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Deep learning and augmented analysis have begun to disrupt the microscopy and microanalysis 
community with advancements made in material-specific models to solve narrow tasks. Developments in 
compressive imaging, where the concept of less is more in compressive modalities has begun to set the 
stage for high throughput and dose fractionation on our latest microscopes and characterization platforms. 
Crystallographic determination is crucial to many workflows within microscopy and materials research as 
a whole. At the core, crystallography is deeply rooted in pattern recognition and experts train for years to 
distinguish minute variations within the data.[1] Determining a crystal’s space group often involves a 
lengthy process requiring fitting series of non-linear equations and intimate knowledge of a sample to be 
performed properly. This heavy dependence in complex pattern matching and time intensive process 
makes it an ideal case for automation with deep learning.  
 
Building on recent work to classify material structure from diffraction data alone, the goal of this research 
is to boost these models’ predictive capabilities and provide further disambiguation between high-level 
classifications by incorporating chemistry. Combining diffraction and EELS/EDS data sets that are 
collected simultaneously or separately, it is possible to improve the accuracy of these models trained solely 
on crystallographic data.[2,3] The additional information provided by chemistry data augments the 
model’s understanding of higher-level structural classifications by drawing on the Open Crystallography 
Database, Materials Project Database, and experimental data, assembled in a robust training set that 
combines diffraction and chemistry. 

 
In this presentation, we will discuss the additional benefits and challenges associated with learning on 
multi-modal datasets. In addition to extracting chemical composition from EELS and EDS data, it is 
necessary to create complex neural networks that utilize the multiple data streams through normalization 
and data-specific sub-networks. Sub-networks learn meaningful data-specific features before being 
concatenated and normalized with the other modules output before classification. Diffraction, chemistry 
ranked by composition and presence of elements were chosen to be learned on. To prevent overfitting and 
account for variations within experimental data and noise, additional functions were employed at training 
time in conjunction with randomly dropping out different channels. In this presentation, the basic approach 
to the workflow in Figure 1 and analysis strategies creating neural networks that incorporate both 
chemistry and diffraction data will be presented. Results utilizing sub networks to better classify materials 
with minimal a priori knowledge in structure or chemistry will be presented and discussed. The potential 
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insights gained by increasing acquisition speed and/or decreasing the electron dose for future research 
projects will also be discussed [4].  
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Figure 1. Robust Data Workflow for High Throughput Analysis. Illustrated above is a 
workflow for merging diffraction and chemistry data gathered from various modalities. 
Leveraging neural networks and machine learning, we have developed toolsets, and workflow 
models to benefit the community aiding their ability to perform high throughput analysis for 
several imaging modalities. 
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