Canad. Math. Bull. Vol. **57** (1), 2014 pp. 145–158 http://dx.doi.org/10.4153/CMB-2012-016-1 © Canadian Mathematical Society 2012

The Essential Spectrum of the Essentially Isometric Operator

H. S. Mustafayev

Abstract. Let T be a contraction on a complex, separable, infinite dimensional Hilbert space and let $\sigma(T)$ (resp. $\sigma_e(T)$) be its spectrum (resp. essential spectrum). We assume that T is an essentially isometric operator; that is, $I_H - T^*T$ is compact. We show that if $D \setminus \sigma(T) \neq \emptyset$, then for every f from the disc-algebra

$$\sigma_e(f(T)) = f(\sigma_e(T))$$

where D is the open unit disc. In addition, if T lies in the class $C_{0.} \cup C_{.0}$, then

$$\sigma_e(f(T)) = f(\sigma(T) \cap \Gamma),$$

where Γ is the unit circle. Some related problems are also discussed.

1 Introduction

Let *H* be a complex, separable, infinite dimensional Hilbert space and let B(H) be the algebra of all bounded linear operators on *H*. Throughout, $\sigma(T)$ denotes the spectrum and $R_{\lambda}(T) = (\lambda I_H - T)^{-1}$ ($\lambda \notin \sigma(T)$) the resolvent of $T \in B(H)$. We use the notations $\sigma_l(T)$ and $\sigma_r(T)$ to denote the left and right spectra of *T*, respectively. The unit circle in the complex plane will be denoted by Γ , whereas *D* indicates the open unit disk. The disc-algebra and the algebra of all bounded analytic functions on *D* are denoted by A(D) and $H^{\infty} := H^{\infty}(D)$, respectively.

For $T \in B(H)$, the uniform operator topology closure of all polynomials taken in *T* is denoted by A_T . Note that A_T is a commutative unital Banach algebra. The Gelfand space of A_T can be identified with $\sigma_{A_T}(T)$, the spectrum of *T* with respect to the algebra A_T . Since $\sigma(T)$ is a (closed) subset of $\sigma_{A_T}(T)$, for every $\lambda \in \sigma(T)$, there exists a multiplicative functional ϕ_{λ} on A_T such that $\phi_{\lambda}(T) = \lambda$. By \widehat{S} we denote the Gelfand transform of $S \in A_T$. Here and in the sequel, instead of $\widehat{S}(\phi_{\lambda})(=\phi_{\lambda}(S))$, where $\lambda \in \sigma(T)$, we use the notation $\widehat{S}(\lambda)$. Notice that $\lambda \mapsto \widehat{S}(\lambda)$ is a continuous function on $\sigma(T)$. It follows from the Shilov's Theorem [6, Theorem 2.3.1] that if *T* is a contraction, then $\sigma_{A_T}(T) \cap \Gamma = \sigma(T) \cap \Gamma$, which is the *unitary spectrum* of *T*.

If *T* is a contraction on *H*, then it follows from the von Neumann inequality that there exists a contractive algebra-homomorphism $h: A(D) \to A_T$ (with dense range) such that $h(1) = I_H$ and h(z) = T. We use the notation $f(T) := h(f), f \in A(D)$. Thus we have $||f(T)|| \leq ||f||_{\infty}$ for all $f \in A(D)$. It is easy to check that *h* is an isometry if and only if $\Gamma \subset \sigma(T)$.

Received by the editors April 15, 2012; revised May 10, 2012.

Published electronically July 16, 2012.

AMS subject classification: 47A10, 47A53, 47A60, 47B07.

Keywords: Hilbert space, contraction, essentially isometric operator, (essential) spectrum, functional calculus.

A contraction T on H is said to be *completely nonunitary* (c.n.u.) if it has no proper reducing subspace on which it acts as a unitary operator. If T is a c.n.u. contraction, then f(T) ($f \in H^{\infty}$) can be defined by the Nagy–Foias functional calculus [9, Chapter III]. We put $H^{\infty}(T) = \{f(T) : f \in H^{\infty}\}$. A c.n.u. contraction T on H is called a C_0 -contraction if there exists a nonzero function $f \in H^{\infty}$ such that f(T) = 0. A contraction T on H is said to be of class C_0 . (resp. C_0) if $T^n x \to 0$ (resp. $T^{*n} x \to 0$) for every $x \in H$. We put $C_{00} = C_0 \cap C_{00}$. As is known [9, Proposition II.4.2], $C_0 \subset C_{00}$. Recall that $T \in B(H)$ is said to be *essentially isometric operator* if $I_H - T^*T$ is compact.

By K(H), we will denote the ideal of compact operators on H. The quotient algebra B(H)/K(H) is a C^* -algebra called the *Calkin algebra*. Let $\pi: B(H) \rightarrow B(H)/K(H)$ be the natural map. The *essential spectrum* $\sigma_e(T)$ of $T \in B(H)$ is the spectrum of $\pi(T)$ in the Calkin algebra. As is well known, $\sigma_e(T)$ is a nonempty compact subset of $\sigma(T)$. Similarly, the *left* and *right essential spectrum* of T are defined by $\sigma_{le}(T) := \sigma_l(\pi(T))$ and $\sigma_{re}(T) := \sigma_r(\pi(T))$. Recall that T is a (left, right) *Fredholm operator*, if $\pi(T)$ is (left, right) invertible in the Calkin algebra.

Assume that a contraction T on H is from the class C_{00} . Moreover, assume that

$$\dim(I - TT^*)H = \dim(I - T^*T)H = 1.$$

According to the well-known model theorem of Nagy–Foias [9], T is unitary equivalent to its model operator $M_{\varphi} = P_{\varphi}S \mid_{K_{\varphi}}$ acting on the model space $K_{\varphi} := H^2 \ominus \varphi H^2$, where φ is an inner function, Sf = zf is the shift operator on the Hardy space H^2 , and P_{φ} is the orthogonal projection from H^2 onto K_{φ} . It follows that for every $f \in H^{\infty}$, the operator f(T) is unitary equivalent to

$$f(M_{\varphi}) = P_{\varphi}f(S) \mid_{K_{\varphi}}$$

In [11, p. 162, Corollary 1] it was proved that for every $f \in A(D)$,

$$\sigma_e(f(T)) = f(\sigma_e(T)) = f(\sigma(T) \cap \Gamma).$$

On the other hand, it follows from the Lipschitz-Moeller Theorem [11, III.1] that $\sigma(T) \cap D = \varphi^{-1}(0)$ and therefore, $D \setminus \sigma(T) \neq \emptyset$.

In this paper, we generalize this result in the following way. It is shown in Section 2 that if *T* is an essentially isometric contraction and $D \setminus \sigma(T) \neq \emptyset$, then for every $f \in A(D)$, we have the essential spectral mapping equality

$$\sigma_e(f(T)) = f(\sigma_e(T))$$

The asymptotic behavior of the orbits $\{T^n S : n \ge 0\}$ are considered in Section 3. We show that if *T* is an essentially isometric contraction from the class $C_{0.} \cup C_{.0}$, then for every $S \in A_T$,

$$\lim_{n\to\infty} \|T^n S\| = \sup_{\xi\in\sigma_{le}(T)} |\widehat{S}(\xi)| = \sup_{\xi\in\sigma_{re}(T)\cap\Gamma} |\widehat{S}(\xi)|.$$

As a corollary of this result, we obtain that if *T* is an essentially isometric contraction from the class $C_0 \cup C_{0,0}$, then

$$\sigma_{le}(T) = \sigma_{re}(T) \cap \Gamma = \sigma(T) \cap \Gamma.$$

In addition, if $D \setminus \sigma(T) \neq \emptyset$, then for every $f \in A(D)$,

$$\sigma_e(f(T)) = f(\sigma(T) \cap \Gamma).$$

2 The Essential Spectral Mapping Theorem

The main result of this section is the following assertion.

Theorem 2.1 Let T be an essentially isometric contraction such that $D \setminus \sigma(T) \neq \emptyset$. Then for every $f \in A(D)$, we have

$$\sigma_e(f(T)) = f(\sigma_e(T)).$$

For the proof we need some preliminary results.

Let *A* be a *C*^{*}-algebra with the unit element *e* and let *S*_{*A*} be the set of all pure states on *A*. We know [10, Corollary V.23.3] that if $a \in A$, then $\sigma_l(a)$ consists of all $\lambda \in \mathbb{C}$ for which there exists $f \in S_A$ such that $\lambda = f(a)$ and $f(a^*a) = f(a^*)f(a)$. Assume that $a^*a = e$. If $\lambda \in \sigma_l(a)$, then we have

$$\lambda|^{2} = \overline{f(a)}f(a) = f(a^{*})f(a) = f(a^{*}a) = f(e) = 1.$$

This shows that $\sigma_l(a) \subset \Gamma$. In particular, if *a* is a unitary element of *A*, then $\sigma_l(a) = \sigma_r(a) = \sigma(a) \subset \Gamma$.

Let *T* be an essentially isometric operator on *H*. Since $\pi(T)^*\pi(T) = \pi(I_H)$, it follows that $\sigma_{le}(T) = \sigma_l(\pi(T)) \subset \Gamma$. Moreover, if *T* is an *essentially unitary operator*, that is, if both $I_H - T^*T$ and $I_H - TT^*$ are compact, then $\sigma_{le}(T) = \sigma_{re}(T) = \sigma_e(T) \subset$ Γ . Recall that an operator $T \in B(H)$ is said to be *essentially normal* if $TT^* - T^*T$ is compact. Similarly, we can see that if *T* is an essentially normal operator, then $\sigma_{le}(T) = \sigma_{re}(T) = \sigma_e(T)$.

Let T be an essentially isometric contraction on H and let V be the partial isometry in its polar decomposition. From the identity

$$\sqrt{1-z} = 1 + \sum_{k=1}^{\infty} a_k z^k$$

(the series is absolutely convergent on \overline{D} and $a_k < 0, k = 1, 2, ...$) we can write

$$|T| = (T^*T)^{\frac{1}{2}} = I_H + \sum_{k=1}^{\infty} a_k (I_H - T^*T)^k = I_H + K.$$

So, we have

$$T = V|T| = V(I_H + K) = V + VK$$

(it can be seen that $I_H - V^*V$ is of finite rank). Recall that if *T* is invertible, then *V* is unitary.

Now let *T* be an essentially isometric contraction on *H* such that $D \setminus \sigma(T) \neq \emptyset$. Then *T* is essentially unitary (see for example, Proposition 3.4(f)) and therefore, $\sigma_e(T) \subset \Gamma$. Notice also that *T* is a Fredholm operator. Let $\lambda_0 \in D \setminus \sigma(T)$. We know [3, Proposition XI.3.4] that $\operatorname{ind}(T - \lambda I_H)$ is constant on the components of $\mathbb{C} \setminus \sigma_e(T)$. It follows that

$$\operatorname{ind}(T - \lambda I_H) = \operatorname{ind}(T - \lambda_0 I_H) = 0, \quad \forall \lambda \in D.$$

In particular, we have $\operatorname{ind} T = 0$. Since *T* is a Fredholm operator, *T* has the form T = S + K, where *S* is invertible and *K* is compact. Notice also that *S* is essentially unitary. As we already noted above, S = U + K, where *U* is unitary and *K* is compact. Thus, we obtain that *T* is a compact perturbation of a unitary operator.

We call $\lambda \in \sigma(T)$ a normal eigenvalue of $T \in B(H)$ if it is an isolated point of $\sigma(T)$ and if the corresponding Riesz projection has finite rank. We denote by $\sigma_{np}(T)$ the set of all normal eigenvalues of T. Notice that if N is a normal operator, then $\sigma_{np}(N)$ consists of all $\lambda \in \sigma(N)$ for which λ is an isolated eigenvalue of N having finite multiplicity. Consequently, we have $\sigma_e(N) = \sigma(N) \setminus \sigma_{np}(N)$ [3, Proposition XI.2.9].

Let *T* be an essentially isometric contraction such that $D \setminus \sigma(T) \neq \emptyset$. As we have seen above, *T* is a compact perturbation of a unitary operator; T = U + K, where *U* is unitary and *K* is compact. By [4, Theorem I.5.3],

$$\sigma(T) \setminus \sigma_{np}(T) = \sigma(U) \setminus \sigma_{np}(U).$$

Consequently, we have

$$\sigma_e(T) = \sigma_e(U) = \sigma(U) \setminus \sigma_{np}(U) = \sigma(T) \setminus \sigma_{np}(T).$$

Let $C(\Gamma)$ be the space of all continuous functions on Γ . Notice that if U is unitary and $f \in C(\Gamma)$, then f(U) is a normal operator. Moreover, the spectral mapping property $\sigma(f(U)) = f(\sigma(U))$ holds.

However, we have the following result.

Lemma 2.2 If U is a unitary operator on H, then for every $f \in C(\Gamma)$,

$$\sigma_e(f(U)) = f(\sigma_e(U)).$$

Proof Let $f \in C(\Gamma)$. If $\xi \in \sigma_e(U)$, then there exists a sequence $\{x_n\}$ of unit vectors in *H* such that $x_n \to 0$ weakly and

$$\lim_{n\to\infty} \|(U-\xi I_H)x_n\|=0.$$

It follows that for an arbitrary trigonometric polynomial Q,

$$\lim_{n\to\infty} \|(Q(U)-Q(\xi)I_H)x_n\|=0.$$

This shows that $Q(\xi) \in \sigma_e(Q(U))$. On the other hand, there exists a sequence of trigonometric polynomials $\{Q_n\}$ such that $Q_n \to f$ uniformly on Γ . Consequently, $Q_n(U) \to f(U)$ in the operator norm. Since $Q_n(\xi) \in \sigma_e(Q_n(U))$ and $Q_n(\xi) \to f(\xi)$, this clearly implies that $f(\xi) \in \sigma_e(f(U))$.

By E_N we will denote the spectral measure of an arbitrary normal operator N. Below, we will use the following fact [1, Proposition 2.8.1]: If N is normal, then all accumulation points of $\sigma(N)$ belong to $\sigma_e(N)$.

Now let $\lambda \in \sigma_e(f(U))$. Then either λ is an accumulation of $\sigma(f(U))$ or λ is an isolated eigenvalue of f(U) having infinite multiplicity. Since $\sigma(f(U)) = f(\sigma(U))$, in the first case, there is a sequence of distinct points $\{\mu_n\}$ in $\sigma(U)$ such that $f(\mu_n) \rightarrow \lambda$. We may assume that $\mu_n \rightarrow \mu$ for some $\mu \in \sigma(U)$. Then $\mu \in \sigma_e(U)$ and $\lambda = f(\mu)$. Now assume that λ is an isolated eigenvalue of $\sigma(f(U))$ with infinite multiplicity. If the set $f^{-1}(\lambda) \cap \sigma(U)$ is infinite, then there is a sequence of distinct points $\{\mu_n\}$ in $\sigma(U)$ such that $f(\mu_n) = \lambda$. If $\mu_n \rightarrow \mu$, then $\mu \in \sigma_e(U)$ and $\lambda = f(\mu)$. Hence, we may assume that $f^{-1}(\lambda) \cap \sigma(U)$ is a finite set, say $\{\mu_1, \ldots, \mu_n\}$. Assume on the contrary that $\mu_i \notin \sigma_e(U)$ ($i = 1, \ldots, n$). Then each μ_i is an isolated eigenvalue of $\sigma(U)$ of finite multiplicity. Since

$$E_{f(U)}\{\lambda\} = E_U\{\mu_1\} + \dots + E_U\{\mu_n\},\$$

it follows that λ is an eigenvalue of f(U) of finite multiplicity. This is a contradiction.

We are now able to prove the main result of this section.

Proof of Theorem 2.1 As we have seen above, *T* is a compact perturbation of a unitary operator; T = U + K, where *U* is unitary and *K* is compact. Take $f \in A(D)$. Then there exists a sequence of polynomials $\{P_n\}$ such that $P_n \to f$ uniformly on *D*. Consequently,

$$P_n(T) - P_n(U) \rightarrow f(T) - f(U)$$

in the operator norm. Since $P_n(T) - P_n(U)$ $(n \in \mathbb{N})$ is compact, it follows that f(T) - f(U) is compact. Now, taking into account the preceding lemma, we can write

$$\sigma_e(f(T)) = \sigma_e(f(U)) = f(\sigma_e(U)) = f(\sigma_e(T))$$

The proof is complete.

3 Asymptotic Behavior of Essentially Isometric Contractions

Let *T* be an essentially isometric contraction and $S \in A_T$. In this section, we study the asymptotic behavior of the orbits $\{T^n S : n \ge 0\}$ in terms of the essential spectrum of *T*. By $\{T\}'$, we will denote the commutant of $T \in B(H)$.

The main result of this section is the following theorem.

Theorem 3.1 If T is an essentially isometric contraction from the class $C_0 \cup C_0$, then for every $S \in A_T$,

$$\lim_{n \to \infty} \|T^n S\| = \sup_{\xi \in \sigma_{le}(T)} |\widehat{S}(\xi)| = \sup_{\xi \in \sigma_n(T) \cap \Gamma} |\widehat{S}(\xi)|.$$

H. S. Mustafayev

For the proof we need some results.

Proposition 3.2 The following assertions hold:

(a) If T is a c.n.u. contraction, then for every $K \in \{T\}' \cap K(H)$, $\lim_{n \to \infty} ||T^nK|| = 0$.

- (b) If T is in the class C_0 , then for every $K \in K(H)$, $\lim_{n\to\infty} ||T^nK|| = 0$.
- (c) If T is in the class $C_{.0}$, then for every $K \in K(H)$, $\lim_{n\to\infty} ||KT^n|| = 0$.

Proof (a) As it is known [7, Lemma 3.3], if *T* is a c.n.u. contraction, then $T^n \to 0$ in the weak operator topology. If $K \in \{T\}' \cap K(H)$, then for every $x \in H$, we have

$$\lim_{n\to\infty} \|T^n K x\| = \lim_{n\to\infty} \|K T^n x\| = 0.$$

Since the set $\{Kx : ||x|| \le 1\}$ is relatively compact, for a given $\varepsilon > 0$, it has a finite ε -mesh, say $\{Kx_1, \ldots, Kx_k\}$, where $||x_i|| \le 1$ $(i = 1, \ldots, k)$. So, we have

$$||T^nK|| \le \max_i \{||T^nKx_i||\} + \varepsilon \ (n \in \mathbb{N}).$$

It follows that $\lim_{n\to\infty} ||T^nK|| = 0$.

The proofs of (b) and (c) are similar.

It easily follows from Proposition 3.2(a) that if *T* is a c.n.u. contraction and if there exists a compact operator in $\{T\}'$ with zero kernel or dense range, then *T* is in the class $C_{0.} \cup C_{.0.}$ Notice also that if $H^{\infty}(T) \cap K(H) \neq \{0\}$, then *T* is in the class C_{00} . This fact can be derived from the dilation arguments of Nagy–Foias [9, p. 140].

The proof of the following proposition, being very easy, is omitted.

Proposition 3.3

- (a) If V is a nonunitary isometry on H, then $\sigma_l(V) = \Gamma$; $\sigma_r(V) = \sigma(V) = \overline{D}$.
- (b) If V is an arbitrary isometry on H, then $\sigma_l(V) = \sigma_r(V) \cap \Gamma = \sigma(V) \cap \Gamma$.

Let H_0 be the linear space of all weakly null sequences $\{x_n\}$ in H. Let us define a semi-inner product on H_0 by

$$\langle \{x_n\}, \{y_n\} \rangle = \text{l.i.m.} \langle x_n, y_n \rangle,$$

where l.i.m. is a Banach limit. Let

$$E = \left\{ \{x_n\} \in H_0 : \text{ l.i.m.} \|x_n\|^2 = 0 \right\}.$$

Then H_0 / E becomes a pre-Hilbert space with respect to the inner product defined by

$$\langle \{x_n\} + E, \{y_n\} + E \rangle = \text{l.i.m.} \langle x_n, y_n \rangle$$

Let \tilde{H} be the completion of H_0/E with respect to the induced norm. Then \tilde{H} is a Hilbert space.

For a given $T \in B(H)$, define the operator \widetilde{T} on $H_0 \swarrow E$, by

$$\overline{T}: \{x_n\} + E \mapsto \{Tx_n\} + E.$$

Then we have

$$\|\widetilde{T}(\{x_n\}+E)\| = (1.i.m.\|Tx_n\|^2)^{\frac{1}{2}} \le \|T\|(1.i.m.\|x_n\|^2)^{\frac{1}{2}} = \|T\|\|\{x_n\}+E\|.$$

Since $H_0 \neq E$ is dense in \widetilde{H} , the operator \widetilde{T} can be extended to the whole \widetilde{H} which we also denote by \widetilde{T} . Clearly, $\|\widetilde{T}\| \leq \|T\|$.

The pair (\tilde{H}, \tilde{T}) (sometimes the operator \tilde{T}) will be called the *limit operator associated with T*.

Proposition 3.4 Let $T \in B(H)$ and let (\tilde{H}, \tilde{T}) be the limit operator associated with *T*. Then the following assertions hold:

- (a) The mapping $T \mapsto \tilde{T}$ is a contractive algebra-*-homomorphism.
- (b) *T* is compact if and only if $\tilde{T} = 0$.
- (c) $\sigma_l(\widetilde{T}) \subset \sigma_{le}(T), \sigma_r(\widetilde{T}) \subset \sigma_{re}(T), and \sigma(\widetilde{T}) \subset \sigma_e(T).$
- (d) If T is a contraction, then $f(T) = f(T), \forall f \in A(D)$.
- (e) T is an essentially isometric (resp. essentially unitary, essentially normal) operator if and only if \tilde{T} is an isometry (resp. unitary, normal).
- (f) If T is an essentially isometric operator and if $\sigma_{le}(T) \neq \Gamma$ (or $\sigma_{re}(T) \neq \overline{D}$), then T is essentially unitary.
- (g) For every $T \in B(H)$, $||\pi(T)|| \le ||\widetilde{T}|| \le ||T||$.

Proof The proofs of (a), (d), and (e) are straightforward.

(b) It is obvious that if *T* is compact, then $\tilde{T} = 0$. If $\tilde{T} = 0$, then for every weakly null sequence $\{x_n\}$ in *H*, we have l.i.m. $||Tx_n||^2 = 0$. Consequently, there is a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that

$$\overline{\lim_{n\to\infty}} \|Tx_n\|^2 = \lim_{k\to\infty} \|Tx_{n_k}\|^2 = \text{l.i.m.} \|Tx_{n_k}\|^2 = 0.$$

It follows that $\lim_{n\to\infty} ||Tx_n|| = 0$, and therefore *T* is compact.

(c) If $\lambda \notin \sigma_{le}(T)$, then $\lambda I_H - T$ is a left Fredholm operator. So, there exists $S \in B(H)$ such that $S(\lambda I_H - T) - I_H \in K(H)$. It follows from (a) and (b) that $\widetilde{S}(\lambda I_{\widetilde{H}} - \widetilde{T}) = I_{\widetilde{H}}$. This shows that $\lambda \notin \sigma_l(\widetilde{T})$. The proof of the second and third parts of (c) is similar.

(f) It follows from (c) that $\sigma_l(\widetilde{T}) \subset \sigma_{le}(T)$ and therefore $\sigma_l(\widetilde{T}) \neq \Gamma$. By Proposition 3.3(a), \widetilde{T} is unitary and so $\widetilde{T}\widetilde{T}^* = I_{\widetilde{H}}$. This means that $I_H - TT^*$ is compact.

(g) It suffices to show that $||\pi(T)|| \le ||\widetilde{T}||$. We know [2, p. 94] that

$$\|\pi(T)\| = \sup\left\{\overline{\lim_{n \to \infty}} \|Tx_n\| : \|x_n\| = 1 \ (n \in \mathbb{N}), \ x_n \to 0 \text{ weakly}\right\}$$

Therefore, for a given $\varepsilon > 0$, there exists a sequence $\{x_n\}$ in H such that $||x_n|| = 1$ $(n \in \mathbb{N}), x_n \to 0$ weakly, and

$$\overline{\lim_{n\to\infty}} \|Tx_n\| \ge \|\pi(T)\| - \varepsilon.$$

Then there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that

$$\lim_{k\to\infty} \|Tx_{n_k}\| = \overline{\lim_{n\to\infty}} \|Tx_n\| \ge \|\pi(T)\| - \varepsilon.$$

On the other hand, we have

$$\|\widetilde{T}\| = \sup\{(1.i.m.\|Tx_n\|^2)^{\frac{1}{2}}: 1.i.m.\|x_n\|^2 = 1, x_n \to 0 \text{ weakly}\}.$$

As l.i.m. $||x_{n_k}||^2 = 1$ and $x_{n_k} \to 0$ weakly, from the preceding identity we can write

$$\|\widetilde{T}\| \geq \lim_{k \to \infty} \|Tx_{n_k}\| \geq \|\pi(T)\| - \varepsilon.$$

Since ε was arbitrary, we obtain the required inequality.

Let *T* be an essentially isometric contraction such that $D \setminus \sigma(T) \neq \emptyset$. In [5, Theorem 2.1] it was proved that if $f \in A(D)$ vanishes on $\sigma(T) \cap \Gamma$, then f(T) is compact. Notice that this result is an immediate consequence of Proposition 3.4.

Now we provide the proof of Theorem 3.1.

Proof of Theorem 3.1 Let $S \in A_T$. For every $\xi \in \sigma_{le}(T)$, there exists a multiplicative functional ϕ_{ξ} on A_T such that $\phi_{\xi}(T) = \xi$. Then we have

$$|\widehat{S}(\xi)| = |\xi^n \widehat{S}(\xi)| = |\phi_{\xi}(T^n S)| \le ||T^n S|| \ (n \in \mathbb{N}).$$

It follows that

$$\lim_{n\to\infty} \|T^n S\| \ge \sup_{\xi\in\sigma_{le}(T)} |\widehat{S}(\xi)|.$$

To prove the opposite inequality, let $\varepsilon > 0$ be given. Then there exists $f \in A(D)$ such that $||S - f(T)|| \le \varepsilon$. This implies

(3.1)
$$||T^n S|| \le ||T^n f(T)|| + \varepsilon \ (n \in \mathbb{N})$$

and

(3.2)
$$\sup_{\xi \in \sigma_{le}(T)} |f(\xi)| \le \sup_{\xi \in \sigma_{le}(T)} |\widehat{S}(\xi)| + \varepsilon.$$

Let \widetilde{T} be the limit operator associated with T. It follows from Proposition 3.4(e), (c) and Proposition 3.3(b) that \widetilde{T} is an isometry, and $\sigma(\widetilde{T}) \cap \Gamma \subset \sigma_{le}(T)$. If \widetilde{T} is nonunitary, then we have $\sigma(\widetilde{T}) \cap \Gamma = \Gamma$, and so $\Gamma = \sigma_{le}(T) = \sigma(T) \cap \Gamma$. As we already mentioned above, in that case the mapping $f \mapsto f(T)$ from A(D) into A_T is an isometry and therefore, there is nothing to prove. Consequently, we may assume that \widetilde{T} is unitary. We also have $\sigma(\widetilde{T}) \subset \sigma_{le}(T)$. Now, taking into account Proposition 3.4(g) and (d), we can write

$$\|\pi(f(T))\| \le \|f(T)\| = \|f(\widetilde{T})\| = \sup_{\xi \in \sigma(\widetilde{T})} |f(\xi)| \le \sup_{\xi \in \sigma_k(T)} |f(\xi)|.$$

Therefore, there exists $K_{\varepsilon} \in K(H)$ such that

$$||f(T) + K_{\varepsilon}|| \le \sup_{\xi \in \sigma_{l_{\varepsilon}}(T)} |f(\xi)| + \varepsilon.$$

It follows that

$$||T^n f(T) + T^n K_{\varepsilon}|| \le \sup_{\xi \in \sigma_{l_{\varepsilon}}(T)} |f(\xi)| + \varepsilon$$

and

$$||T^n f(T) + K_{\varepsilon} T^n|| \leq \sup_{\xi \in \sigma_{l\varepsilon}(T)} |f(\xi)| + \varepsilon \ (n \in \mathbb{N}).$$

Since $T \in C_{0.} \cup C_{.0}$, by Proposition 3.2(b) and (c), either

$$\lim_{n\to\infty} \|T^n K_{\varepsilon}\| = 0 \text{ or } \lim_{n\to\infty} \|K_{\varepsilon} T^n\| = 0.$$

Letting $n \to \infty$ in the preceding inequalities, we get

(3.3)
$$\lim_{n \to \infty} \|T^n f(T)\| \le \sup_{\xi \in \sigma_{l_{\varepsilon}}(T)} |f(\xi)| + \varepsilon.$$

Now, taking into account (3.1), (3.3), and (3.2), we can write

$$\begin{split} \lim_{n \to \infty} \|T^n S\| &\leq \lim_{n \to \infty} \|T^n f(T)\| + \varepsilon \leq \sup_{\xi \in \sigma_{le}(T)} |f(\xi)| + 2\varepsilon \\ &\leq \sup_{\xi \in \sigma_{le}(T)} |\widehat{S}(\xi)| + 3\varepsilon. \end{split}$$

Since ε was arbitrary, we obtain that

$$\lim_{n\to\infty} \|T^n S\| \le \sup_{\xi\in\sigma_{le}(T)} |\widehat{S}(\xi)|.$$

Replacing $\sigma_{le}(T)$ by $\sigma_{re}(T) \cap \Gamma$ in the above proof, we can see that

$$\lim_{n \to \infty} \|T^n S\| = \sup_{\xi \in \sigma_{rr}(T) \cap \Gamma} |\widehat{S}(\xi)|.$$

We have the following result as a corollary.

Corollary 3.5 If T is an essentially isometric contraction of class $C_{0.} \cup C_{.0}$, then

$$\sigma_{le}(T) = \sigma_{re}(T) \cap \Gamma = \sigma(T) \cap \Gamma.$$

Proof In [8], it was proved that if *T* is an arbitrary contraction on a Hilbert space, then for every $S \in A_T$,

$$\lim_{n\to\infty} \|T^n S\| = \sup_{\xi\in\sigma(T)\cap\Gamma} |\widehat{S}(\xi)|.$$

From this and from Theorem 3.1 we can write

$$\sup_{\xi \in \sigma_{le}(T)} |\widehat{S}(\xi)| = \sup_{\xi \in \sigma_{re}(T) \cap \Gamma} |\widehat{S}(\xi)| = \sup_{\xi \in \sigma(T) \cap \Gamma} |\widehat{S}(\xi)| \ (S \in A_T).$$

It remains to show that if Q_1 and Q_2 are two closed subsets of Γ and if for every $f \in A(D)$,

$$\sup_{\xi\in Q_1}|f(\xi)|=\sup_{\xi\in Q_2}|f(\xi)|,$$

then $Q_1 = Q_2$. For this, it is enough to show that $Q_1 \subset Q_2$. Assume that there exists $\xi_0 \in Q_1$, but $\xi_0 \notin Q_2$. If we take the function $f(z) = \frac{1}{2}(1 + \overline{\xi_0}z)$, then it is easy to see that $\sup_{\xi \in Q_1} |f(\xi)| = 1$, but $\sup_{\xi \in Q_2} |f(\xi)| < 1$.

The next result is an immediate consequence of Theorem 2.1 and Corollary 3.5.

Corollary 3.6 Let T be an essentially isometric contraction such that $D \setminus \sigma(T) \neq \emptyset$. If T is in the class $C_0 \cup C_0$, then for every $f \in A(D)$,

$$\sigma_e(f(T)) = f(\sigma(T) \cap \Gamma).$$

4 C₁-contractions

Let *T* be an essentially normal operator. In this section, we investigate the problem when *T* turns out to be an essentially unitary operator in terms of some metric conditions about *T*. For C_1 -contraction *T*, we provide some sufficient conditions to have the equality $\sigma_e(T) = \sigma(T)$. Recall that a contraction *T* on *H* is said to be a C_1 -contraction if $\inf_n ||T^n x|| > 0$ for every $x \in H \setminus \{0\}$.

The following result is of independent interest.

Proposition 4.1 Let T be a C_1 -contraction on H such that $\sigma(T) \neq \overline{D}$. If T is normal, then it is unitary.

Proof As in the proof of [9, Proposition II.5.3],

$$\lim_{n\to\infty} \langle T^n x, T^n y \rangle \ (x, y \in H)$$

(by the polarization identity, this limit exists) defines a sesquilinear form on *H*. Therefore, there exists $Y \in B(H)$ such that

$$\lim_{n\to\infty} \langle T^n x, T^n y \rangle = \langle Y x, y \rangle.$$

It follows that

$$\langle Yx,x\rangle\geq \inf_n\|T^nx\|^2>0\ ig(x\in H\setminus\{0\}ig).$$

If we put $X = Y^{\frac{1}{2}}$, then X is a positive operator and ||Xx|| = ||XTx||. Define the operator V on XH by VXx = XTx. Since ||VXx|| = ||Xx|| and X has dense range, V can be extended to the whole H, which we also denote by V. Then V is an isometry and VX = XT, where

$$||Xx|| = (\lim_{n \to \infty} ||T^n x||^2)^{\frac{1}{2}}.$$

Let us show that $\sigma(V) \subset \sigma(T)$. Assume that $\lambda \notin \sigma(T)$. Define the operator W_{λ} on *XH*, by $W_{\lambda}Xx = XR_{\lambda}(T)x$ ($x \in H$). Then we have

$$\|W_{\lambda}Xx\| = \|XR_{\lambda}(T)x\| = \left(\lim_{n \to \infty} \|T^{n}R_{\lambda}(T)x\|^{2}\right)^{\frac{1}{2}} = \left(\lim_{n \to \infty} \|R_{\lambda}(T)T^{n}x\|^{2}\right)^{\frac{1}{2}}$$
$$\leq \|R_{\lambda}(T)\|\left(\lim_{n \to \infty} \|T^{n}x\|^{2}\right)^{\frac{1}{2}} = \|R_{\lambda}(T)\|\|Xx\|.$$

Since *X* has dense range, it follows that W_{λ} can be extended to the whole *H*, which we also denote by W_{λ} . Thus we have $W_{\lambda}X = XR_{\lambda}(T)$. Consequently, we can write

$$(\lambda I_H - V)W_{\lambda}X = (\lambda I_H - V)XR_{\lambda}(T) = X(\lambda I_H - T)R_{\lambda}(T) = X$$

which implies $(\lambda I_H - V)W_{\lambda} = I_H$. Similarly, one can see that $W_{\lambda}(\lambda I_H - V) = I_H$. Thus, $\lambda \notin \sigma(V)$.

Since $\sigma(T) \neq \overline{D}$, we have $\sigma(V) \neq \overline{D}$, and therefore V is unitary. Now let us show that T = V. By the Fuglede–Putnam Theorem, $V^*X = XT^*$, which implies XV = TX. Hence, we have

$$VX^{2} = (VX)X = (XT)X = X(TX) = X(XV) = X^{2}V.$$

Consequently, for every polynomial *P*, we can write $VP(X^2) = P(X^2)V$. Further, there exists a sequence of polynomials $\{P_n\}$ such that $P_n(t) \to \sqrt{t}$ uniformly on [0, ||Y||]. As $n \to \infty$, from the identities

$$VP_n(X^2) = P_n(X^2)V,$$

we get VX = XV. Thus, we have XT = XV. Since X has zero kernel, finally we obtain T = V.

Corollary 4.2 Let T be an essentially normal contraction on H such that $\sigma_e(T) \neq \overline{D}$. If

$$\inf_{n} \inf_{\{x_k\}} \lim_{k \to \infty} \left\{ \|T^n x_k\| \colon \|x_k\| = 1, \ x_k \to 0 \ weakly \right\} > 0,$$

then T is essentially unitary.

Proof Let \widetilde{T} be the limit operator associated with *T*. By Proposition 3.4(e) and (c), \widetilde{T} is normal and $\sigma(\widetilde{T}) \subset \sigma_e(T)$. So, we have $\sigma(\widetilde{T}) \neq \overline{D}$. On the other hand, the above condition shows that \widetilde{T} is a C_1 -contraction. Now it follows from the preceding proposition that \widetilde{T} is unitary. This means that *T* is essentially unitary.

We conclude the paper with the following result.

Theorem 4.3 Let T be a c.n.u. C_1 -contraction on H such that T is invertible and

$$\sum_{n=1}^{\infty} \frac{\log \|T^{-n}\|}{1+n^2} < \infty.$$

Then $\sigma(T) = \sigma_e(T)$.

For the proof we need some preliminary facts.

Let $\omega = {\omega_n}_{n \in \mathbb{Z}}$ be a sequence of real numbers with $\omega_n \ge 1$ and $\omega_{n+m} \le \omega_n \omega_m$, for all $n, m \in \mathbb{Z}$. We say then that ω is a *weight* on \mathbb{Z} . The *Beurling algebra* $A_{\omega}(\Gamma)$ is the set of all $f \in C(\Gamma)$ for which

$$||f||_{\omega} = \sum_{n \in \mathbb{Z}} |\widehat{f}(n)| \omega_n < \infty,$$

where $\hat{f}(n)$ is the *n*-th Fourier coefficient of *f*. As is well known, $A_{\omega}(\Gamma)$ is a commutative Banach algebra with respect to the pointwise multiplication. If

$$\sum_{n\in\mathbb{Z}}\frac{\log\omega_n}{1+n^2}<\infty,$$

then ω is called a *nonquasianalytic* weight. If ω is a nonquasianalytic weight, then the structure space of $A_{\omega}(\Gamma)$ can be identified with Γ . Moreover, the algebra $A_{\omega}(\Gamma)$ is (Shilov) regular [2, Theorem XII.5.1].

Let *T* be an invertible operator on *H*. We denote by $A_{T,T^{-1}}$, the closure in the uniform operator topology of all trigonometric polynomials in *T* and T^{-1} . We call *T* an ω -nonquasianalytic operatorif there exists a nonquasianalytic weight ω on \mathbb{Z} such that

$$||T^n|| = O(\omega_n) \ (n \in \mathbb{Z}).$$

If *T* is an ω -nonquasianalytic operator, then for every $f \in A_{\omega}(\Gamma)$, we can define $f(T) \in B(H)$ by

$$f(T) = \sum_{n \in \mathbb{Z}} \widehat{f}(n) T^n.$$

Then the mapping $f \mapsto f(T)$ of $A_{\omega}(\Gamma)$ into $A_{T,T^{-1}}$ is a continuous algebra-homomorphism with its dense range. The standard Banach algebra techniques involves that the structure space of $A_{T,T^{-1}}$ can be identified with the hull of the closed ideal

$$I_T := \left\{ f \in A_\omega(\Gamma) : f(T) = 0 \right\}.$$

It follows that $\sigma(T) \subset \Gamma$. Moreover, the spectral mapping property $\sigma(f(T)) = f(\sigma(T))$ holds.

Proof of Theorem 3.1 Let $(\widetilde{H}, \widetilde{T})$ be the limit operator associated with *T*. In view of Proposition 3.4(c), $\sigma(\widetilde{T}) \subset \sigma_e(T) \subset \sigma(T)$. Hence, it suffices to show that $\sigma(T) \subset$

 $\sigma(\tilde{T})$. Since T is a c.n.u. contraction, $T^n \to 0$ in the weak operator topology. Consequently, we can define the linear operator $J: H \to \tilde{H}$ by

$$Jx = \{T^n x\} + E (x \in H).$$

(recall that *E* consists of all weakly null sequences $\{x_n\}$ in *H* such that l.i.m. $||x_n||^2 = 0$), where

$$\|J\mathbf{x}\| = \left(\lim_{n \to \infty} \|T^n \mathbf{x}\|^2\right)^{\frac{1}{2}}.$$

Moreover,

$$JTx = \{T^{n+1}x\} + E = \widetilde{T}(\{T^nx\} + E) = \widetilde{T}Jx$$

So, we have

$$(4.1) JT = \widetilde{T}J.$$

Notice that as T is a C_1 -contraction, J is injective.

Let us define the weight $\omega = (\omega_n)_{n \in \mathbb{Z}}$ on \mathbb{Z} by

$$\omega_n = \begin{cases} 1, & n \ge 0; \\ \|T^n\|, & n < 0. \end{cases}$$

Then T is an ω -nonquasianalytic operator. As the mapping $T \mapsto \widetilde{T}$ is a contractive algebra-homomorphism, \widetilde{T} is also an ω -nonquasianalytic operator. Now assume on the contrary that there exists $\xi_0 \in \sigma(T)$, but $\xi_0 \notin \sigma(\widetilde{T})$. Let O be an open set such that $\sigma(\widetilde{T}) \subset O$ and $\xi_0 \notin \overline{O}$. In view of the regularity of the algebra $A_{\omega}(\Gamma)$, there exists $f \in A_{\omega}(\Gamma)$ such that f vanishes on O, but $f(\xi_0) \neq 0$. Let $g \in A_{\omega}(\Gamma)$ be such that $g(\xi) = 1$ for all $\xi \in \sigma(\widetilde{T})$ and $g(\xi) = 0$ outside O. Since fg = 0, we have $f(\widetilde{T})g(\widetilde{T}) = 0$. By the spectral mapping property, $g(\widetilde{T})$ is invertible and therefore $f(\widetilde{T}) = 0$. On the other hand, from the identity (4.1), we can write $Jf(T) = f(\widetilde{T})J$, which implies that Jf(T) = 0. Since J is injective, we obtain f(T) = 0. If $\xi \in \sigma(T)$, then there exists a multiplicative functional ϕ_{ξ} on $A_{T,T^{-1}}$ such that $\phi_{\xi}(T) = \xi$ and $\phi_{\xi}(T^{-1}) = \xi^{-1}$. Consequently, we have $f(\xi) = \phi_{\xi}(f(T)) = 0$. It follows that f vanishes on $\sigma(T)$. This contradicts $f(\xi_0) \neq 0$.

Acknowledgments The author is grateful to the referee for helpful remarks.

References

- [1] W. Arveson, *A short course on spectral theory.* Graduate Texts in Mathematics, 209, Springer-Verlag, New York, 2002.
- B. Beauzamy, *Introduction to operator theory and invariant subspaces*. North-Holland Mathematical Library, 42, North Holland, Amsterdam, 1988.
- [3] J. B. Conway, A course in functional analysis. Graduate Texts in Mathematics, 96, Springer-Verlag, New York, 1985.
- [4] I. C. Gohberg and M. G. Krein, *Introduction to the theory of linear non-selfadjoint operators in Hilbert space*. (Russian), Nauka, Moscow, 1965.

H. S. Mustafayev

- K. Kellay and M. Zarrabi, Compact operators that commute with a contraction. Integral Equations [5] Operator Theory **65**(2009), no. 4, 543–550. http://dx.doi.org/10.1007/s00020-009-1724-8 R. Larsen, *Banach algebras. An introduction*. Pure and Appled Mathematics, 24, Marcel Dekker
- [6] Inc., New York, 1973.
- [7] P. S. Muhly, Compact operators in the commutant of a contraction. J. Functional Analysis 8(1971), 197-224. http://dx.doi.org/10.1016/0022-1236(71)90010-3
- H. S. Mustafayev, Asymptotic behavior of polynomially bounded operators. C. R. Acad. Sci. Paris, Ser. [8] I 348(2010), no. 9–10, 517–520. http://dx.doi.org/10.1016/j.crma.2010.04.003
- B. Sz.-Nagy and C. Foias, Harmonic analysis of operators on Hilbert space. (Russian), Mir, Moscow, [9] 1970.
- [10] M. A. Naimark, Normed rings. (Russian) second ed., Nauka, Moscow, 1968.
- [11] N. K. Nikol'skii, Lectures on the shift operator. (Russian), Nauka, Moscow, 1980.

Yuzuncu Yıl University, Faculty of Science, Department of Mathematics, 65080, VAN-TURKEY e-mail: hsmustafayev@yahoo.com