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CYCLIC COHOMOLOGY OF NON-COMMUTATIVE 
TORI 

RYSZARD NEST 

1. Introduction. In this paper we shall compute the cyclic cohomology 
of a non-commutative torus, i.e., a certain algebra stf associated with an 
antisymmetric bicharacter of a finite rank free abelian group G. 

The main result is 

(1.1) H\(stf) = Ker S + Im S + Vn, 

where 

Vn = A"(G 0 C). 

The method of computation generalises the computation of the cyclic 
cohomology of the irrational rotation algebras given by Connes in [3]. 
(Our method works equally well also in the rational case, which was dealt 
with by a different method by Connes in [3].) 

We first describe the Hochschild cohomology of s/ in an explicit way, 
and then combine this description with the exact sequence of [3]: 

(1.2) . . . -£ H%tf) ̂  H"(s/9s/*) ^ # T V ) -^ . . . . 

It turns out that the homology of the complex 

(H*(J*,S/*), IB) 

is isomorphic to the exterior algebra AG ® C, with its natural grading. In 
the course of our computations we construct certain canonical representa­
tives for the homology classes of this complex. These classes turn out to be 
the images under / of cyclic cocycles which survive under successive appli­
cations of S. 

The main result follows from these facts. 
It follows immediately from (1.1) that the periodic cyclic cohomology of 

s/ is given by 

(1.3) H(s/) = A G ® C. 

This result can also be obtained from the calculation of the periodic cyclic 
cohomology of arbitrary Z-crossed products given in [8], a sequel to the 
present article. No analogue of (1.1) itself, however, appears in [8]. 
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J ^ as defined below, is a dense subalgebra of the universal C*-algebra Ap 

associated with G and an antisymmetric bicharacter p. As is easily seen by 
direct computation, stf is closed under the holomorphic functional calculus 
inside Ap, and so, by [3], there is a natural coupling of H%(s/) to the 
K-theory of Ap. Combination of (1.3) with the description of the Chern 
character on K*(A ) given by Elliott in [7] gives that after periodisation the 
coupling is nondegenerate, i.e., 

(K(Ap) ® Q* S H&), 

and allows one to go a long way towards the classification of non-
commutative tori [6, 5, 2]. 

2. Notation.^ is a Fréchet *-algebra defined as follows: 
1. As a topological vector space srf is the space £f(ZN) of rapidly de­

creasing sequences indexed by ZN. We use the standard topology on 
S?(ZN) given by the seminorms 

II (*«)«ez»ll* = sup (1 + |a|*)|*J. 

2. As a topological *-algebra, stf is generated by unitaries v l9. . . , vN, 
satisfying the commutation relations 

( 2 . 1 ) vtvj = XjjVjVj, i9j= 1, . . . , TV, 

for a fixed family of scalars X- e T such that X,- = X 7. 
3. The correspondence between the two pictures is given by the map 

5?{ZN) -> s/ 

(*«) i-> 2 xav
a, 

a 

where we set 

V = vf-... v-", v ° = l , 

and note that the sum on the right hand side is convergent, 
j / has a canonical trace T given by 

T(l) = 1, 

T(V") = 0, a # (0, . . . , 0), 

and the map 

(<t>a) »-> 2 </>„T(V«) 
a 
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is a topological isomorphism from the space of tempered sequences 
<¥>*(ZN) to the dual st* of sf. 

We denote by stfe the enveloping algebra of stf\ that is, 

where j / o p denotes the opposite algebra of se. 
The tensor products of locally convex vector spaces considered in this 

paper will always be the complete projective tensor products. 
The elements of stf°v will be denoted by 

x, x G j ^ 

and we shall write xy( = yx) for x ® y e sée. 
The augmentation map e is the linear map 

c.sée ^stf 

xy M> xy. 

We set 

V = CN, 

with the standard orthonormal basis ex, . . . , eN fixed. For / = (/1? . . . , in)9 

set 

er = e: A . . . A et . 
1 l\ ln 

The exterior algebra AV will always be considered with its standard 
Euclidean structure given by 

Ik/ll = 1, I = (il9...,in) with ik* il for k * I 

We shall denote by Tx for x e F the linear map 

A F ^ A F 

w \-^> x A w. 

7̂ * will denote the adjoint of Tx. 
We shall use the following abbreviations: 

vals* = v«|< f c + 1 = < > . . . v«*, 

3. Projective resolutions. The standard projective resolution of J / (see 
[3] ) is given by the complex of .£/''-modules 

b . b b „ € 
. . . -> A„(6) -> A „ _ , ( J / ) - > . . . ->.«• ' ->.*; 

where 
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and 

n-\ 

a0 0 ax 0 . . . 0 0,7 M> 2 (— l)'«o ® • • • ® aiai+1 ® • • • ® an 
/ = 0 

+ ( - l ) V o ® « i ® - . . ® V i -
In what follows we will construct a finite length projective resolution 

of J ^ 

d d d d € 
0^ EN~* EN_X - > . . . - > £ ! - > . « / ' - > J * 

and a comparison map 

k:(A*(s/), b) -» (£*, rf), 

i.e., a degree zero map of complexes of j^-modules such that 

is the identity map. 
To begin with, set 

(3.1) En =s/e® N!V9 

and consider the ja^-module map 

(3.2) *:£„-> A„(5/) 

1 0 *?,- A . . . A e, 
l \ ln 

^ 2 sgn(o)(vo(/i). . . v ^ ) ) " 1 0 va(/i) 0 . . . 0 va(ln). 
0ŒSn 

Consider also the j^ -module map 

(3.3) d'.En-*En„x 

\ ® e, A . . . A e, 
l \ ln 

n 

^ 2 ( - 1 ) * ( 1 - vz v"1) ®et A . . . A ei A . . . A et . 
_ v / v ik ik J / , /A. in 

It is easy to check that d and h are continuous, and a straightforward 
computation gives 

LEMMA 3.1. bh = hd. 

To facilitate the following computations, we will interpret the s?e-
module structure of En as an j^bimodule structure: 
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We give the direct sum E = ©n En a graded associative j#bialgebra struc­
ture by defining a multiplication, denoted by A, as follows: 

(1 0 x ® va) A ( / ® y ® 1) = v V V r ' ® * A >> ® va. 

Write 

i n 

2 for « ^ 0, 

/=o 
0 for/i = - 1 , 

- l 

- 2 for» < - 1 , 
and define ^' ' -module maps 

P, :A,K) -»• £ „ 

/c:A„(^) -> E„, 

by the formulas 
(3.4) p,( (v")"1 0 v«) = (/•!>,.)-'( 2 ' v"* ® e, ® vfVv*^,.), 

U = 0 ' 
(3.5) k( (v"' . . . v a »r ' ® va' ® . . . ® va«) 

= 2 P,,( (v"1) - ' ® v"1) A . . . A p,n( (v
a")~ ' ® va"). 

LEMMA 3.2. A:/z = id. 

Proof. This can be seen by a straightforward computation. 

LEMMA 3.3. kb = dk. 

Proof. Note first the following identities: 

(3.6) < i p , ( ( v V ' ® v a ) 

= (v- i^r 1 ® i ® (vai>;) - (va ig Ir ' ® i ® (vaig,) 
and 

(3.7) p,( ( v V ) " ' ® v V ) = ( v ^ , ) " 'p,( ( v V ' ® v V ' U ) 

+ (vai> I-,r ,P l((v /'r ,®v' ,)(voi>I ._1). 
These follow from the definitions of the respective maps and the commu­
tation relations (2.1). 

Now, given i > y, we get from (3.6) and (3.7) the identity 

(3.8) P /( (vV*) - 1 ® vV*) A Pj( (vy)~l ® vy) 

-p,.( (v a) _ 1 ® va) A p.( ( v V ) _ 1 ® v V ) 
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= 2 P,-( (v a)" l ® va) A P /( ( / ) " ' ® v ^ ) A p.( (vy)~ * ® vY). 

Then (3.8) and the easily seen fact that d is a derivation of the bialgebra E 
lead us immediately to the identity kb = dk. 

PROPOSITION 3.4. (£"*, d) is a projective resolution of se, and 

k:(A*(s/)9 b) -> (£*, J) 

w a comparison map. 

Proof. According to Lemma 3.1, (£*, d) is a subcomplex of the complex 
(A*(s/)9 b), and in particular, d = 0. Since there exists a contracting 
homotopy 

I:A*(s/) -> A * + 1 ( J ^ ) , 

lb + bl = id, 

we can set 

7 = it/A. 

Using Lemmas 3.1, 3.2, and 3.3 we get 

dT + Id = dklh + Jt/W = A: (6/ + J6)/i = id, 

and hence (£*, J) is acyclic. Since E* is given by free j/^-modules (ja/e is 
unital), the result follows. 

4. Hochschild cohomology of se. According to Proposition 3.4, (£*, d) 
is a projective resolution of srf, and hence the groups Hn(s/9 s/*) can be 
computed as the cohomology groups of the complex 

(Hom^(£*, j /*) , '<0-

Let us fix the basis for AV consisting of the vectors eh I = (z'j, . . . , in\ 
zi > h > • • • > *„• We shall denote by 0 the space of tempered se­
quences y?*(ZN, •). The map 

(4.1) H o m ^ , s/*) -» 0A"F 

/ H* ( 2 '<*iXv>/)aeZ„ 

is an isomorphism, and it is straightforward to see that ld is identified with 
the operator 

(4.2) ®Tx:êA"V->êAn + lV 

where 
N 

(4.2) xa = 2 (1 - v t v V ' ( v T ' h . 
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Thus H*(s/9 sx?*) is identified with the cohomology of the complex 

(4.3) (®A*F, ®TX). 

THEOREM 4.1. The Hochschild cohomology of se with coefficients in se* is 
isomorphic to the direct sum of the following two vector spaces: 

(1) ®A*V restricted to indices a <= ZN such that va e centre stf9 

(2) the quotient of the space of tempered sequences (xa A za), za e 
A(VQ Cxa), by the subspace consisting of those sequences for which ( | | z j | ) 
is tempered. 

Proof. The result follows from (4.2), (4.3), the identity 

j1 T1* -i- T^T 7 — id, 

and the fact that | | x j | = 0 if and only if va e c e n t r e d 

5. De Rham homology of srf. Recall that the long exact sequence (1.2) 
can be written as an exact couple: 

H\wy »H*(s/) 

H*(M se*) 
We will compute the limit of the corresponding spectral sequence 

E*CflO. 
For the convenience of the reader, let us recall some definitions. E * ( J / ) 

is defined as the homology of the complex 

(E$(s/)9 do) = (H*(s/9s/*)9 IB). 

E*+ \(stf) is given inductively as the homology of the complex (E*(s/)9 dk), 
where the differential dk, acting on <j> e Hn(s/,s/*) with d$ = 0 for / < k, 
is determined by the commutative diagram 

/ 
H] •n-2k-\ •n-2k-\, 

*) 

H"(jtf,jtf*)-JL^H"X-1 (s/)- •+-H" \s/,s/*) 

using the fact that drf = . . . = dk _,<£ = 0 implies that B<j> <E Im S 
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( E | ( J / ) , dk) converges to the graded vector space associated to the fil­
tration by dimension of the periodic cyclic cohomology, and the limit, 
called EZJs/)9 will be called the de Rham homology. 

We will start by expressing the operator d0 in terms of the description of 
the Hochschild cohomology of stf obtained in Section 4. 

For an element 

<f> G Hom^e(E, sf*)9
 fd<f> = 0, 

the composition <J> = <j> o k gives a cocycle on se representing the same 
cohomology class as <£. Then 

[d0<j>] = [B$] in H*W st*). 
~ A 

According to Section 4, [B(j>] is given by the element of 0 A F defined 
by 

(B$)((va®er)) 

= 2 sgn(o)B$(va(va(l)...va0)y\ v a ( , , ) , . . . , va( ; )) 

= 2 sgn(a) • cyclic antisymmetrisation of 
0<=S„ 

<j>k(l, va(va(li) . . . va(0)-\ va((|), . . . , va(,n)) 

+ (-ink(v\{li) . . . va(ln)y\ va(i|), . . . , v0(O, 1). 

Note that, by the definition of /c, the second term in the above sum vanish­
es and only the cyclic permutations contribute to the first sum. Thus we 
end up with the sum 

2 ( - 1»A:(1 ® v, ® . . . 0 V: 0 va(v, . . . v, v, . . . v , ) - 1 

®V: 0 . . . ® V ), 

where 

al = l(n + 1) + In = / (mod 2). 

According to the definition of /:, we can now write (see 3.5) 

(d0<j>)(va 0 ej) 

= 2 (- 1)' 2 «v,- . . . v , /^ . . . vt)~\ A ... A ^ 
/ z />m>/ / + 1 

A pm(v . . . v.- V: . . . v^v")"1 0 v > , . . . v v. . . . v, ) _ 1 ) 

A <?,. A . . . A e, ). 
z /+ i V 
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Using (3.4) we get d0 represented as the map 

(5.1) ®T*:®AV-* ®AV, 

where 

(5.2) ya= i fr^-Vv-l^vVVU/)"1)^ 

Note that, since Bb = -fcB, xa _L j a for all a e ZN. 
The following result is essentially the content of [3, Lemma 52]. 

LEMMA 5.1. For a ¥= ( 0 . . . . , 0), 

Proof. Note first that, according to (4.2) and (5.2), we have 

' W l 2 = 2 H - x * l 2 , h = I I AS 
) t = l 

*y 

and 

IWI2 = 2 
* = 1 

Ak 

Hence 

1 
IWI + WyJ\ ̂ - 2 H - x*l + 

Ak 

1 - K 

Looking at the kth term of the right hand sum, and setting Xk = exp(z#A), 
we have either 

\ak Ak 

1 
> 1 or ak0k £ 

77 77 

2'2L 

Since in the second case 

77 

l«*l > and 11 AJ > 
8|«, 2KI 

the stated inequality follows. 

LEMMA 5.2. G7vew ||JC|| + ||_y|| ^ 0, we have 

(Ty*w = TXW\ TXW = o) =* (w = T > , + r;w2). 

Moreover, if w and W are tempered functions of a e. Z , and xa, ya are as 
above, then wx and w2 can be chosen to be tempered functions of a. 
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Proof. Choose an orthonormal basis / J , . . . ,fN of V such that 

x = IWL/j, j> = IMI/2. 

Then 

w = QL' + M" A / 2 ) A /J, /x', /i" e A ( F 0 (C/i 0 C/2) ) 

and we can reduce everything to the following two dimensional problem: 
Given a, b, c, tempered sequences i n y * ( Z ^ ) , such that \\y\\b = \\x\\c, 

find tempered sequences A, B, C such that 

af\+bf2Afx = T*(Cf2 A fx) + TX(A + Bf2). 

According to Lemma 5.1, a solution of this is given by 

IMI + lb If 11*11 + IMf 

THEOREM 5.3. (1) S is injective on Im S. 

(2) E^oK) = m&) = A"F. 

Proof. Note first that the formulas 

5z(vy) = SjjVj, i, j = \,...,N 

define derivations 

such that 

[«,-, Sj] = 0 and rôi = 0. 

Setting 

(5-3) <t>h ia(x0, . . . , xn) = 2 sgn(a) r(x0ô, (*,) . . . 8/ (*w) X 

we get cyclic cocycles on J^! (See [5].) Moreover, for ix > . . . > /w, 

^ jn(v
ah(ef) ) * 0 «* / = (/„ . . . , /„) and a = (0, . . . , 0). 

Thus, under the map (4.1), the linear space { }J[ Q Hf{{^) spanned by 
the cocycles (5.3) is mapped injectively onto the (0, . . . ,0)-component of 
©A"K Hence, by Lemmas 5.1 and 5.2, the map 

/:{ }X->Eft*0 
is an isomorphism. 

But { }r{ is given by cyclic cocycles, and hence d\ = d2 = . . . = 0. This 
gives in particular 
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KJ&) = EÏ(J/) = A" F, 

i.e., (2). To prove (1) note that, for k > 1, we have 

Sk<j> = 0 => Sk']<j> G l m 5 ^ / ( j ) G l m rf^.,. 

But dk_x = 0 and thus I<j> e Im ^ _ 2 - By induction, I(j> e Im d0, i.e., 

Ker Sk c £(Ker S* + 1) + Im 5 . 

Iterating the above relation we get, for any / > 0, 

Ker Sk Q Sz(Ker Sk+l) + Im 5 . 

For dimensional reasons the first term converges to 0 as / tends to infinity, 
and hence we obtain (1): 

Ker Sk Q ImB = Ker S. 

COROLLARY 5.4 (cf. [1] ). Any continuous derivation D ofstf intos/* has a 
unique decomposition 

D = D + D, 

where 

N 

5 = 2 Afii9 
i=\ 

Al in the centraliser of s/ in jtf* and 

D = lim Ad 2 aav
a, ( \aa\ \\xa\\ ) e <?*{ZN). 

A/^oo \a\<M 

Moreover D is inner if and only if (aa) is a tempered sequence. 

Proof. The existence of the decomposition is a consequence of Theorem 
4.1, while the desired description of the summands is a consequence of the 
proof of Theorem 5.3. 

Definition 5.5. { }£ denotes the linear space spanned by the cocycles 
(5.3). We use the same notation for the image of { }% in both H^stf) and 
Hn(s/9st*). 

6. Cyclic cohomology of stf. 

THEOREM 6.1. 

(1) H%(s/) = Im B + Im S 4- { }£. 

(2) S(Hl(s/)) = © An~2kV. 

(3) ImB = K e r J 0 / { }£, 
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where Ker d0 can be given an explicit description as Ker ® T* in the context 
of Section 4. 

Proof. By Theorem 5.3 (2), the natural map 

{ Y\ -» Hl(s/)/(Im B + Ker / ) 

is an isomorphism. This is equivalent to saying that 

Ker d0 = 1ml and Hfaf) = (Im B + Ker / ) + { }£. 

By Theorem 5.3 (1), Ker S n Im S = 0. Since Im B = Ker S and Ker / -
Im S9 (1) follows. 

(2) follows from (1) by induction. 
(3) follows from (1) using Ker d0 = Im /. 
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