
TAUBERIAN ESTIMATES CONCERNING THE REGULAR 
HAUSDORFF AND [J, f(x)] TRANSFORMATIONS 

A. M E I R 

1. Introduction. Denote by {t(x)\ some linear transform of the sequence 

{sn} (n > 0, sn = a0 + ai + . . . + an), 

of the form 
oo 

tW = S Ck(*)Sk (X > Xo > 0), 
k=0 

where x attains continuous or only integer values. The problem of estimating 
\t(x) — sm\ as x and m tend to oo with some connection between them was 
considered first by H. Hadwiger (3) assuming the Tauberian condition 
nan = 0(1) on the sequence {sk), specifying the transform t(x) to be the usual 
Abel transform and x = 1 — n~l. Papers of Agnew (1), Garten (2), and 
Jakimovski (5, 6) deal with similar problems concerning other transformation 
methods. 

The same problem but replacing the Tauberian condition nan = 0(1) by 
bn = 0(1), where 

(1.1) K= (n + l ) - i ( a i + 2a2 + . . . + nan), 

was solved for special transformation methods by V. Garten (2) and P. 
Hartman (4). 

In this paper our aim is to state and prove the corresponding results under 
the condition (1.1) for a class of regular Hausdorff and [J,f(x)] transforms. 
The Abel transform and the Cesàro-transform of order a > 1 are included 
in our theorem as special cases. 

2. Definitions, notations, and lemmas. The regular Hausdorff-trans-
formation is defined as follows: Let (3(t) be a function of bounded variation on 
[0, 1], satisfying 

(2.1) 0(0 + ) = 0(0) = 0, £(1) = 1. 

The Hausdorfr-transform Hn(/3) of a sequence {sk} is 

(2.2) Hn(0) = E (") sk f u\l - u)n-kdp(u), n>0. 

The [J,f(x)]-transformation was defined in (7) by Jakimovski as follows: 
Let 
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/(*) = f fdH(t), 
' 0 

where fi(t) is a function of bounded variation on [0, 1] satisfying 

(2.3) 0 (0+) = 0(0) = 0, 0 ( 1 - ) = 0(1) = 1, 

and let the [/,/(#)]-transform, say JX(P) of a sequence {sfc\, be defined by 

(2.4) J,G5) = É ^rP-f'Ms* 
k=0 kl 

for x > 0. The regularity of this transformation has been proved in (7). 
We shall use the following notations: 

(2.5) dk s dk(x) = ~ f f (log i j * <#(*), * > 0; 

(2.6) A s £>„(*) = É djy & > 0; 
j=k 

(2.7) 5, = ôt(») = ( * ) J ' «*(1 - «)*"* dj8(w), £ > 0. 

(2.8) A* = A*(«) = S p j if 
1 0 k>n+l. 

We shall use in our proofs the following lemmas: 

LEMMA 1. If the [J,f(x)]-transformation is regular and 0 < 0(£) < 1 on 
[0,1], /Ae» 

(2.9) 0 < £>*(x) < 1, * > 0, x > 0. 

/ / /Atf Hn(13)-transform is regular and 0 < 0(0 < 1 on [0, 1], /Aew 

(2.10) 0 < At(n) < 1, * > 0, » > 0. 

Proof. By the regularity of the transformation, D0(x) — 1 (7, p. 142). 
Let k > 1. By (2.5) and (2.6) and changing the variable of integration to 
u — x log (I/O, we obtain 

(2.11) 1 - Dt = (k ^ 1}, J " e - V - x ( l - p(e^/x))du 

and since 0 < 0(/) < 1, we have at once 0 < 1 — Dk < 1. So (2.9) is proved. 
The proof of (2.10) is completely analogous. 
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LEMMA 2. For every c (0 < e < 1) and every u > 0 

| * -K |>€M /ci 1 ~f- U 

Kt being dependent only on e; and for every e (0 < e < 1), e^^rj w > 0 awd ez/ery 
w, 0 < u < 1, 

(2.i3) E (iV^-^^rf^' 
\k-nu\>en \ * / 1 - f W 

i£'€ Jeiwg dependent only on e. 

Proof. Let w > 1. Then 

By easy calculation, this is equal to 

1
 /Q 2 , N / 4 1 8 1 

-4-4 (Ott + U) < "Î • - 2 < "4 ~2 1 -, • 
eft e f t e ft + 1 

For 0 < ft < 1 the sum on the left-hand side of (2.12) is clearly < 1 . So 
K€ = 8e~4 is suitable for all u > 0. Thus (2.12) is proved. The proof of (2.13) 
is completely analogous. K'€ may be chosen as e-4. 

LEMMA 3. Suppose the [J,f(x)\-transformation is regular, 

(2.14) 0 < 0(0 < 1, 

and 
/ • 

(i) ( u~\l - P(e~u))du < +co , 

(ii) f°° u-^V{e-u)du < +00, 

w/zere F(0 is £&e variation of ft(u) from 0 £0 2. Then for every q > 0 

(2.16) lim -j £ *-x(l - A) + £ fe-xZ?4 = 4„ 

(2.17) 4 , = J" t~\l - fi{e'l))dt + j ^ rlp(e-l)dt. 

Remark. In fact, Lemma 3 still remains true if we assume instead of (2.15) (ii) 
the weaker condition 

(2.15) 

Ç™ u-l${e-u)d u < +< 

If ft(t) is non-decreasing on [0, 1], this condition is equivalent to (2.15) (ii). 
Thus Lemma 3 improves Jakimovski's result (6, Theorem (3.1)), where 
nan = 0(1) was supposed. 
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The significance of (2.15) (ii) will appear in the proof of Theorem 1. 

Proof. Let e, 0 < € < 1, be fixed. By (2.11), 

m /»œ m k 

(2.18) S1^Z k-\l - Dk) = E If*-" • «_1(1 - p(e-u/*))du 
j f c = l « / 0 k=l Kl 

J
»m(l—«) s*m(l+e) A»OO 

+ + zali+It+U 
0 "mil— e) vm(l+e) 

Now m * oo * 

Jc=l kl k=m+l k\ 

and if u < w( l — e), clearly m > ^ + eu; thus by (2.12) 

E ^ e - ^ l - O C d + w2)-1). 

Thus 
r*m(l—e)/x J»m(l— e) /x 

u~\l - j 8 ( 0 ) { l - 0([1 + (aw)2]-1)}'*" 
o 

and by (2.15) (i) 

J
. ï ( l - e ) 

zT^l - p(e^))du + o(l) 
0 

as m —» oo, x —> oo, mx - 1 —-> g. 

By (2.14) 

J»m( l+e) i I 

u~xdu = l o g ^ A 
If w > m(l + c), clearly w — \m > w; thus by (2.12) and (2.14) 

(2.21) 73 = I u^OÇuT^du = o(l) asm—»». 
»/m(l+«) 

Now e > 0 was arbitrary. Let e -> 0. From (2.19), (2.20), and (2.21), 

(2.22) lim Si = P ^_1(1 - I3(e-U))du 
Jo 

as m —•» oo , x —> oo , ra/x —> #. 
By (2.11) and changing the order of summation and integration, as justified 

by (2.15)(ii), 
oo /»oo oo Jc 

(2.23) S 2 = £ *-12>* = £ f r e - V - 1 ^ - * " 1 ) ^ 
&=m+l * / 0 k=m+l "I 

J
»w(l—e) / » w ( l + e ) /»oo 

0 ^ m ( l - e ) «Jm(l-f-e) 
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Now by (2.14) 

f',|< f 
«^ 0 

m(l-c) 
Y> U__ 

M + 1 Urn k\ 
e udu 

m —»o°, 

and since m > u + eu, (2.12) implies that 

1 Cm 

(2.24) \I\\ < — 3 — 0((1 + ^ 2 ) - 1 ) ^ = o(l) as 

J» TO ( 1 + 6 ) 1 I 

M_1dw = l o g f 1 ^ - , 
TO(I-«) 1 — e 

J* 0 0 / ^ 47^ \ 

TO(I+€) \ *=o K> / 

and since m < w — Jezj, by (2.12), 

(2.26) I '8 = r (1 - 0(u-2))u~1p(eril/x)du 
*^w(l+e) 

= P° u^Pie-^du + o(l) 
^ « ( 1 + 6 ) 

a s w - > oo , x —> oo , mx~x —» g. 
Since € > 0 was arbitrary, by (2.23)-(2.26), 

/ • G O 

(2.27) lim S2 = u-x$(fu)du 
•'q 

as m —» oo, x —» oo, mx~1 —> g. Equations (2.22) and (2.27) prove the lemma. 

LEMMA 4. Suppose that the Hn((3)-transformation is regular, 

(2.28) 0 < 0(0 < 1, 

and 

(2.29) 

Then for every q > 0 

J Z4 1fi(u)du 
o < +0°. 

f m m+n \ 

(2.30) lim - E k~\\ - A,) + £ r ' A j = B„ 

where Ak = 0 wAew & > w + 1 awd 

f rxp(t)dt + f r ' ( i - p(t))dt, q<i, 

f r1p(f)dt +log q, g> 1. 
•/o 

(2.31) 
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Remark. Lemma 4 improves Jakimovski's result (5, Theorem 1) for the 
case nan = 0(1), since only (2.28) is assumed instead of the more restrictive 
assumption that P(t) is non-decreasing on [0, 1]. 

Proof. From (2.7) we get easily, by integration by parts and summation, 

(2.32) A, = k fo ( ^ ) (1 - tf-Yr'O. - 0(t))dt, k>l, 

(2.33) 1 - A» = k J u ) ( l - t)n-ktkr^(t)dt, 1 < k < n. 

Now if m > n, 
m n m 

(2.34) £ k~\l - A,) = £ k~\l -Ak)+ £ k~\ 
Jc=l k=l Jc=n+1 

By (2.33) this is equal to 

J» l m 

(i _ (i _ ty^ftw + Z k~\ 
0 *=w+l 

which by (2.29) becomes 
I rlp{t)dt 

«^ 0 
+ logg + 0 ( l ) 

If w < » we have, by (2.32) and (2.33), 

m n 

(2.35) £ ife-̂ l - A,) + £ rxA, 

+ f È (n\i - t)n-hkr\\ - m)dt 

= / i + I». 

Let e, 0 < e < 1, be fixed, and denote for brevity mn~1(l — e) = du 

mn~l{\ + e) = 02-

(2.36) J
i01 /»02 /»1 

+ + = /ii + / « + /« . 
0 «/0l t / 0 2 

If 0 < t < 0i, clearly m — nt > me, and since raw1 —> g > 0 we may 
assume that m — nt > 2_1egw. Thus by Lemma 2, (2.13), we have 

(2.37) I n = f ' {1 - (1 - /)" - 0(n-2)}rl(i(t)dt 

J»ffU-0 
rlp{t)dt + 0(1) 

0 
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as n —> oo, m —> <», m r 1 —» g; 

(2.38) |/12|< f Y ^ l o g f ^ . 
«/*! 1 — 6 

If 02 < J < 1, it is easily seen that tn — m > me^ 2~1eqn. Thus, by (2.13), 

(2.39) |7i3| < I 0(n~2)t~ldt = o(l) as n —»°o , m •—>œ f f^/w —» g. 

From (2.36)-(2.39) and since e > 0 is arbitrary, 

(2.40) h = I rl(5(t)dt + o(l) asm-^oDln->oDym/n-^q. 
Jo 

Using exactly the same reasoning, 

(2.41) h= { r\l - p(t))dt + o(l). 

If g > 1, we have for sufficiently large values of m and n that m > n. Thus 
(2.34) proves the lemma in this case. If q < 1, then m < n for sufficiently large 
values of m and n. Thus (2.35), (2.40), and (2.41) prove the lemma. If q = 1, 
the expressions (2.34) and (2.35) both tend to the same limit, since for q — 1 
both expressions defining Bq in (2.31) are equal. This completes our proof. 

LEMMA 5. For u > 2 

(2.42) 5 s £ log & ^ e~u = 0(log «). 

Proof. 
CO fc 

log w - 5 = log u(l + ^)6~M + Z) log ^ ^j- <TW. 

Thus 

(2.43) |log u - S\< 0(log u) + X 
* = 2 

= o(iog^)+ Z + E 
2<£<2w &>2w 

= 0(log«) + Ci + (72. 

Now trivially in the first sum |log(w/£)[ < log u\ so 

(2.44) o-i < log u. 

In the second sum |log(fe/w)| < k\ thus by (2.12) 

(2.45) (72 < 0(u~l) = 0(1). 

LEMMA 6 (Agnew 6). Suppose {bk} (k > 1) is a bounded sequence. Let {ck(x)\ 
be a sequence of functions defined for x > 0 satisfying 
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(2.46) l i m ^ O ) = 0, k = 1, 2, . . . 
£->oo 

oo 

(2.47) hmsup X) k*(*)| = A <oo. 
z-^oo # = 1 

(2.48) lim sup X) <*(*)&* < A • lim sup \bk\. 

The constant A in (2.48) is the best possible in the sense that there exists a bounded 
sequence {bk} with 0 < lim sup \bk\ < °o and such that both sides of (2.48) are 
equal. 

3. The main theorems. 

THEOREM 1. Suppose that the [J,f(x) ^transformation is regular, the function ft (t) 
occurring in (2.4) is continuous and satisfies (2.14) and (2.15), and the functions 

(3.1) (i) r * ( l - P(e-%)) and (ii) Ir^ier1) 

are non-increasing for t > 0. Then for every sequence \sm) satisfying (1.1), for 
its transform Jx (0) and for every q > 0 

(3.2) 

701 11 OV0 

lim sup \sm — JX(P)\ < Cq - lim sup \bn\, 
W2->oo, £->oo. m i " 1 - ) ? «->oo 

Wrierc 

(3.3) Ct =As + 2l3(e-°) 

and Aa was defined by (2.17). 
The constant CQ is the best possible in the sense that there exists a sequence {sm} 

with 0 < lim sup \bn\ < oo such that both sides of (3.2) are equal. 

THEOREM 2. Suppose that the Hn(&)-transformation is regular, the function &(t) 
occurring in (2.2) is continuous and satisfies (2.28) and (2.29), and the functions 

(3.4) (i) t-^l-Pit)) and (ii) t~lp{t) 

are non-increasing for 0 < t < 1. Then for every sequence {sm} satisfying (1.1), 
for its transform Hn(fi), and for every q > 0, 

(3.5) lim sup \sm — Hn(P)\ < Dq lim sup |6n|, 

where 

(3.6) , , , _ { £ + 2 ( 1 - / » & ) ) , q<l 

awd 2?ff was defined by (2.31). The constant Dq in (3.6) is the best possible in the 
sense that there exists a sequence {sm} with 0 < lim sup \bn\ < °° such that both 
sides of (3.5) are equal. 
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Examples, (i) For Theorem 1: Let P(t) = t; then the Jx(fi)-transform is 
Abel's transform and is easily seen to satisfy the conditions of Theorem 1. 

(ii) For Theorem 2: Let 0(t) = 1 - (1 - t)a, where a > 1; then the Hn(fi) 
transform is Cesàro's transform of order a, and satisfies the conditions of 
Theorem 2. 

Proof of Theorem 1. We define bo — 0. By (1.1) we have 

(3.7) av = v~lbv + bv - 6„_i, v > 1; 

thus 
A: 

(3.8) sk = a0 + E " ^ + &* 

and since bv = 0(1), 

(3.9) s, = 0(log&), & > 2 . 

Next we show that the transform Jx(&) exists for all x > 2. By (2.5) and 
(3.9) 

(3.10) £ | < M M < f Ë 0 ( l o g f e ) ^ f ( l o g i Y |d/5(0| 
X:=2 ^0 k=2 K\ \ 1/ 

= f + f = /i + A 
Since log k < k and log (1//) < 1 for £ > e_1, we have 

(3.11) J2 = 0(x) f \dp(t)\ = 0(x), 

and since for t < e -1, x log (1//) > x > 2, by (2.42), 

(3.12) / ! = o { J * l o g ( x l o g i ) | ^ ( 0 | } 

= O(log x) + o | J J log log i |d/3(01} . 

But 

(3.13) P log log i | ^ ( 0 | = f |d|8(0| P 
z£ log(l/w) 

~ Jo «log(l/w) Jo ' W J I ~ Jo « log( l /« ) ' 

which by (2.15) (ii) is 0(1). 
By (3.10)-(3.13), for every fixed x > 2 

(3.14) £ |<4||s*| < + œ , 
Jfc=0 
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and 
oo 

(3.15) £ \dk\logk< +00. 
jfc=2 

Now for every N > 2, we easily see that 

oo N oo oo 

]T dp sv — X) aic At = S dvsv — X̂  "̂ %• 

Since by (3.9) ̂  = 0(log N), this yields 
I oo N 

(3.i6) E ^ ^ - E ^ * 
which by (3.14) and (3.15) is o(l) as N —» oo. Thus for every fixed x > 2 

7ft OO 

(3.17) sm - Jx(p) = E « » - E « * f t 
lib OO 

= Z) 0*(i - A) - S <** A» 
#=1 &=m+l 

which by (3.7) is equal to 

m oo 

£ (k~\k + 1)6* - 6*_i)(l - P») - E (*_1(* + 1)6* - 6*_i)Z?». 

Now 

£ (k-\k + 1)6* - 6 t _ 0 ^ 

= Z bk(k~l(k + l)Z)ft — A+i) — bmDm+i + bMDM+i, 

and since by (1.1) and (3.15) bMDM+i = o(l) as M —> œ,we have 

ra—1 

(3.18) sra - 7,(j8) = Z {*-1(* + 1)(1 - A ) - (1 - A+i)}6* 

+ {m- 1^ + 1)(1 - Dm) + Dm+1}bm - É {*_1(* + l)Dt - Dk+l\bk 

OO 

We want to apply Lemma 6 to the last expression. First by the regularity 
of the transformation for every fixed k > 1 

\imDk(x) = 1; 
£->oo 

thus clearly (2.46) is satisfied. For computing the value of the constant A of 
(2.48) we have to evaluate the upper limit of Y,\ck\ when x —-> oo, m —» oo, 
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mx~l —> g. By integration by parts and changing the variable, we obtain from 
(2.11) 

Ç<° («*)* _IM J\ - |8(e-")\ ... ^ 
c* - - Jo V e H—«y * * < « - *. 

which by (3.1) (i) is non-negative. By (2.9) 
Cm > 0, 

and for k > m + 1 

which by (3.1) (ii) is non-positive. Consequently 

oo m oo 

(3.19) £ |c,| = Z k-\l -Dt)+ E * _ 1£* + 2A»+i + 1 - Z>i. 

Now the limit of the first two sums on the right-hand side is Aq (cf. (2.17)) 
and by our regularity assumption 1 — D\ = o(l) as x —» oo. By (2.11) 

(3.20) Dm+1= JQ ~e-up(e-u/x)du. 

Therefore 

Dm+l - p(e~°) = ~e-u{p(e-u,x) - 0 ( 0 M« 
t / 0 til. 

Ji (m-2)( l -e) /im(l+2e) /«oo 

+ + I 
0 «/(m_2)(l_e) «^m(l+2e) 

= Jl* + /2* + /8*. 
By (2.12) and (2.14), 

( fm ) 
(3.21) Ji* = 0\m~\m - l ) " 1 I du} = o(l) asm->oo, 

(3.22) J3* = o | J u~2du}= o(l) asm->co, 

and since @(t) is continuous and w/x —> g, for every given 77 > 0, if e > 0 is 
small enough, 

/•oo m 

(3.23) | 7 2 * | < 7? ^ « T W a = 77 
1 ' Jo w! 

for m > ra0 and x > x0. In other words, by (3.21)-(3.23) 

(3.24) lim Dm+1 = p(e~Q). 
m->oo, ar-^oo, m z _ 1 - > î 

Our Theorem 1 now follows from Lemmas 3 and 6, (3.19) and (3.24). 
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Proof of Theorem 2. Since Ak = 0 for k > n + 1, for both m < n and n < m7 

m n j 

(3.25) sm - HM = E « . - E « * i « « 

= S <**(! - A*) - Z) a* A*. 
£=0 fc=ro+l 

Hence by (3.7), after easy computation, 

sm - H„(/3) = 2 ik~\k + 1)(1 - A*) ~ (1 - A*+i)}&* + &w 

- E {*_1(& + 1)A, - Ak+i\bk = E 7 * 6 t . 
k—m+l k=l 

Now from (2.7) and (2.8), after partial integration and summation, 

(3.26) k~\k + 1)(1 - A,) - (1 - A*+i) 

\K/ JO \ t / 

which is non-negative by (3.4) (ii) ; k = 1, 2, . . . . Also 

(3.27) k~\k + 1) A* - A,+1 = Q £ (1 - 0"-* **+1 4 ^ ^ ) -

which by (3.4) (i) is non-negative; k = T, 2, . . . . Thus by easy computation 

n+m m m+n 

(3.28) E IT*I = E *_1(1 - A*) + E &_1A* + 2Am+1 + 1 - AL 
fc=l Jc=l k=m+l 

Next we want to apply Lemma 6 to (3.25). First, we observe that by the 
regularity of the transformation for every fixed k, 1 — Ak = o(l) as n —» oo ; 
thus (2.46) is satisfied. To compute the constant A of (2.48) we have to evaluate 
the upper limit of SI7*1 as ra —> oo, n —> œ, w r 1 —> q. By Lemma 4, the first 
two sums of (3.28) tend to Bq; cf. (2.31). By the regularity assumption, 

(3.29) lim(l - Ai) = 0. 

If m > n, then Aw+1 = 0 by definition, and thus our theorem is already proved 
for q > 1. 

If m < n, we have by (2.32) and simple computation 

(3.30) Am+1 - (1 - m ) = £{n-m % - * ) " ~ (*)"(<»&> " iÙ)du 

Jiw(l— e) / » w ( l + 0 /»/& 

+ + s j ' x + /', + /', 
0 ^m(l-e) « / m ( l + € ) 
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for any fixed e, 0 < € < 1. Now, since mn~l —> g, we have for sufficiently large 
m and n if u < m{\ — e) that 

n — \ . ! 
m — u > ^eqn. 

n 
Thus by (2.13) 

(3.32) J\ = o\K f dut = o(l) asw-^co. 

If u > m(l + c), then 
» — 1 ^ ! 

Thus (2.13) yields 

(3.33) J '8 = o\K J d w | = o(l) asrc->co. 

Since the function P(t) is continuous and m r 1 —» g for every given 77 > 0, if 
e > 0 is small enough, 

for tra > Wo, n > Mo. 
By (3.30)-(3.34) 

(3.35) lim Am+1 = 1 - 0(g). 

Thus by (3.28), (3.29), (3.30), and (3.35) 

(3.36) lim £ \yt\ =BQ + 2(1 - /3(g)), q < 1. 

In the case of g = 1, both m ^ n and m K n are possible; but since 0(1) = 1, 
both expressions defining Z^ in (3.6) are equal. 

By Lemma 6, (3.25), (3.36), and our last remark, the theorem is proved for 
q < 1 also. 

We state the following theorems without proof. 

THEOREM I'.Ifwe replace condition (3.1) (i) in Theorem 1 by the assumption 
that 

(3.1)(i)' r » ( i - (8(^0) 

is non-decreasing for t > 0, the conclusion (3.2) Ao/ds TO7& 

C\ = 2 + f °° r^ie-'W - P rx(l - j8(0)# 

instead of Cq. 
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THEOREM 2'. If we replace condition (3.4) (ii) in Theorem 2 by the assumption 
that 

(3.4) (ii)' r W O 

is non-decreasing for 0 < / < 1, the conclusion (3.5) holds with 

D'q = 2+ \logq\ - f rlp(t)dt 

instead of Dq. 
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