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INTRODUCTION 

The generation of internal waves in the radiatively stable stellar region by the 
turbulent motion at the boundary of the overlaying convective zone is similar 
to the same case in the deep ocean or in the earth atmosphere (Townsend, 
1965), and can be described in a simple way as following: When an turbulent 
fluid element arrives at the boundary of the convective region with a non-zero 
momentum, it beats and it deforms the interface between both regions. This 
disturbance of the equilibrium state excites a train of internal waves propagat
ing below the convective zone in the horizontal and vertical directions for the 
frequencies lower than the characteristic one for the stable stratification (Brunt-
Vaisala frequency). 

MATHEMATICAL MODEL (FOURIER TRANSFORM) 

We use the model proposed by Townsend (1965) to described the internal waves 
in the earth atmosphere. He considered that the disturbance at the boundary 
can be written by a gaussian function of space and time and describes the effect 
of this perturbation through a Fourier Transform: 

i{z,t) = j r u{z | l,u) exp (- • (a2l2+T2w2)\ exp(t(/z - wt))dldu> 

where a and T are the characteristic size and period for an turbulent element of 
fluid; u is the vertical perturbation propagating in z-direction. We take u as the 
vertical velocity of the internal waves given by Press (1981) with the following 
assumptions: 

• Plane-parallel geometry : r0 — r = z, and Brunt-Vaisala frequency (N) 
constant below convective zone. 

• u2 much smaller than N2. 

• The radiative damping term can be written : 

1 [r<rN3
 L3 . 1 _. . /«oV -]r—kldr^-F{z).{-) 

where a is the thermometric diffusivity, kfj the wave number, and w0 

the circular frequency attached to the largest wave length of the turbulent 
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motion; involving that we consider for the different 1-components the same 
damping, that one corresponding about to the pression scale hight. 

COMPUTATIONAL METHOD 

Fourier Transform given out by the application of Townsend' model has ben re
solved using the method of steepest descent. This supposes first, that function 
behaves like a gaussian near its maximum, second, that the oscillation frequency 
is low enough compared to the gaussian decrease. In our case, this method is 
valid for values obeying the u condition 

w4 < 2 • 63w4 F 

SUPERIMPOSITION OF GAUSSIAN PULSES 

The motion below an turbulent region is the result of the superimposition of 
the effects of many fluids elements beating the boundary. As the arrival of the 
turbulent elements at the interface between the convective and stable regions is 
a random function of time and horizontal coordinates, the mean-square vertical 
velocity at any depth will arise from the product of the number of disturbances 
per unit of time and area and the mean-square vertical velocity due to a single 
pulse. Then 

<"2-^(7)(7)^-<2^'!-(-m!w^) 
where the index o refers to the boundary of the convective zone, p is the density 
and u//0 is the imposed horizontal velocity at the boundary. 

DIFFUSION COEFFICIENT 

If we introduce the above vertical velocity in the expression of the diffusion 
coefficient given by Press for monochromatic internal waves, and assume that 
the turbulent flow in the convective zone can be described by the Kolmogorov 
spectrum, the diffusion coefficient that arise out is F~ * times smaller than the 
one obtained by Schatzman (1991) using the Press' formalism and the same 
turbulence spectrum. 

The validity of the results presented here are limited by the approximations 
employed in order to overcame the mathematical difficulties of the analytical 
method. 
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