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Abstract. In this paper, we establish an extended Loomis–Whitney inequality for
positive double John bases, which generalises Ball’s result [1]. Moreover, a different
extension of the Loomis–Whitney inequality is deduced.
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1. Introduction. A convex body K (i.e. compact, convex sets with non-empty
interior) in �n is in John’s position if the maximal volume ellipsoid of K is the Euclidean
unit ball. John [3, 11] proved that a convex body K is in John’s position if and only if
there exist contact points ū1, . . . , ūm of K and Bn

2 (common points of their boundaries)
and positive real numbers c1, . . . , cm such that

m∑
i=1

ciūi = 0 and In =
m∑

i=1

ciūi ⊗ ūi,

where ūi ⊗ ūi is the usual rank one orthogonal projection onto the span of ūi and In is
the identity on �n. The first condition guarantees that the {ūi}m

1 do not all lie on one
side of the sphere. The second condition guarantees that the {ūi}m

1 do not all lie close to
a proper subspace of �n. In the case of a symmetric convex body, the first condition is
redundant, since we can take any sequence {ūi} of contact points satisfying the second
condition and replace each ūi by the pair ±ūi, each with half the weight of the original.
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The above identity states that the ūi’s are distributed rather like an orthonormal
basis in the sense that for each x ∈ �n,

|x|2 =
m∑

i=1

ci〈ūi, x〉2,

m∑
i=1

ci = n,

where 〈·, ·〉 is the Euclidean scalar product.

DEFINITION 1. Let {ūi}m
1 be a sequence of unit vectors in �n. We call {ūi}m

1 a John
basis with weights c1, . . . , cm > 0, if

In =
m∑

i=1

ciūi ⊗ ūi. (1.1)

Note that the condition (1.1) guarantees m ≥ n.
In fact, John’s decomposition of the identity holds in a much more general context.

We refer to [3, 4, 7, 8, 9, 12, 15, 17] and references therein for an extensive survey of
John’s decomposition.

In particular, Giannopoulos et al. [7] provided a generalisation of John’s
representation of the identity for the maximal volume position of two arbitrary smooth
convex bodies. This remarkable work can be stated as follows. Let K, L be two (not
necessarily symmetric) smooth convex bodies in �n. We say that L is of maximal
volume in K if L ⊆ K and, for every w ∈ �n and T ∈ SL(n), the affine image w + T(L)
of L is not contained in the interior of K .

THEOREM. If L is of maximal volume in K, then for every z belonging to the interior
of L, we can find contact points v1, . . . , vm of K − z and L − z, contact points u1, . . . , um

of (K − z)◦ and (L − z)◦, and positive real numbers c1, . . . , cm, such that
∑

ciui = 0,
〈ui, vi〉 = 1, and

In =
m∑

i=1

ciui ⊗ vi. (1.2)

Here K◦ is the polar body of K , defined by

K◦ = {x ∈ �n : 〈x, y〉 ≤ 1 for all y ∈ K}.
As usual, ui ⊗ vi denotes the rank one projection defined by ui ⊗ vi(x) = 〈ui, x〉vi.

Moreover, there exists a choice of z such that we simultaneously have
∑

ciui = ∑
civi =

0. This automatically holds for two symmetric convex bodies.
It is easy to verify from (1.2) that for each x ∈ �n

|x|2 =
m∑

i=1

ci〈ui, x〉〈vi, x〉 (1.3)

and

m∑
i=1

ci = n. (1.4)
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Motivated by the result of Giannopoulos et al. [7], we give the following definition.

DEFINITION 2. Let ui, vi ∈ �n, i = 1, . . . , m. We call the sequence of pairs {(ui, vi)}m
1

a double John basis with weights c1, . . . , cm > 0 if

(i) 〈ui, vi〉 = 1,
(ii) In = ∑m

i=1 ciui ⊗ vi.

Let I ⊆ {1, 2, . . . , m}. Denote by |I| its cardinality.

DEFINITION 3. A double John basis {(ui, vi)}m
1 is said to be a positive double John

basis if it satisfies

det

⎛
⎝ ∑

i∈I,|I |=n

ui ⊗ vi

⎞
⎠ ≥ 0. (1.5)

In this paper, by using positive double John bases as defined above, we will establish
an extension of the well-known Loomis–Whitney inequality.

The well-known Loomis–Whitney inequality (see [13] and [5, p. 95]) states that for
a convex body K in �n and a canonical orthonormal basis {ei}n

1, we have

V (K)n−1 ≤
n∏

i=1

Vn−1(Pei K),

where Pei K is the projection of K onto the 1-codimensional subspace e⊥
i orthogonal

to ei.
The remarkable fact that the orthonormal basis in the above inequality can be

replaced by any John basis was established by Ball [1]. Using induction, Ball gave an
elegant proof of the following result: If K is a convex body in �n, and (ū1, . . . , ūm) is a
John basis with weights c1, . . . , cm > 0, then

V (K)n−1 ≤
m∏

i=1

Vn−1(Pūi K)ci . (1.6)

Using a slightly different method than Ball, we establish the following
generalisation of inequality (1.6).

THEOREM 1.1. Let K be a convex body in �n. If {(ui, vi)}m
1 is a positive double John

basis with weights c1, . . . , cm > 0, then

V (K)2(n−1) ≤
m∏

i=1

(|ui||vi|Vn−1(Pui K)Vn−1(Pvi K))ci . (1.7)

From an application of Theorem 1.1, we give a different extension of the Loomis–
Whitney inequality, which generalises Zhang’s result [18].
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THEOREM 1.2. Let K be a convex body in �n. If {(ui, vi)}m
1 is a sequence of pair of

non-zero vectors in �n such that

det

⎛
⎝ ∑

i∈I,|I |=n

ui ⊗ vi

⎞
⎠ ≥ 0

and
∑m

i=1 ui ⊗ vi := A is a positive definite matrix, then

V (K)2(n−1) ≤ det
(

A + AT

2

)−1 m∏
i=1

( |ui||vi|Vn−1(Pui K)Vn−1(Pvi K)
ci

)ci

, (1.8)

where ci = 〈( A+AT

2 )−1ui, vi〉.
The rest of this paper is organised as follows: In Section 2 some of the basic

notations and preliminaries are established. Section 3 contains the proofs of the main
results.

2. Notations and Preliminaries. For K and L convex bodies in �n and λ ∈ �, the
Minkowski sum K + L of K and L is defined by

K + L = {x + y; x ∈ K, y ∈ L},
and the scalar multiplication λK is defined by

λK = {λx; x ∈ K}.
The Minkowski sum of finitely many line segments is called a zonotope.

As a consequence of Minkowski’s theorem (see [6, 16]), the volume of K + λL can
be represented by a polynomial in λ,

V (K + λL) =
m∑

i=0

(
n
i

)
Vi(K, L)λi, (2.1)

where

Vi(K, L) = V

⎛
⎝K, . . . , K︸ ︷︷ ︸

n−i

, L, . . . , L︸ ︷︷ ︸
i

⎞
⎠

is called the ith mixed volume of K and L, where K appears n − i times and L appears i
times. The Brunn–Minkowski inequality states that V (K + λL)1/n is a concave function
of λ in [0,∞). Differentiation of (2.1) at λ = 0 gives Minkowski’s first inequality

V1(K, L) ≥ V (K)(n−1)/nV (L)1/n (2.2)

with equality if and only if K and L are homothetic. By Cauchy’s projection formula
[6], we can easily obtain that if ū is a unit vector then

V1(K, [−ū, ū]) = 2
n

Vn−1(Pūi K)
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for any convex body K . Let [−u1, u1], . . . , [−um, um] be m line segments, their
Minkowski sum is

Z = [−u1, u1] + · · · + [−um, um].

So

V1(K, Z) = V1

(
K,

m∑
i=1

[−ui, ui]

)
= V1

(
K,

m∑
i=1

|ui|[−ūi, ūi]

)

= 2
n

m∑
i=1

|ui|Vn−1(Pūi K) = 2
n

m∑
i=1

|ui|Vn−1(Pui K), (2.3)

where ūi = ui/|ui|. If u1, . . . , um ∈ �n , m ≥ n, we have (see [14, p. 73])

V

(
m∑

i=1

[−ui, ui]

)
= 2n

∑
1≤i1<···<in≤m

|det(ui1 , . . . , uin )|. (2.4)

In order to prove Theorem 1.1, it should be noted that if p > 0, ri, ai > 0, the
weighted pth means

∑
i(ria

p
i )1/p decrease with p for all ai > 0 if and only if ri ≥ 1. See

[10 (2.10.5), p. 29]. In particular, the inequality

∑
i

ria2
i ≤

(∑
i

riai

)2

(2.5)

is true for all ai > 0 when ri ≥ 1.

3. Proof of the main results. The Cauchy–Binet formula can be stated as follows.

LEMMA 3.1. Let m ≥ n be integers and I ⊆ {1, 2, . . . , m}. Let A be a n × m matrix
and B a m × n matrix. If AI denotes the square matrix obtained from A by keeping
only the columns with indices in I, and BI denotes the square matrix obtained from B by
keeping the rows with indies in I, then we have the formula

det(AB) =
∑
|I |=n

det(AI ) det(BI ).

Using the Cauchy–Binet formula and the fact that 〈ui, vi〉 = 1, the following critical
lemma was proved by Giannopoulos et al. [7].

LEMMA 3.2. If a sequence of pairs {(ui, vi)}m
1 is a positive double John basis, with

weights c1, . . . , cm > 0, then for λi, δi > 0, i = 1, . . . , m, we have

det

(
m∑

i=1

ciλiui ⊗ ui

)
det

(
m∑

i=1

ciδivi ⊗ vi

)
≥

m∏
i=1

(λiδi)ci . (3.1)

Proof. Let I ⊆ {1, 2, . . . , m}. Write λI = ∏
i∈I λi, δI = ∏

i∈I δi and use the
notations UI = det(ui; i ∈ I), VI = det(vi; i ∈ I)T , where T is the notation of transpose.
Moreover, we write (

√
cU)I for det(

√
ciui; i ∈ I) and (

√
cV )I for det(

√
civi; i ∈ I)T .
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Applying the Cauchy–Binet formula, we obtain

1 = det In = det

(
m∑

i=1

ciui ⊗ vi

)
=

∑
|I |=n

I⊆{1,2,...,m}

(
√

cU)I (
√

cV )I (3.2)

and

det

(
m∑

i=1

ciλiui ⊗ vi

)
=

∑
|I |=n

I⊆{1,2,...,m}

λI (
√

cU)I (
√

cV )I .

Being a positive double John basis {(ui, vi)}m
1 , it is easy to verify that

det

⎛
⎝ ∑

i∈I,|I |=n

ui ⊗ vi

⎞
⎠ = UI VI ≥ 0.

This guarantees that the coefficients (
√

cU)I (
√

cV )I are all non-negative. Then applying
the arithmetic–geometric means inequality [10] with coefficients (

√
cU)I (

√
cV )I , we get

∑
|I |=n

I⊆{1,2,...,m}

λI (
√

cU)I (
√

cV )I ≥
∏
|I |=n

I⊆{1,2,...,m}

λ
(
√

cU)I (
√

cV )I
I

=
m∏

j=1

λ

∑
j∈I,|I |=n(

√
cU)I (

√
cV )I

j .

Observe that

∑
j∈I,|I |=n

(
√

cU)I (
√

cV )I =
∑
|I |=n

(
√

cU)I (
√

cV )I −
∑

j/∈I,|I |=n

(
√

cU)I (
√

cV )I

= det

(
m∑

i=1

ciui ⊗ vi

)
− det(In − cjuj ⊗ vj)

= 1 − det(In) det(1 − cj〈uj, vj〉)
= cj,

since 〈uj, vj〉 = 1.
Thus, we obtain that

det

(
m∑

i=1

ciλiui ⊗ vi

)
≥

m∏
i=1

λci
i . (3.3)
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By the Cauchy–Schwarz inequality, we have

det

(
m∑

i=1

ciλiui ⊗ ui

)
det

(
m∑

i=1

ciδivi ⊗ vi

)

=
∑
|I |=n

I⊆{1,2,...,m}

λI (
√

cU)2
I

∑
|I |=n

I⊆{1,2,...,m}

δI (
√

cV )2
I

≥

⎛
⎜⎝ ∑

|I |=n
I⊆{1,2,...,m}

cI

√
λIδI UI VI

⎞
⎟⎠

2

.

Then applying (3.3), we deduce (3.1), and complete the proof. �

REMARK 1. Lemma 3.2 is a revisional version of the original Proposition 4.4 in [7].
In the original proof, the coefficients (

√
cU)I (

√
cV )I are not necessarily positive and we

can find a counter example. For example, in �2, suppose m = 3. Let u1 = (1, 2), u2 =
( 3

2 , 1
2 ), u3 = (−1, 18

161 ), v1 = ( 1
2 , 1

4 ), v2 = (− 1
3 , 3), v3 = (− 161

194 , 1771
1164 ) and c1 = 1

5 , c2 = 96
215 ,

c3 = 291
215 . It is easy to check that they satisfy

∑3
i=1 ciui ⊗ vi = In, c1 + c2 + c3 = 2 and

〈ui, vi〉 = 1, i = 1, 2, 3. But det(u1, u2) · det(v1, v2) < 0. If we put λ1 = 1, λ2 = 1, λ3 =
100 and δi = 1, i = 1, 2, 3, then the inequality of Proposition 4.4 in [7] does not hold. We
realise that the condition of the positive coefficients is necessary. In order to complete
the proof of Lemma 3.2, the condition (1.5) has to be added to the definition of double
John basis. Since ∑

|I |=n

(
√

cU)I (
√

cV )I = 1,

the double John basis with the restricted condition UI VI ≥ 0 always exists. For example,
let u1 = (1, 1

2 ), u2 = (−1, 1
2 ), u3 = (−1,− 1

2 ), v1 = ( 1
2 , 1), v2 = (− 1

2 , 1), v3 = (− 1
2 ,−1)

and c1 = 1
2 , c2 = 1, c3 = 1

2 . It is easy to check that {(ui, vi)}3
1 is a positive double John

basis of �2, with weights c1, c2, c3.

Proof of Theorem 1.1. Let I ⊆ {1, 2, . . . , m}. Denote by |I| its cardinality. Write
αI = ∏

i∈I αi, βI = ∏
i∈I βi and cI = ∏

i∈I ci. For αi, βi > 0, i = 1, . . . , m, let

Z1 =
m∑

i=1

[−αiui, αiui], Z2 =
m∑

i=1

[−βivi, βivi].

Then by (2.4), we have

V (Z1) = 2n
∑

1≤i1<···<in≤m

|det(αi1 ui1 , . . . , αin uin )| = 2n
∑
|I |=n

I⊆{1,2,...,m}

αI | det
i∈I

(ui)| (3.4)

and

V (Z2) = 2n
∑

1≤i1<···<in≤m

|det(βi1vi1 , . . . , βinvin )| = 2n
∑
|I |=n

I⊆{1,2,...,m}

βI | det
i∈I

(vi)|. (3.5)
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For sufficiently small ε > 0, we take two sequences of positive numbers λi, δi,
i = 1, 2, . . . , m, such that

cIλ
ε
I =

∏
i∈I

ciλ
ε
i ≥ 1, cIδ

ε
I =

∏
i∈I

ciδ
ε
i ≥ 1.

Therefore, by inequality (2.5), we have

det

(
m∑

i=1

ciλiui ⊗ ui

)
det

(
m∑

i=1

ciδivi ⊗ vi

)

=
∑
|I |=n

I⊆{1,2,...,m}

cIλI

(
det
i∈I

(ui)
)2 ∑

|I |=n
I⊆{1,2,...,m}

cIδI

(
det
i∈I

(vi)
)2

=
∑
|I |=n

I⊆{1,2,...,m}

(cIλ
ε
I )λ1−ε

I

(
det
i∈I

(ui)
)2 ∑

|I |=n
I⊆{1,2,...,m}

(cIδ
ε
I )δ1−ε

I

(
det
i∈I

(vi)
)2

≤

⎛
⎜⎝ ∑

|I |=n
I⊆{1,2,...,m}

cIλ
1+ε

2
I | det

i∈I
(ui)|

⎞
⎟⎠

2 ⎛
⎜⎝ ∑

|I |=n
I⊆{1,2,...,m}

cIδ
1+ε

2
I | det

i∈I
(vi)|

⎞
⎟⎠

2

=
⎛
⎝V (

∑m
i=1 ciλ

1+ε
2

i [−ui, ui])
2n

⎞
⎠2 ⎛

⎝V (
∑m

i=1 ciδ
1+ε

2
i [−vi, vi])

2n

⎞
⎠2

.

Put ciλ
1+ε

2
i = αi, ciδ

1+ε
2

i = βi. By (3.4), (3.5) and Lemma 3.2, we obtain that

V (Z1)V (Z2) ≥ 22n
m∏

i=1

((
αi

ci

) 2
1+ε

) ci
2 m∏

i=1

((
βi

ci

) 2
1+ε

) ci
2

= 22n
m∏

i=1

(
αiβi

c2
i

) ci
1+ε

.

Since the all ci are fixed and λi, δi were taken arbitrarily, we can let ε → 0 to obtain

V (Z1)V (Z2) ≥ 22n
m∏

i=1

(
αiβi

c2
i

)ci

. (3.6)

Now for each i, let

αi = ci

|ui|Vn−1(Pui K)
, βi = ci

|vi|Vn−1(Pvi K)
.
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From Minkowski’s first inequality (2.2), (2.3) and (1.4), we obtain

V (K)2(n−1) ≤ V (Z1)−1V (Z2)−1V1(K, Z1)nV1(K, Z2)n

= V (Z1)−1V (Z2)−1

(
2
n

m∑
i=1

αi|ui|Vn−1(Pui K)

)n (
2
n

m∑
i=1

βi|vi|Vn−1(Pvi K)

)n

= 22nV (Z1)−1V (Z2)−1

≤ 22n

(
22n

m∏
i=1

(
αiβi

c2
i

)ci
)−1

=
m∏

i=1

(|ui||vi|Vn−1(Pui K)Vn−1(Pvi K))ci .

This completes the proof. �
REMARK 2. If ui = vi are unit vectors for all i, then the positive double John basis

will become a John basis, with weights c1, . . . , cm and Theorem 1.1 coincides with Ball’s
result (1.6). In fact, by the Cauchy–Binet formula, (1.1) implies that

1 = det In = det

(
m∑

i=1

ciui ⊗ vi

)
=

∑
|I |=n

cI U2
I .

Note that the coefficients U2
I are always non-negative.

Proof of Theorem 1.2. For αi, βi > 0, i = 1, 2, . . . , m, let Z1 = ∑m
i=1 αi[−ui, ui] and

Z2 = ∑m
i=1 βi[−vi, vi]. Since A is a positive definite matrix, there exists a non-singular

matrix Q such that

QT Q = 1
2

(A + AT ) = 1
2

(
m∑

i=1

ui ⊗ vi +
m∑

i=1

vi ⊗ ui

)
.

Let y = Qx for x ∈ �n. Then

|y|2 = 〈Qx, Qx〉 =
〈

1
2

(A + AT )x, x
〉

= 1
2
〈Ax, x〉 + 1

2
〈AT x, x〉

= 1
2

m∑
i=1

〈ui, x〉〈vi, x〉 + 1
2

m∑
i=1

〈vi, x〉〈ui, x〉

=
m∑

i=1

〈ui, x〉〈vi, x〉

=
m∑

i=1

ci〈ũi, y〉〈ṽi, y〉, (3.7)

where ũi = c
− 1

2
i Q−T ui, ṽi = c

− 1
2

i Q−Tvi and ci = 〈Q−1Q−T ui, vi〉. It follows that

〈ũi, ṽi〉 = c−1
i 〈Q−1Q−T ui, vi〉 = 1
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and

det

⎛
⎝ ∑

i∈I,|I |=n

ũi ⊗ ṽi

⎞
⎠ = c−1

I det

⎛
⎝Q−T

⎛
⎝ ∑

i∈I,|I |=n

ui ⊗ vi

⎞
⎠ Q−1

⎞
⎠ ≥ 0.

By the definition of the positive double John basis, (1.3) and (3.7), it is easy to check
that {(ũi, ṽi)}m

1 is a positive double John basis with weights c1, . . . , cm.
So we have

Z1 =
m∑

i=1

αi[−ui, ui] =
m∑

i=1

αi
[ − c

1
2
i QT ūi, c

1
2
i QT ūi

] =
m∑

i=1

αic
1
2
i [−QT ũi, QT ũi]

and

Z2 =
m∑

i=1

βic
1
2
i [−QT ṽi, QT ṽi].

Multiplying Q−T on both sides leads to

Q−T Z1 =
m∑

i=1

αic
1
2
i [−ũi, ũi]

and

Q−T Z2 =
m∑

i=1

βic
1
2
i [−ṽi, ṽi].

By (3.6), we obtain

det(Q−T )2V (Z1)V (Z2) ≥ 22n
m∏

i=1

⎛
⎝αic

1
2
i βic

1
2
i

c2
i

⎞
⎠ci

= 22n
m∏

i=1

(
αiβi

ci

)ci

.

Noticing det( A+AT

2 ) = (det QT )2, it follows that

V (Z1)V (Z2) ≥ 22n det
(

A + AT

2

) m∏
i=1

(
αiβi

ci

)ci

.

For each i, let

αi = ci

|ui|Vn−1(Pui K)
, βi = ci

|vi|Vn−1(Pvi K)
.
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From (2.2), (2.3) and (1.4), we have

V (K)2(n−1) ≤ V (Z1)−1V1(K, Z1)nV (Z2)−1V1(K, Z2)n

= V (Z1)−1V (Z2)−1

(
2
n

m∑
i=1

αi|ui|Vn−1(Pui K)

)n (
2
n

m∑
i=1

βi|vi|Vn−1(Pvi K)

)n

= 22nV (Z1)−1V (Z2)−1

≤ 2n

(
22n det

(
A + AT

2

) m∏
i=1

(
αiβi

ci

)ci
)−1

= det
(

A + AT

2

)−1 m∏
i=1

( |ui||vi|Vn−1(Pui K)Vn−1(Pvi K)
ci

)ci

.

This gives the result. �
REMARK 3. The case of ui = vi for each i was proved by Zhang [18]. If m = n and

ui = vi = ei, we obtain the classical Loomis–Whitney inequality.
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