.23)

= sup
1≤i≤n−1

(
D + ht + n − i −

n−1∑

l=i

u(l) ′∑

j=1

dt
l, jσv(l) ′+ j

)

= sup
1≤i≤n−1

(
D + ht + n − i −

n−2∑

l=i

u(l)∑

j=1

dl, jσv(l)+ j

−
u(n−1)∑

j=1

dn−1, jσv(n−1)+ j −
u(n−1)+u(n)∑

j=u(n−1)+1

dn, j−u(n−1)σv(n)+ j−u(n−1)

)

= sup
1≤i≤n−1

(
D + ht + n − i −

n∑

l=i

u(l)∑

j=1

dl, jσv(l)+ j

)

≤ Bn(σ; u; d; D + h) − (h − ht ) − 1

≤ Bn(σ; u; d; D + h) − 1.
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Estimates (4.22) and (4.23) imply that for any t = 1, . . . , r, we have

(4.24) Zn−1(F( · , t); P
t ; H( · , t); s) ≪F,P,H,σ 1 +

(
1 + |τ |

)Bn(σ;u;d;D+h)
(τ ∈ R

v).

Step 4: Conclusion

Combining relation (4.4) and estimates (4.17), (4.21), (4.24) and (4.5), we con-

clude that

Zn(F; P; H; s) ≪F,P,H,σ

(
1 + |τ |

)N+1
+

(
1 + |τ |

) 1+Bn(σ;u;d;D+h)

≪F,P,H,σ

(
1 + |τ |

) 1+Bn(σ;u;d;D+h)

uniformly in s ∈ Vn(u; d; D + h − N − 1) \Vn(u; d; D + h − N). (The last inequality

follows from the fact that if s ∈ Vn(u; d; D + h − N − 1) \ Vn(u; d; D + h − N),

then N + 1 ≤ 1 + Bn(σ; u; d; D + h)). This concludes the induction argument on N,

therefore, also on n and completes the proof of Theorem 4.1 and also of Theorem

2.3.

5 Proofs of Theorem 2.1 and Corollary 2.2

There exists some l ∈ {1, . . . , q} such that ηl(i) = 0 for all i ∈ {1, . . . , n}. Then

the l-th coordinate of Zn(A; P; s) coincides with ζx

n (a; P; s). Therefore Theorem 2.1

immediately follows from Theorem 2.3.

Next we prove Corollary 2.2. Let ai : N → C (i = 1, . . . , n), λ1, . . . , λn ∈ C be

as in Corollary 2.2. Let q = rn, A : N
n → C

q the function defined by (2.2) and let

T1, . . . , Tn ∈ Mq×q(C) be the matrices defined by (2.3).

For any i ∈ {1, . . . , n} there exists Ci = Ci(λi) ≥ 0 such that |ai(m)| ≤ Ci |λi |m/r

for any m ∈ N. In fact, writing m = hr + m0 with h ∈ N0, 0 ≤ m0 < r and using

assumption (2.5), we have ai(m) = λh
i ai(m0). Since h = (m/r) + O(1), the claim

follows.

Therefore, for all m = (m1, . . . , mn) ∈ N
n, we have

∣∣∣
n∏

i=1

ai(m1 + · · · + mi)
∣∣∣ ≤ (C1 · · ·Cn)

n∏
k=1

∣∣∣
n∏

i=k

λi

∣∣∣
mk/r

≤ C1 · · ·Cn

by assumption (2.4). Moreover, assumption (2.5) implies that Tk = (
∏n

i=k λi)Iq for

any k ∈ {1, . . . , n}. Assumption (2.4) implies then that 1 is not an eigenvalue of any

of the matrices T1, . . . , Tn. Therefore Corollary 2.2 follows from Theorem 2.1.

6 Examples

In this section, we consider some examples in the cases n = 1, 2. Indeed, we can

explicitly determine several values of them that come down to known results (see

Propositions 6.1 and 6.3, and Examples 6.2 and 6.4).
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6.1 The Case n = 1

First we consider the zeta-function Z1(F; s) defined by (2.9), which is equal to

Z1(F; X; 1; s) in (4.1).

Let M ∈ Ml×l(C) and assume that there exists some k ∈ N such that each entry of

Mm is of O(mk). Define F : N → C
l2 and Z1(F; s) = Z1(M; s) by

F(m) = F(M; m) = Mm, Z1(F; s) = Z1(M; s) =

∞∑

m=1

Mm

ms
.

We show that there exists a matrix T ∈ Ml2×l2 (C) such that F(m + 1) = T F(m) for

any m ∈ N. In fact, writing Mm
=

(
µ(m)

i j

)
(m ∈ N), we may regard F(M; m) = Mm

as

F(M; m) =




µ(m)
11

µ(m)
12
...

µ(m)
ll




∈ C
l2 .

Therefore we see that

F(M; m + 1) =




∑l
ν=1 µ(m)

1ν µ(1)
ν1

∑l
ν=1 µ(m)

1ν µ(1)
ν2

...∑l
ν=1 µ(m)

lν µ(1)
νl




= T




µ(m)
11

µ(m)
12
...

µ(m)
ll




= TF(M; m),

where

T =
t M ⊕ t M ⊕ · · · ⊕ t M =

t M
⊕l ∈ Ml2×l2 (C).

Suppose that 1 is not an eigenvalue of M, namely not an eigenvalue of T. Then it

follows from Theorem 2.3 that Z1(M; s) can be continued holomorphically to C. In

particular when l = 1, from Theorem 2.3, we can recover the known fact that for

x ∈ C with |x| ≤ 1 and x 6= 1, the polylogarithm

Li(s; x) =

∞∑

m=1

xm

ms

can be continued holomorphically to C.

As an example, we consider the zeta-function associated with the Fibonacci num-

bers {Fn}n≥0, which are defined by the following linear recurrence relation:

(6.1) F0 = 0, F1 = 1, Fn+1 = Fn + Fn−1 (n ∈ N).
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We recall the well-known results (see, for example, [30]). Let α = (1 +
√

5)/2 be the

golden ratio. Then

(6.2) Fn =
1√
5

(
αn − (−α)−n

)
(n ∈ N).

From the recurrence relation (6.1), we see that
(

Fn+1

Fn

)
=

(
1 1

1 0

)(
Fn

Fn−1

)
(n ∈ N),

namely,

(
Fn

Fn−1

)
=

(
1 1

1 0

)n−1 (
F1

F0

)
,

(
Fn+1

Fn

)
=

(
1 1

1 0

)n−1 (
F2

F1

)
(n ∈ N).

Therefore we have

(6.3)

(
Fn+1 Fn

Fn Fn−1

)
=

(
1 1

1 0

)n−1 (
F2 F1

F1 F0

)
=

(
1 1

1 0

)n

(n ∈ N).

Set Q =
(

1 1
1 0

)
which is often called the Fibonacci matrix, and Sd = ξdα

−1Q for

d ∈ N, where ξd = e2πi/d is the d-th primitive root of unity. Now we assume d ≥ 2.

Then, we can easily check that the eigenvalues of Sd are ξd and −ξdα
−2 that are not

equal to 1. Now we consider

Z1(Sd; s) =

∞∑

m=1

Sm
d

ms
=

∞∑

m=1

(ξdα
−1Q)m

ms
,

which can be continued holomorphically to C if d > 1, by Theorem 2.3.

In order to evaluate Z1(Sd; s) at nonpositive integers, we recall the Frobenius–Euler

numbers {Ẽn(λ)} (see [18], also [6]) defined by

G(t ; λ) =
1 − λ

et − λ
=

∞∑

n=0

Ẽn(λ)
tn

n!
(λ ∈ C; λ 6= 1),

where |t| <
√

(log |λ|)2 + (arg λ)2 with −π ≤ arg λ < π. We can check that

Ẽ0(λ) = 1, Ẽ1(λ) =
1

λ − 1
, Ẽ2(λ) =

λ + 1

(λ − 1)2
, . . . .

Then we obtain the following.

Proposition 6.1 For h, d ∈ N with d ≥ 2 and (h, d) = 1,

Z1(Sh
d; s)

=
1√
5

(
αLi(s; ξh

d ) + α−1Li(s; (−ξd)hα−2h) Li(s; ξh
d ) − Li(s; (−ξd)hα−2h)

Li(s; ξh
d ) − Li(s; (−ξd)hα−2h) α−1Li(s; ξh

d ) + αLi(s; (−ξd)hα−2h)

)
.

(6.4)
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In particular, for N ∈ N0,

(6.5) Z1(S2;−N) =
1
√

5
×

0

@

α(1 − 2N+1) BN+1
N+1

− α−3(−1)N+1

1−α−2
eEN (α−2) (1 − 2N+1) BN+1

N+1
+ α−2(−1)N+1

1−α−2
eEN (α−2)

(1 − 2N+1) BN+1
N+1

+ α−2(−1)N+1

1−α−2
eEN (α−2) α−1(1 − 2N+1) BN+1

N+1
− α−1(−1)N+1

1−α−2
eEN (α−2)

1

A .

Proof For our purpose, here we give some formulas on special values of polyloga-

rithms. First, since Li(s;−1) = (21−s − 1)ζ(s), we have

(6.6) Li(−N;−1) = −(2N+1 − 1)
BN+1

N + 1
(N ∈ N0),

where the Bernoulli numbers {Bn} are defined by tet/(et − 1) =
∑

n≥0 Bntn/n! (see

[31, Chap. 13]). We prove, when |λ| ≤ 1 and λ 6= 1, that

(6.7) Li(−N; λ) =
λ(−1)N

1 − λ
ẼN (λ) (N ∈ N0).

If |λ| < 1, this follows immediately from

G(t ; λ) =
1 − λ

λ

∞∑

m=1

λme−mt
=

1 − λ

λ

∞∑

n=0

(−1)n
{ ∞∑

m=1

λmmn
} tn

n!
.

A proof of (6.7) for the general case can be obtained by using the contour integral

expression of polylogarithms, but here we show an alternative proof in the frame of

our present method. We consider (4.4) and (4.6) in the case that n = 1, F(m) = λm

(λ ∈ C \ {1}; |λ| ≤ 1), P = (X), H = 1, q = 1, r = 1, and T1 = λ. Putting s = −N

in (4.4) and (4.6), we have

Z1(F;−N) =
λ

1 − λ

( N∑

k=1

(
N

k

)
Z1(F; k − N)

)
+

λ

1 − λ

=
λ

1 − λ

( N∑

k=0

(
N

k

)
Z1(F; k − N)

)
− λ

1 − λ
Z1(F;−N) +

λ

1 − λ
.

(6.8)

Let

(6.9) G(t) =

∞∑

N=0

Z1(F;−N)
tN

N!
.

Multiplying both sides of (6.8) by tN/N! and summing up with respect to N, we

obtain

G(t) =
λ

1 − λ
G(t)et − λ

1 − λ
G(t) +

λ

1 − λ
et ,
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from which we have

(6.10) G(t) =
λ

e−t − λ
=

λ

1 − λ

1 − λ

e−t − λ
=

λ

1 − λ

∞∑

N=0

ẼN (λ)
(−t)N

N!
.

Comparing (6.9) and (6.10), we obtain (6.7).

By (6.2) and (6.3), we have

Sn
d =

1√
5

(
ξdα

−1
) n

(
αn+1 − (−α)−n−1 αn − (−α)−n

αn − (−α)−n αn−1 − (−α)−n+1

)

=
1√
5

(
ξn

dα + (−ξd)nα−2n−1 ξn
d − (−ξd)nα−2n

ξn
d − (−ξd)nα−2n ξn

dα−1 + (−ξd)nα−2n+1

)
,

(6.11)

which gives (6.4). In particular, we have

(6.12) Z1(Sd; s) =

1√
5

(
αLi(s; ξd) + α−1Li(s;−ξdα

−2) Li(s; ξd) − Li(s;−ξdα
−2)

Li(s; ξd) − Li(s;−ξdα
−2) α−1Li(s; ξd) + αLi(s;−ξdα

−2)

)
.

Applying (6.6) and (6.7) to the right-hand side of (6.12), we can explicitly evaluate

the values Z1(Sd;−N) (N ∈ N0). For example, since ξ2 = −1, we obtain (6.5).

Example 6.2 It is known (see [21]) that Li(2;−1) = − 1
2
ζ(2) = − 1

12
π2, and

Li(2; α−2) = Li
(

2;
3 −

√
5

2

)
=

1

15
π2 −

{
log

( √
5 − 1

2

)} 2

.

Hence, by (6.2), we obtain

∑

m≥1

(−α)−mFm

m2
=

1√
5

(
− 3

20
π2 +

{
log

( √
5 − 1

2

)} 2)
.

Using this, we can evaluate Z1(M; 2).

6.2 The Case n = 2

Next we consider the case n = 2 and P = (X1; X1 + X2). Let M1, M2 ∈ Ml×l(C) with

the assumption that M1M2 = M2M1. We define F : N
2 → C

l2 and Z2(F; s1, s2) =

Z2(M1, M2; s1, s2) by

F(m1, m2) = F(M1, M2; m1, m2) = Mm1

1 Mm2

2 ,

Z2(M1, M2; s1, s2) =

∞∑

m1=1

∞∑

m2=1

Mm1

1 Mm2

2

ms1

1 (m1 + m2)s2
.
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Then, as well as the above consideration in the case n = 1, it follows from Theo-

rem 2.3 that if 1 is not an eigenvalue of M1, M2 and M1M2, then Z2(M1M2, M2; s1, s2)

and Z2(M1, M1M2; s1, s2) can be continued holomorphically to C
2.

Using the well-known ∗-product argument in the study of multiple zeta values,

we have

Z1(M1; s1)Z1(M2; s2)

=

( ∑

1≤m<n

+
∑

1≤n<m

+
∑

1≤m=n

) Mm
1 Mn

2

ms1 ns2

= Z2(M1M2, M2; s1, s2) + Z2(M1, M1M2; s2, s1) + Z1(M1M2; s1 + s2).

(6.13)

From Theorem 2.3, we see that (6.13) holds for all (s1, s2) ∈ C
2.

Proposition 6.3 The double series

φ(s) =

∞∑

m=1

∞∑

n=1

(iα−1)2m+nF2m+n + (iα−1)m+2nFm+2n

ms(m + n)s

can be continued meromorphically to C. In particular,

φ(0) =
1

18

{
6 −

√
5 + (2 − 3

√
5)i

}
.

Proof Putting M1 = M2 = S4(= iα−1Q) and s1 = s2 = s in (6.13), we see that

Z2(S2
4, S4; s, s) + Z2(S4, S2

4; s, s) = Z1(S4; s)2 − Z1(S2
4; 2s)

holds for all s ∈ C because 1 is not an eigenvalue of S4 and S2
4. Compare the

(1, 2)-entries of the both sides of the above formula. Using (6.3), (6.11), (6.12), and

(6.4) and the fact α + α−1
=

√
5, we have

(6.14)

∞∑

m=1

∞∑

n=1

(iα−1)2m+nF2m+n + (iα−1)m+2nFm+2n

ms(m + n)s
=

1√
5

{
Li(s; i)2 − Li(s;−iα−2)2

}
− 1√

5

{
Li(s;−1) − Li(s;−α−4)

}
,

which gives meromorphic continuation of φ(s). In particular, by (6.6), (6.7), and

(6.14), we have

φ(0) =
1√
5

{
Li(0; i)2 − Li(0;−iα−2)2 −

(
Li(0;−1) − Li(0;−α−4)

)}

=
1√
5

{( i

1 − i

) 2

−
( −iα−2

1 + iα−2

) 2

+
1

2
− α−4

1 + α−4

}

=
1

18

{
6 −

√
5 + (2 − 3

√
5)i

}
.
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Example 6.4 Consider the case S1 = α−1Q. We set M = S1. Then it follows from

(6.3) and (6.11) that the (1, 2)-entry of Mm is

α−mFm = (1 − (−α−2)m)/
√

5 = O(1) = O(m1−ε).

Hence, by (2.13) in the case k = 1, we have

∞∑

m=1

∞∑

n=1

α−mFm + α−nFn − α−m−nFm+n

m(m + n)2
=

∞∑

m=1

α−mFm

m3
.

This is a sum formula with Fibonacci numbers on the numerator. Note that this also

comes from (2.12).

7 Proof of Theorem 2.4

The method given here is essentially the same as the one introduced in the proof of

[27, Theorem 2.1]. We begin by recalling the well-known result

(7.1)

∞∑

m=1

(−1)m sin(mθ)

m
= −θ

2
(−π < θ < π),

where the left-hand side is uniformly convergent in the wider sense with respect to

θ ∈ (−π, π) (see [31, § 3.35 and § 9.11]). It is also known that

(7.2)

∞∑

m=1

(−1)m cos(mθ)

m
(−π < θ < π)

is convergent uniformly in the wider sense, whose value we denote by C(θ). For

k ∈ N and x ∈ R with 0 ≤ x < 1, let

H(θ; x; k) = 2
( ∞∑

m=1

(−1)mxmF(m) cos(mθ)

mk

)( ∞∑

n=1

(−1)n sin(nθ)

n
+

θ

2

)

=

∞∑

m,n=1

(−1)m+nxmF(m) sin((m + n)θ)

mkn

−
∞∑

m,n=1
m 6=n

(−1)m+nxmF(m) sin((m − n)θ)

mkn
+ θ

∞∑

m=1

(−1)mxmF(m) cos(mθ)

mk
,

(7.3)

which is uniformly convergent in the wider sense with respect to θ ∈ (−π, π). By

(7.1), we see that

H(θ; x; k) = 0 (θ ∈ (−π, π)).
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Therefore we have

(7.4)
1

2π

∫ π

−π

θ H(θ; x; k)dθ = 0.

By partial integration, it follows from (7.3) that

−
∞∑

m,n=1

xmF(m)

mkn(m + n)
+

∞∑

m,n=1
m 6=n

xmF(m)

mkn(m − n)
+ 2

∞∑

m=1

xmF(m)

mk+2
= 0.(7.5)

Setting l = m − n and j = n − m in the second term on the left-hand side of (7.5)

according as m > n and m < n respectively, we obtain

∞∑

m,n=1

xm+nF(m + n)

mn(m + n)k
− 2

∞∑

m,n=1

xmF(m)

mkn(m + n)
+ 2

∞∑

m=1

xmF(m)

mk+2
= 0.(7.6)

Moreover, using the relation

(7.7)
1

ab
=

( 1

a
+

1

b

) 1

a + b
,

we see that the first term of the left-hand side of (7.6) tends to 2Z2(F3; 1, k + 1) as

x → 1. As for the second term of (7.6), using (7.7) repeatedly, we have

∞∑

m,n=1

xmF(m)

mkn(m + n)
=

∞∑

m,n=1

xmF(m)

mk(m + n)2
+

∞∑

m,n=1

xmF(m)

mk−1n(m + n)2
(7.8)

= · · ·

=

k+1∑

h=2

∞∑

m,n=1

xmF(m)

mk+2−h(m + n)h
+

∞∑

m,n=1

xmF(m)

n(m + n)k+1
.

We see that each side of (7.8) is absolutely and uniformly convergent with respect to

x ∈ [0, 1]. Hence (7.8) holds for x = 1. Thus we have (2.10). This completes the

proof.

Remark On the right-hand side of (7.3) the order of summation can be inter-

changed. If F = 1, this is true even in the case x = 1, k = 1. In fact, let

aMN =

∑

m≤M

∑

n≤N

(−1)m+n sin((m + n)θ)

mn
.

Then by (7.1) and (7.2) we have

lim
M→∞

aMN

=

∑

n≤N

(−1)n

n

{
cos(nθ)

∞∑

m=1

(−1)m

m
sin(mθ) + sin(nθ)

∞∑

m=1

(−1)m

m
cos(mθ)

}

=

∑

n≤N

(−1)n

n

{
−θ

2
cos(nθ) + C(θ) sin(nθ)

}
= αN ,
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say. Then αN → −θC(θ) as N → ∞. The convergence of (7.1) and (7.2) implies

the existence of A > 0, independent of N, for which
∣∣∑

n≤N (−1)nn−1cs(nθ)
∣∣ < A

holds for any N (where cs stands for sin or cos). On the other hand, for any ε > 0,

there exists a sufficiently large M = M(ε) for which
∣∣∑

m≥M(−1)mm−1cs(mθ)
∣∣ < ε

holds. Therefore

|αN − aMN | ≤
∣∣∣
∑

n≤N

(−1)n

n
cos(nθ)

∣∣∣ ·
∣∣∣
∑

m≥M

(−1)m

m
cos(mθ)

∣∣∣

+
∣∣∣
∑

n≤N

(−1)n

n
sin(nθ)

∣∣∣ ·
∣∣∣
∑

m≥M

(−1)m

m
sin(mθ)

∣∣∣ < 2Aε,

which implies that the convergence aMN → αN (as M → ∞) is uniform in N. Then

by a well-known property of double series we can conclude that

∞∑

m=1

∞∑

n=1

(−1)m+n sin((m + n)θ)

mn
= −θC(θ) =

∞∑

n=1

∞∑

m=1

(−1)m+n sin((m + n)θ)

mn
.

The case involving sin((m − n)θ) is similar. The situation (7.3) is simpler because of

the factor xm, 0 ≤ x < 1.

8 More General Form of Vectorial Sum Formulas

Based on the consideration in the previous section, we give a generalization of the

result in Theorem 2.4, namely, a certain sum formula for values of vectorial zeta-

functions (1.6).

We start with the following elementary lemma that can be immediately proved

by induction. Note that here and from now on, the empty sum (resp. the empty

product) implies 0 (resp. 1).

Lemma 8.1 For r ∈ N,

sin
( r∑

j=1

x j

)
=

r∑

j=1

( j−1∏
ν=1

cos xν

)
· sin x j ·

(
cos

( r∑

ρ= j+1

xρ

))
.

Corresponding to this relation, we define

Gr(θ) =

r∑

j=1

∞∑

m1=1

· · ·
∞∑

m j−1=1

j−1∏
ν=1

(−1)mν cos(mνθ)

mν

×
( ∞∑

m j=1

(−1)m j sin(m jθ)

m j

+
θ

2

)

×
∞∑

m j+1=1

· · ·
∞∑

mr=1

(−1)
Pr

ρ= j+1 mρ cos
((∑r

ρ= j+1 mρ

)
θ
)

∏r
ρ= j+1 mρ

.

(8.1)
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As noted at the beginning of the previous section, the right-hand side of (8.1) is uni-

formly convergent in the wider sense with respect to θ ∈ (−π, π), so is continuous.

The order of the last multiple sum on the right-hand side can be interchanged freely,

which can be seen as in the remark at the end of the last section. By (7.1), we see that

(8.2) Gr(θ) = 0 (−π < θ < π).

Similarly to Theorem 2.4, let F = ( f1, . . . , fq) : N → C
q be a function that satisfies

that, for a fixed k ∈ N, f j(m) = O(mk−ε) (1 ≤ j ≤ q). For r ∈ N with r ≥ 2 and

x ∈ [0, 1), we define

(8.3) Hr(θ; x; k) = 2

( ∞∑

l=1

(−1)lxlF(l) cos(lθ)

lk

)
Gr−1(θ).

Note that H2(θ; x; k) = H(θ; x; k) defined by (7.3). As a multiple analogue of (7.4),

we obtain, from (8.2), the following integral representation.

Proposition 8.2 For r ∈ N with r ≥ 2,

(8.4)
1

2π

∫ π

−π

θ Hr(θ; x; k)dθ = 0.

This may be regarded as a “primitive” form of vectorial sum formulas. Indeed,

as we considered in the previous section, the integral representation (8.4) in the case

r = 2 gives a vectorial sum formula for double zeta-functions. Similarly, we consider

the case r = 3 and prove the following.

Theorem 8.3 For K ∈ N with K > 3,

∑

k1,k2≥1, k3≥2
k1+k2+k3=K

{ ∑

m1,m2,m3∈N

F(m1)

mk1

1 (m1 + m2)k2 (m1 + m2 + m3)k3

}
(8.5)

+
∑

k2≥1, k3≥2
k2+k3=K−1

{ ∑

m1,m2,m3∈N

F(m2) − F(m1 + m2)

m1(m1 + m2)k2 (m1 + m2 + m3)k3

}

+
∑

m1,m2,m3∈N

F(m3) − F(m1 + m3) − F(m2 + m3) + F(m1 + m2 + m3)

m1(m1 + m2)(m1 + m2 + m3)K−2

=

∞∑

m=1

F(m)

mK

holds.

In particular when F( · ) = 1, we can see that (8.5) implies the ordinary sum

formula for triple zeta values

∑

k1,k2≥1, k3≥2
k1+k2+k3=K

{ ∑

m1,m2,m3∈N

1

mk1

1 (m1 + m2)k2 (m1 + m2 + m3)k3

}
= ζ(K)
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for K > 3.

In view of Theorems 2.4 and 8.3, we propose the following conjecture that implies

vectorial sum formulas for multiple series.

Conjecture 8.4 For r ∈ N and K ∈ N with K > r,

X

k1,...,kr−1≥1, kr≥2

k1+···+kr=K

n

X

m1,m2,...,mr∈N

F(m1)

mk1
1 (m1 + m2)k2 (m1 + m2 + m3)k3 · · · (

Pr
j=1 m j)kr

o

+
X

k2,...,kr−1≥1, kr≥2

k2+···+kr=K−1

n

X

m1,m2,...,mr∈N

F(m2) − F(m1 + m2)

m1(m1 + m2)k2 (m1 + m2 + m3)k3 · · · (
Pr

j=1 m j)kr

o

+
X

k3,...,kr−1≥1, kr≥2

k3+···+kr=K−2

n

X

m1,m2,...,mr∈N

F(m3) − F(m1 + m3) − F(m2 + m3) + F(m1 + m2 + m3)

m1(m1 + m2)(m1 + m2 + m3)k3 · · · (
Pr

j=1 m j)kr

o

+ · · ·

+
X

m1,m2,...,mr∈N

F(mr) −
P

j<r F(m j + mr) +
P

j1< j2<r F(m j1 + m j2 + mr) − · · ·

m1(m1 + m2)(m1 + m2 + m3) · · · (
Pr−1

j=1 m j) (
Pr

j=1 m j)K−r+1

=

∞
X

m=1

F(m)

mK

holds.

For example, the case K = r + 1 (so that the only possible choice is

(k1, k2, . . . , kr−1, kr) = (1, 1, . . . , 1, 2)) implies that

∑

m1,m2,...,mr∈N

∑r
j=1 F(m j) −

∑
j1< j2

F(m j1
+ m j2

) + · · · + (−1)r−1F(
∑r

j=1 m j)

m1(m1 + m2)(m1 + m2 + m3) · · · (
∑r−1

j=1 m j) (
∑r

j=1 m j)2

=

∞∑

m=1

F(m)

mr+1
.

(8.6)

In particular when F(·) = 1, (8.6) coincides with the well-known formula

ζEZ,r(1, 1, . . . , 1, 2) = ζ(r + 1).

In fact, we can numerically check formula (8.6) in the case r = 4.

In the rest of this section, we give a proof of Theorem 8.3. First we prove the

following lemma. For simplicity, we put F̃(m; x) = xmF(m) for x ∈ [0, 1).

Lemma 8.5 With the above notation, and for k ∈ N and x ∈ [0, 1),

∞∑

l,m,n=1

F̃(m + n; x)

ln(l + m)(m + n)k
= 3

∞∑

l,m,n=1

F̃(l + m + n; x)

l(l + m)(l + m + n)k+1
+

∞∑

l,m=1

F̃(l + m; x)

lm2(l + m)k
,(8.7)

∞∑

l,m,n=1

F̃(l; x)

lkn(l + m)(m + n)
=

∞∑

l,m,n=1

F̃(l; x)

lkm(m + n)(l + m + n)
+

∞∑

l,m=1

F̃(l; x)

lkm2(l + m)
.(8.8)
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Proof The left-hand side of (8.7) is equal to

∞∑

m,n=1

F̃(m + n; x)

n(m + n)k

∞∑

l=1

1

l(l + m)
=

∞∑

m,n=1

F̃(m + n; x)

mn(m + n)k

∞∑

l=1

( 1

l
− 1

l + m

)

=

∞∑

m,n=1

F̃(m + n; x)

mn(m + n)k

m∑

l=1

1

l
.

We divide the inner sum on the right-most side into two parts according as l = m

and l < m, and we set m = l + j ( j ∈ N) in the latter case. Then the right-most side

is equal to

(8.9)

∞∑

m,n=1

F̃(m + n; x)

m2n(m + n)k
+

∞∑

l, j,n=1

F̃(l + j + n; x)

ln(l + j)(l + j + n)k
.

Using the relation

(8.10)
1

a(b + c)
=

1

a + b + c

( 1

a
+

1

b + c

)

and then (7.7), we see that the second member on the right-hand side of (8.9) can be

rewritten to

3

∞∑

l,m,n=1

F̃(l + m + n; x)

l(l + m)(l + m + n)k+1
.

Thus we obtain (8.7).

Next, by rewriting the left-hand side of (8.8) to

∞∑

l,m=1

F̃(l; x)

lk(l + m)

∞∑

n=1

1

n(m + n)
,

and arguing similarly to the proof of (8.9), we see that this is equal to the right-hand

side of (8.8). This completes the proof.

Proof of Theorem 8.3 From (8.1) in the case r = 2, we can easily see that

G2(θ) =

∞∑

m,n=1

(−1)m+n sin((m + n)θ)

mn
+ θ

∞∑

m=1

(−1)m cos(mθ)

m
,

which is uniformly convergent for θ ∈ (−π, π). Substituting this series into

H3(θ; x; k) in (8.3), and calculating (8.4) in the case r = 3, we obtain

0 = −
∞∑

l,m,n=1

F̃(l; x)

lkmn(l + m + n)
+

∞∑

l,m,n=1
l 6=m+n

F̃(l; x)

lkmn(l − m − n)

+ 2

∞∑

l,m=1

F̃(l; x)

lkm(l + m)2
+ 2

∞∑

l,m=1
l 6=m

F̃(l; x)

lkm(l − m)2
+

π2

3

∞∑

l=1

F̃(l; x)

lk+1
.

(8.11)
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We divide the second member of (8.11) into three subsums according as (i) l > m,

(ii) l < m, and (iii) l = m. On (i) we set j = l−m, while on (ii) we set j = m− l. We

further divide part (i) into two subsums according as j > n, j < n. We also divide

the fourth member of (8.11) into two subsums according as l > m, l < m. Applying

Lemma 8.5 (to the part j < n of (i) and part (ii)), we can rewrite (8.11) to

0 = −3

∞∑

l,m,n=1

F̃(l; x)

lkm(m + n)(l + m + n)
+

∞∑

l,m,n=1

F̃(l + m + n; x)

lmn(l + m + n)k
(8.12)

− 3

∞∑

l,m,n=1

F̃(l + m + n; x)

l(l + m)(l + m + n)k+1
+ 2

∞∑

l,m=1

F̃(l; x)

lkm(l + m)2

+

∞∑

l,m=1

F̃(l + m; x)

lm2(l + m)k
+

∞∑

l,m=1

F̃(l; x)

lkm2(l + m)
+ ζ(2)

∞∑

l=1

F̃(l; x)

lk+1

= −3A1 + A2 − 3A3 + 2A4 + A5 + A6 + A7,

say. Applying (8.10) repeatedly, we have

A1 =

k−1∑

j=0

∞∑

l,m,n=1

F̃(l; x)

lk− jm(l + m + n) j+2
+

∞∑

l,m,n=1

F̃(n; x)

l(l + m)(l + m + n)k+1
,

and then, using (7.7) repeatedly, we obtain

A1 =

k−1∑

j=0

k− j−1∑

p=0

( ∞∑

l,m,n=1

F̃(l; x)

lk− j−p(l + m)p+1(l + m + n) j+2

)

+

k−1∑

j=0

∞∑

l,m,n=1

F̃(m; x)

l(l + m)k− j(l + m + n) j+2
+

∞∑

l,m,n=1

F̃(n; x)

l(l + m)(l + m + n)k+1
.

(8.13)

Also, using (7.7) repeatedly, we obtain

(8.14) A4 =

k∑

j=1

∞∑

l,m=1

F̃(l; x)

l j(l + m)k+3− j
+

∞∑

l,m=1

F̃(l; x)

m(l + m)k+2
.

Now we use a result of [27]. It is easy to see that we can replace factors of the form xl,

which are implicitly included in [27, (3.13)], by F̃(l; x). This implies

(8.15) A5 + A6 = A4 − 3

∞∑

m=1

F̃(m; x)

mk+3
+ 2A7.

Moreover, we have

(8.16) A7 =

∞∑

l,m=1

F̃(l + m; x)

l2(l + m)k+1
+

∞∑

l,m=1

F̃(l; x)

lk+1(l + m)2
+

∞∑

m=1

F̃(m; x)

mk+3
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by the harmonic product relation. Combining (8.14), (8.15), and (8.16), we have

2A4 + A5 + A6 + A7

= 3A4 − 3

∞∑

m=1

F̃(m; x)

mk+3
+ 3A7

= 3

k+1∑

j=1

∞∑

l,m=1

F̃(l; x)

l j(l + m)k+3− j
+ 3

∞∑

l,m=1

F̃(l; x)

m(l + m)k+2
+ 3

∞∑

l,m=1

F̃(l + m; x)

l2(l + m)k+1
.

Applying Theorem 2.4 to the double sum on the right-hand side, we obtain

2A4 + A5 + A6 + A7

= 3

∞∑

l,m=1

F̃(l + m; x)

l(l + m)k+2
+ 3

∞∑

l,m=1

F̃(l + m; x)

l2(l + m)k+1
+ 3

∞∑

m=1

F̃(m; x)

mk+3

= 3A8 + 3A9 + 3A10,

(8.17)

say. Next, since

1

lmn
=

( 1

lm
+

1

mn
+

1

ln

) 1

l + m + n

=

{( 1

l
+

1

m

) 1

l + m
+

( 1

m
+

1

n

) 1

m + n
+

( 1

l
+

1

n

) 1

l + n

}
1

l + m + n
,

we find that A2 = 6A3. Noting this fact and (8.17), we can rewrite (8.12) as

(8.18) −A1 + (2A3 + A8 + A9) + A10 = A3.

Putting m + n = q, we have

A3 =

∞∑

l,q=1

F̃(l + q; x)

l(l + q)k+1

q−1∑

m=1

1

l + m
,

while putting l + m = r, we have

A3 =

∞∑

n,r=1

F̃(n + r; x)

r(n + r)k+1

r−1∑

l=1

1

l
.

Therefore,

2A3 + A8 + A9

=

∞∑

l,m=1

F̃(l + m; x)

l(l + m)k+1

{m−1∑

j=1

1

l + j
+

l−1∑

j=1

1

j
+

1

l + m
+

1

l

}

=

∞∑

l,m=1

F̃(l + m; x)

l(l + m)k+1

l+m∑

j=1

1

j
=

∞∑

l,m=1

F̃(l + m; x)

l(l + m)k+1

∞∑

j=1

( 1

j
− 1

l + m + j

)
.

(8.19)
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Now we use the identity

1

(l + m)k+1

( 1

j
− 1

l + m + j

)
=

1

j(l + m + j)k+1
+

k∑

u=1

1

(l + m)u(l + m + j)k+2−u

to the right-hand side of (8.19), and then apply (7.7) to the first double sum of the

resulting expression. We find that (8.19) is

=

∞∑

l,m, j=1

F̃(l + m; x)

l(l + j)(l + m + j)k+1
+

∞∑

l,m, j=1

F̃(l + m; x)

j(l + j)(l + m + j)k+1

+

k∑

u=1

∞∑

l,m, j=1

F̃(l + m; x)

l(l + m)u(l + m + j)k+2−u
.

Substituting this result and (8.13) into (8.18), and putting K = k + 3, we arrive at a

formula that is almost the same as (8.5) but where F( · ) is replaced by F̃( · ; x). Finally,

as in the proof of Theorem 2.4, we can let x → 1 because of the uniform convergence.

This completes the proof of Theorem 8.3.

Remark At present, it seems to be hard to give the proof of Conjecture 8.4 for

general r. In fact, if we were to obtain its proof then we would consequently obtain a

brand-new method to prove the sum formulas for Euler–Zagier multiple zeta values

that does not depend on Drinfel’d integral expressions.
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