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CYCLIC COHOMOLOGY OF NON-COMMUTATIVE
TORI

RYSZARD NEST

1. Introduction. In this paper we shall compute the cyclic cohomology
of a non-commutative torus, i.e., a certain algebra &/ associated with an
antisymmetric bicharacter of a finite rank free abelian group G.

The main result is

(1.1) HY/) =KerS+ ImS + ¥,
where
V.= K'(G®C).

The method of computation generalises the computation of the cyclic
cohomology of the irrational rotation algebras given by Connes in [3].
(Our method works equally well also in the rational case, which was dealt
with by a different method by Connes in [3].)

We first describe the Hochschild cohomology of &7 in an explicit way,
and then combine this description with the exact sequence of [3]:

S 1 B S
(12) ...> H{&) > H' (A A*) > H} (&) > . ...
It turns out that the homology of the complex
(H*(, /*), IB)

is isomorphic to the exterior algebra AG ® C, with its natural grading. In
the course of our computations we construct certain canonical representa-
tives for the homology classes of this complex. These classes turn out to be
the images under [ of cyclic cocycles which survive under successive appli-
cations of S.

The main result follows from these facts.

It follows immediately from (1.1) that the periodic cyclic cohomology of
& 1s given by

(13) H) = AGO® C.

This result can also be obtained from the calculation of the periodic cyclic
cohomology of arbitrary Z-crossed products given in [8], a sequel to the
present article. No analogue of (1.1) itself, however, appears in [8].
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#/, as defined below, is a dense subalgebra of the universal C*-algebra 4,
associated with G and an antisymmetric bicharacter p. As is easily seen by
direct computation, & is closed under the holomorphic functional calculus
inside 4,, and so, by [3], there is a natural coupling of H}(#/) to the
K-theory of 4, Combination of (1.3) with the description of the Chern
character on K(4,) given by Elliott in [7] gives that after periodisation the
coupling is nondegenerate, i.e.,

(K(4)) ® O = H(),

and allows one to go a long way towards the classification of non-
commutative tori [6, 5, 2].

2. Notation. o/ is a Fréchet *-algebra defined as follows:

1. As a topological vector space & is the space A(Z") of rapidly de-
creasing sequences indexed by Z". We use the standard topology on
A(ZV) given by the seminorms

Il cdaezdllx = sup (1 + lal®)lx,|.
aE€Z
2. As a topological *-algebra, &7 is generated by unitaries v, ..., vy,
satisfying the commutation relations
2.1 vy, = }\I-jvjvi, Lj=1...,N,

for a fixed family of scalars A; € T such that A; = \;,.

3. The correspondence between the two pictures is given by the map

ALV — o

(1
(X P 2 x%
(41

where we set

o 0
V=t =,

and note that the sum on the right hand side is convergent.
&/ has a canonical trace T given by

(1) =1,
) =0, a+#(0,...,0),
and the map

FHIN) — o

($) P> 2 bg7(V")
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is a topological isomorphism from the space of tempered sequences
F*(ZN) to the dual #* of
We denote by /¢ the enveloping algebra of &7, that is,

A = oA QAP

where &/ °P denotes the opposite algebra of <7

The tensor products of locally convex vector spaces considered in this
paper will always be the complete projective tensor products.

The elements of .«7°P will be denoted by

X, x €

and we shall write xy(= yx) for x ® y € «&/°.
The augmentation map e is the linear map

€L —of

Xy > xy.
We set

v =cV,

with the standard orthonormal basis ey, . . ., ey fixed. For I = (i}, ..., i,),
set

ep=¢ N...N\e.

The exterior algebra AV will always be considered with its standard
Euclidean structure given by

lle;ll =1, I = (y,...,i,) withi, # i fork # L
We shall denote by T, for x € V the linear map

AV = AV

w x A ow.

T* will denote the adjoint of T..
We shall use the following abbreviations:

(44 a o o

ik = ks = W0
o . La . oy
v lz/‘ =V |>k‘1 = vkk. . .vN .

3. Projective resolutions. The standard projective resolution of &7 (see
[3]) is given by the complex of 27 °-modules

b b b
BAB)Y DA, (). DA S

where
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A(L) = A Q"
and
biA, () = A, ()
n—1
44®a,®..®a,—~ 2 (—1)a;®...Qaa,,, ®... 9a,
i=0

+ (—l)nlgnao®al ®®a

In what follows we will construct a finite length projective resolution
of &7,

n-—

n—1-

d d d d €
O0—=Ey—>E_ | —.. 2 E > =

and a comparison map
ki(A¥(Z), b) — (E*, d),

i.e., a degree zero map of complexes of &/¢-modules such that
kol ¢ — A€

is the identity map.

To begin with, set

3.1) E,=Z°QNYV,

and consider the /°-module map

(3.2) mE,— A,()
1®e N...Ne
- sgn(0)(Vyi,) - - - vo(,-"))_l ® vyiy) @ - - B (i -

ocES

Consider also the &°-module map
(33) d:En - En—l

1®e A... g

Iy

i Iy’

n

= 2 DA =y D ®e AN AL Ay
k=1

It is easy to check that d and h are continuous, and a straightforward

computation gives

LEMMA 3.1. bh = hd.

To facilitate the following computations, we will interpret the 2/°-
module structure of E, as an w£bimodule structure:

E,=o4@NV®L
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We give the direct sum E = @, E, a graded associative «£bialgebra struc-
ture by defining a multiplication, denoted by /\, as follows:

1®x®vV)AP®Yy®1) = v T®@x Ay @™
Write

2 forn = 0,

n 1
> = <o forn = —1,
i=0 —1

2 forn < —1,

i=n—1

|

and define /-module maps
b M) = E,
kA, () — E,

by the formulas
a;—1

(34 p (™ '@V = (v“l>,)“( 2 kee® vf')(v“|>,),
k=0

(3.5) k(O™ .. Vv @y®. .. Qv

= 2 p (OO AL A () @),

0> >0,
LemMA 3.2, kh = 1d.

Proof. This can be seen by a straightforward computation.
LEMMA 3.3. kb = dk.

Proof. Note first the following identities:
(3.6) dp, () ® v
= (=) '@ 1I® (L) — (M2) 'O 1® ()
and

(3.7 e (T @ W) = 0Pl o (0 TN @ P

+ 0% (0BT @V, ).

These follow from the definitions of the respective maps and the commu-
tation relations (2.1).

Now, given i > j, we get from (3.6) and (3.7) the identity
(3:8) ()T @V A p ()T @V

=o' @) A g (BT @ V)
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= 2 p(0HT@) A p(0H T @) Ap (oM @),

i>1>)
Then (3.8) and the easily seen fact that d is a derivation of the bialgebra E
lead us immediately to the identity kb = dk.
PROPOSITION 3.4. (Ey, d) is a projective resolution of <, and
k:(Ax(), b) = (Ex, d)
is a comparison map.

Proof. According to Lemma 3.1, (E,, d) is a subcomplex of the complex
(A4(&Z), b), and in particular, d* = 0. Since there exists a contracting

homotopy
LA ) = Ay (),
Ib + bl = id,

we can set
I = kih.

Using Lemmas 3.1, 3.2, and 3.3 we get

dl + Id = dklh + klhd = k(bI + Ib)h = id,
and hence (E,, d) is acyclic. Since E, is given by free o/ °-modules (¢ is
unital), the result follows.

4. Hochschild cohomology of .« According to Proposition 3.4, (E,, d)
is a projective resolution of 27 and hence the groups H" (% 2/*) can be
computed as the cohomology groups of the complex

(Hom,«(E,, 2*), 'd).

Let us fix the basis for AV consisting of t}Ale vectors e;, I = (iy, ..., 1,),
iy, > i, >...> i, We shall denote by ® the space of tempered se-
quences (V*(ZN, *). The map

(4.1) Homy(E,, o/*) — ON'V
T (; 1(e, )(v“)e,)aez,v

is an isomorphism, and it is straightforward to see that ‘d is identified with
the operator

(42) ®T:ONV — Ny

where

N
(42) x, = 2 (1 — v ') e,
k=1
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Thus H*(«Z «/*) is identified with the cohomology of the complex
(43) (ONV, ®T)).

THEOREM 4.1. The Hochschild cohomology of < with coefficients in o/* is
isomorphic to the direct sum of the following two vector spaces:

@) ®N*V restricted to indices a € TV such that v* € centre %,

(2) the quotient of the space of tempered sequences (x, N\ z,), z, €
A(V © Cx,), by the subspace consisting of those sequences for which ( ||z,|| )
is tempered.

Proof. The result follows from (4.2), (4.3), the identity
T,T* + T¥T, = |Ix|I* id,
and the fact that ||x,|| = 0 if and only if v* € centre &£

5. De Rham homology of o7 Recall that the long exact sequence (1.2)
can be written as an exact couple:

H3(S) > - (/)
B 1
H*(, )
We will compute the limit of the corresponding spectral sequence

E} ).
For the convenience of the reader, let us recall some definitions. E(«/)
is defined as the homology of the complex

(E§(), dy) = (H*(sF, %), IB).

1+ 1) is given inductively as the homology of the complex (Ef (%), d,),
where the differential d,, acting on ¢ € H" (&, o/*) with di¢ = 0 fori < k,
is determined by the commutative diagram

HK—Zk—I I 1" (o o)

S
dy

Sl
H" (o, %) =Bt o) L 1 (a4, %)
using the fact that dj¢ = ... = d, _ ;¢ = 0 implies that B¢ € Im Sk,
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(Ef(«/), d,) converges to the graded vector space associated to the fil-
tration by dimension of the periodic cyclic cohomology, and the limit,
called EX*(27), will be called the de Rham homology.

We will start by expressing the operator dj in terms of the description of
the Hochschild cohomology of &7 obtained in Section 4.

For an element

¢ € Hom(E, «/*), 'dp = 0,

the composition ¢ = ¢ o k gives a cocycle on .« representing the same
cohomology class as ¢. Then

[do9] = [B] in H*(o, o/*).

According to Section 4, [Bé] is given by the element of @AV defined
by

(B (@ e)))

=~ -1
= > sgn(o) BoO iy -+ Vo) s Yoty - - -+ Votiy)

oES,

= 2 sgn(o) - cyclic antisymmetrisation of
6ES,

~1
ok(1, v"(vo(l-]) Ve ) Vot - -+ Vaiy)

-1
+ (— ])"¢k(vavo(,~|) .. vo(l-")) s Vo(iyy -+ 0 Voli,) 1).

Note that, by the definition of k, the second term in the above sum vanish-
es and only the cyclic permutations contribute to the first sum. Thus we
end up with the sum

> (— 1)%pk(1 ®v, ®...®vi,®va(v- vy ) !
!

UES! Ity i

Qv  ©...0v),
where

a=Il(n+ 1)+ In =1[(mod 2).
According to the definition of k£, we can now write (see 3.5)

(dgd)(v* @ ¢))

=2y X R AU v,-l)_'eiI ANANYS
1

>m>ipg,

A p,, (v ...vv,-l...vil(v“)_l®v“(vv vy o) Th

I+ In VRS (] 4
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Using (3.4) we get d,, represented as the map
(5.1) @T*OAY — OAV,
where
n o= 1
6D o= 2 (2 om0 by 01 e
l

Note that, since Bb = —bB, x, L y, for all a € Z".
The following result is essentially the content of [3, Lemma 52].

LEMMA 5.1. For a # (0....,0),
2

N
lxll + [yl 2 @(2 Iaklz)

Proof. Note first that, according to (4.2) and (5.2), we have

N N
llx I = kZl = N2 A = ,Hl A

and
N «
1 — A
2
yall? = 2 =
Hence
1< 1 — A&
+ = —( 1 — A + ‘ e )
el + 1l = = El =M+

Looking at the kth term of the right hand sum, and setting A, = exp(if,),
we have either

1 — A
k > ] or akok $ ]_z, z’
Since in the second case
2
|A|>L and |1 — N\ | > ——,
2le | 8l |

the stated inequality follows.
LEMMA 5.2. Given ||x]|| + ||ly|l # 0, we have
(Trw = Tw', Tw = 0) = (w = Tw; + T'w,).

Moreover, if w and w' are tempered functions of « € Z", and x,, y, are as
above, then w, and w, can be chosen to be tempered functions of a.
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Proof. Choose an orthonormal basis f|, .. ., fy of V such that

x = |xllA, ¥y = lyllf
Then
w=@ +w ALNAL wow € ANVO S DCH))

and we can reduce everything to the following two dimensional problem:
Given a, b, ¢, tempered sequences in .S”*(ZN), such that ||y||b = ||x||c,
find tempered sequences A, B, C such that

af, + bh N\ f = 7;,*(Cf2 N ) + T.(A + Bfy).
According to Lemma 5.1, a solution of this is given by

B a b +tec
bxll + 1y 1 lxll + 1yl
THEOREM 5.3. (1) S is injective on Im S.

Q) EL ) = E(Z) = NV

A=C

Proof. Note first that the formulas

8() =8y, i,j=1...,N

define derivations
0 — &,
such that

[6.8] =0 and 75 = 0.

1

Setting

(5.3) b, ilxg, - oux,) = > sgn(o) 1-(x08,-am(xl) ...0

GESH

(x,) )

In(n)

we get cyclic cocycles on & (See [5].) Moreover, for iy > ... > i,
¢,
Thus, under the map (4.1), the linear space { }\ S H\(#) spanned by

tAhe cocycles (5.3) is mapped injectively onto the (0, . .. ,0)-component of
@A'V. Hence, by Lemmas 5.1 and 5.2, the map

{1 — Ei@)

i, 0h(e))) # 0= I = (iy,....,i,) and a = (0,....0).

is an isomorphism.
But { }) is given by cyclic cocycles, and hence d; = d, = ... = 0. This
gives in particular
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El (&) = Ej{(&) = A'V,
i.e., (2). To prove (1) note that, for k > 1, we have
Sk¢ = 0= S5""'¢ € ImB=Ip € Imd, _,.
But d, , = 0 and thus I¢ € Im d,_,. By induction, I¢ € Im 4, i.e,
Ker $¥ € S(Ker $*') + Im B.
Iterating the above relation we get, for any / > 0,
Ker S* C SI(Ker S’“Ll) + Im B.

For dimensional reasons the first term converges to 0 as / tends to infinity,
and hence we obtain (1):

Ker S¥ € Im B = Ker S.

CoROLLARY 5.4 (cf. [1] ). Any continuous derivation D of & into /* has a
unique decomposition

D =D + D,

where

ol
Il

N
> A9,
i=1

A; in the centraliser of & in /* and

D= lim Ad X ap® (la,llixll) € #*Z").

M—oo lal <M
Moreover D is inner if and only if (a,) is a tempered sequence.

Proof. The existence of the decomposition is a consequence of Theorem
4.1, while the desired description of the summands is a consequence of the
proof of Theorem 5.3.

Definition 5.5. { }x denotes the linear space spanned by the cocycles
(5.3). We use the same notation for the image of { }} in both H\(#/) and
H" (A, o/*).

6. Cyclic cohomology of <7

THEOREM 6.1.

() HYZ)=ImB+ ImS + { }}.
Q) SHIK)) = @ N *y.
k=0

(3) Im B = Ker dy/{ }3,
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where Ker d, can be given an explicit description as Ker @ T*in the context
of Section 4.

Proof. By Theorem 5.3 (2), the natural map
{ X = HX(&)/(Im B + Ker I)
is an isomorphism. This is equivalent to saying that
Kerdy = ImI and H{&) = (ImB + KerI) + { }}.

By Theorem 5.3 (1), Ker S N Im S = 0. Since Im B = Ker S and Ker I =
Im S, (1) follows.

(2) follows from (1) by induction.

(3) follows from (1) using Ker dy = Im 1.
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