
MINI REV IEW

Microbial gut dysbiosis induced by xenobiotics in model
organisms and the relevance of experimental criteria: a
minireview

Beatriz Ibarra-Mendoza1 , Bruno Gomez-Gil1 , Miguel Betancourt-Lozano1 ,
Luciana Raggi2 and Beatriz Yáñez-Rivera3

1CIAD, A.C. Mazatlán Unit for Aquaculture and Environmental Management, Mazatlán, Mexico
2Universidad Michoacana de San Nicolás de Hidalgo – CONACYT, Mexico City, Mexico
3Instituto de Ciencias del Mar y Limnología, Unidad Académica Mazatlán, Universidad Nacional Autónoma de México,
Mazatlán, Mexico
Corresponding author: Beatriz Yáñez-Rivera; Email: beyariv@ola.icmyl.unam.mx

(Received 31 August 2022; revised 03 March 2023; accepted 06 March 2023)

Abstract
The gut microbiota is a dynamic ecosystem involved in multiple physiological processes that affect host health.
Several factors affect intestinal microbial communities including dietary exposure to xenobiotics, which is
highly concerning due to their widespread distribution. Current knowledge of this topic comes from culture-
dependent methods, 16S rRNA amplicon fingerprinting, and metagenomics, but a standardised procedures
framework remains lacking. This minireview integrates 45 studies from a systematic search using terms related
to gut microbiota and its disruption. Only publications encompassing dietary-oral exposure and experimental
gut microbiota assessments were included. The results were divided and described according to the biological
model used and the disruption observed in the gutmicrobiota. An overall dysbiotic effect was unclear due to the
variety of contaminants and hosts evaluated and the experimental gaps between publications. More standar-
dised experimental designs, including WGS and physiological tests, are needed to establish how a particular
xenobiotic can alter the gut microbiota and how the results can be extrapolated.
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Dietary exposure to xenobiotics in food and water

The gut microbiota maintains physiological processes that promote host health (Ayres, 2017). A typical
vertebrate gastrointestinal tract contains an average of 1013 microbial cells and approximately 3,000
microbial species in total (Li et al., 2014; Sender et al., 2016). The microorganisms that inhabit the
intestine are classified into fourmajor groups (ie. archaea, bacteria, viruses, and fungi) and organised into
functional communities that vary in density and structure along the digestive tract (Hiippala et al., 2018;
Milani et al., 2017). The variation among gut microbial communities could be associated to the function
of the microbiota, which expresses more than 3.3 million genes related to metabolic regulation,
biotransformation, nutrient absorption, molecule biosynthesis, and the modulation of immune
responses and behaviour (Claus et al., 2016; Qin et al., 2012). Thus, gut microbiota functions are
fundamental to the well-being of host organisms, yet all microbial communities are unique. This
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uniqueness is established from birth and can be altered through life due to the diet, immune system,
genotype, age, and lifestyle of the host and by external factors such as habitat characteristics and
xenobiotic exposure (Jin et al., 2017).

Xenobiotics are chemical substances of synthetic origin that are generally not present in the
environment (Abdelsalam et al., 2020; Stefanac et al., 2021). However, this term is flexible and can also
include endobiotics and other naturally occurring substances if their concentrations are higher than
average (Soucek, 2011). These compounds, such as environmental contaminants and pharmaceuticals,
have been identified in various foods and interact with gut microbes (Garcia and Gotah, 2017; Koppel et
al., 2017). Introducing xenobiotics into the environment due to natural and anthropogenic processes has
resulted in growing concerns regarding their impacts on human and animal health.

The levels of residues in food items are beyond the scope of this study but may affect consumers by
inducing allergic reactions, hormonal imbalances, and bacterial resistance to antibiotics (Pugajeva et al.,
2019). Contaminated water also constitutes another source of xenobiotic exposure (Amoatey and
Baawain, 2019). However, while the toxicity of xenobiotics and their effects on human health have been
extensively reported (Rodríguez et al., 2021), evidence indicates that the toxicity of non-target gut
microbiota due to dietary exposure could also affect host health (Claus et al., 2016; Jin et al., 2017). Due to
the conserved metabolic pathways among animal models, their use in toxicological studies allows us to
extrapolate the measurable effects of xenobiotic exposure to humans (Hansen, 2012). However,
evaluations of the effects of xenobiotics on the intestinal microbiota must consider multiple factors,
including the genetic individual variability of the host given that genetic variants and associated gene
expression could control the composition of the gut microbiota (Bubier et al., 2021). Therefore, using
model species in pre-clinical trials that use translational approaches to evaluate xenobiotic effects in the
gastrointestinal tract could provide novel insights due to the integration of pathologies (Johnson and
Greenwood-Van Meerveld, 2017; Robinson et al., 2019).

To summarise the known interactions between xenobiotics and the intestinal microbiota, we
performed a systematic search in the PubMed database. Published articles were searched with the terms
“effects,” “xenobiotics,” “gut microbiota,” “ecotoxicology,” “microbiota,” and “metagenomics” in dif-
ferent combinations. In all, 672 results were returned. Experimental approaches are required to assess
possible changes in the composition and function of the intestinal microbiota (Franklin and Ericsson,
2017; Hörmannsperger et al., 2015) andmicrobiota dynamics (Ranjan et al., 2016). Thus, we selected the
77 papers encompassing experimental exposure assessments, of which 45 articles deal exclusively with
dietary-oral exposure and gut microbiota assessments (Table 1). Our search indicated that although the
effects of xenobiotics are diverse, dysbiosis patterns, which are recurring changes in particular microbial
groups due to exposure to xenobiotics, are present that may be related to the experimental organism and
its core microbiota (Figure 1) such as (1) gut dysbiosis in the murine model, (2) gut dysbiosis in
pollinators, (3) gut dysbiosis in fish models (eg. zebrafish and tilapia), and (4) some relevant cases of gut
dysbiosis in poultry and insects. Moreover, when analysing studies with different experimental models,
similar dysbiosis patterns were revealed that were mainly described using the 16S sequencing approach.
In general, if these patterns are permanent or persist for extended periods, they may correlate with
pathologies such as metabolic syndrome and obesity (Kocełak et al., 2013; Turnbaugh et al., 2006;
Verdam et al., 2013) and cardiovascular (Lam et al., 2012, 2016) and gastrointestinal diseases (Becker
et al., 2015; Gevers et al., 2014). However, microbial communities have an intrinsic ability to adapt to
adverse conditions and recover without severe consequences to the host (Weiss and Hennet, 2017). In
this regard, research on dietary xenobiotic exposure is highly relevant due to the underlying relationship
between the gut microbiota and host health (Jin et al., 2017).

Dysbiosis and gut physiology

Awell-balanced gut ecosystem promotes feedback among themicrobial species that reside within, which
in turn regulates mucous epithelial immunity. For instance, anti-bacterial peptides secreted by mucous
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Table 1. Overview of the main features of the studies that have evaluated gut dysbiosis due to xenobiotic dietary-oral exposure.

Xenobiotic Methodology
Exposure
period (d) Mi alterations ERC HH evaluation Me evaluation GBI evaluation References

Murine model

Aflatoxin B1 16S (V3, V4) 28 No consistent effect
patterns

– – – – Wang et al., 2016

Aflatoxin B1 16S (V3, V4) 28 ↑ Alloprevotella spp.
↑ Firmicutes
↑ Anaerotruncus
↑ Clostridiales
*

X – – – Liew et al., 2019

Arsenic 16S (V4) 28 ↑ Akkermansia
↓ Dorea (females);
↑ (males)

– – – – Chi et al., 2016

Arsenic 16S (V4) 42 ↓ Adlercreutzia
↑ Akkermansia
↑ Clostridium
↓ Epulopiscium
*

X X X – Gaulke et al., 2018

Benzo-a-pyrene 16S (V4) 28 ↑ Bacteroidaceae
↑ Porphyromonadaceae
↑ Paraprevotellaceae
↓ Lactobacillaceae
*

– X – – Ribière et al., 2016

Bisphenol A GULDA (qPCR) 28 ↓ Firmicutes – X X X Malaisé et al., 2017

Cadmium, lead 16S (V5,V6) 56 ↓ Lachnospiraceae
↑ Erysipelotrichaceae
↑ Turicibacter
↑ Barneselia
*

X – – – Breton et al., 2013a

Glyphosate Cultured
methods

SC: 42, C: 84 ↓ Bacteroidetes
↓ Firmicutes
↓ Corynebacterium
↓ Lactobacillus

X X – – Aitbali et al., 2018
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Table 1. Continued

Glyphosate 16S (V2, V3, V4,
V6, V7, V8, V9)

673 ↑ Bacteroidetes family
S24–7

↓ Lactobacillaceae

– – – – Lozano et al., 2018

Glyphosate 16S(V3, V4) 126 ↑ Prevotella
↓ Lactobacillus

X – – – Mao et al., 2018

Glyphosate 16S(V3) 14 Very limited effects – X X – Nielsen et al., 2018a

Glyphosate 16S (V3, V4) 34 ↑ Bacteroidetes
↓ Firmicutes

X X X – Dechartres et al.,
2019

Glyphosate 16S (V3, V4) 35 ↓ Firmicutes
↓ Lactobacillus
↑ Fusobacteria
↑ Ruminococcus_1
*

– X X – Tang et al., 2020

Glyphosate Shotgun 90 ↑ Eggerthella spp.
↑ Shinella zoogleoides
↑ Acinetobacter johnsonii
↑ Akkermansia

municiphila

X X X – Mesnage et al., 2021

Manganese 16S (V4) 91 ↑ Firmicutes (males); ↓
(females)

↓ Bacteroidetes (males)

– X X – Chi et al., 2017

Methyl mercury 16S (V3, V4) 1 dose ↓ Bacteroidetes
↓ Proteobacteria
↑ Firmicutes

– X X – Lin et al., 2020

Methylimidazolium
ionic liquids

16S (V4) 126 ↓ Parasutterella
↑ Lachnospiracea
↑ Coriobacteriaceae spp.

X X X – Young et al., 2020

Neochamaejasmin A 16S (V4,V5) 90 ↑ Pseudoflavonifractor
↑ Ruminococaceae
↑ Lachnospira

– – – – Yan et al., 2015

Perfluorooctane
sulfonic acid

16S (V3, V4) 7 ↑ Turicibacterales
↓ Bacteroides

acidifaciens
↑ Cyanobacteria
*

X X X – Lai et al., 2018
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Table 1. Continued

Polybrominated
diphenyl ethers

16S (V4) 4 ↑ Akkermansia
municiphila

↑ Erysipelotrichia
↑ Allobaculum spp.
↓ Coriobacteriia
*

– X X – Li et al., 2018

Polybrominated
diphenyl ethers

Transcriptomics 4 Metabolism enterotypes
comparisons

– X – – Li et al., 2018

Silver NPs 16S (V4) 28 ↑ Lachnospiraceae
↑ S24–7
↓ Bacteroidetes

X X X – van den Brule et al.,
2016

2,3,7,8-
Tetrachlorodibenzo-
p-dioxin

Shotgun LS: 92, RS: 30,
SS: 28

↑ Enterobacteriaceae X – – – Stedtfeld et al., 2017

Toxic metals 16S(V4) 5 ↑ Proteobacteria (all
except Cd)

↑ Verrucomicrobia (Cd,
Co, Cr; ↓Ni)

↓ S24–7 (Ni)
↑ Enterobacteriaceae

(Ni)

– – – – Richardson et al.,
2018

Triazine 16S(V3, V4) 1 dose ↑ Firmicutes
↑ Coriobacteriia
↓ Lachnospiraceae
↓ Ruminococcaceae
*

– X X – Zhan et al., 2018

Trichloroethylene RT PCR Uterus: 21,
lactancy:

21, drinking
water: 154
and 259

↓ Firmicutes
↓ Bacteroidetes
↑ Lactobacillus
↑Bifidobacterium

X X X – Khare et al., 2019

Pollinators model

Atrazine 16S (V4) 1 dose ↑ Effusibacillus
↑ Serratia spp.
↑ Pseudomonas spp.
↓ Clostridium

– X X – Wang et al., 2020
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Table 1. Continued

Chlorpyrifos PCR with 16S
rRNA primers

1 dose Lactobacillus plantarum
ISO metabolism

– X – – Daisley et al., 2018

Glyphosate 16S (V3, V4) 5 ↑ Acidobacteria
↑ Gemmatimonadaceae
↑ Sphingobacteriales
↑ Thermoleophilia
*

X X – – Dai et al., 2018

Glyphosate qPCR W: 5,
NEWs: 2

↓ Snodgrassella alvi
↓ Bifidobacterium
↓ Lactobacillus Firm-4
↓ Lactobacillus Firm-5
*

X X – – Motta et al., 2018

Glyphosate qPCR 15 ↓ Snodgrassella alvi
↓ Gilliamella apicola
↑ Lactobacillus spp.

– X X – Blot et al., 2019

Pesticides 16S 18 ↓ Lactobacillus spp.
↓ Bifidobacterium spp.
↓ Alphaproteobacteria
↑ Gilliamella apicola
*

– X – – Rouzé et al., 2019

Spinosad, cooper sulphate 16S(V4, V5) 1 ↑ Gilliamella X X X – Botina et al., 2019

Fish model

Alpha-cypermethrin 16S 7 ↑ Fusobacteria
↓ Proteobacteria

X X X – Cheng et al., 2022

Benzo [a] pyrene 16S (V3, V4) 15 ↑ Firmicutes
↓ Proteobacteria

– X X – Xie et al., 2020

Carbendazim 16S (V3, V4) 21 ↓ Bacteroidetes
↓ Firmicutes
↓ Proteobacteria

X X X – Bao et al., 2020

Dyethylhexyl phtalate 16S (V4, V5) 60 ↓ Fusobacteria
↑ Proteobacteria
↓ Tenericutes

– – – – Buerger et al., 2020
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Table 1. Continued

Methyl mercury 16S (V4) 30 ↑ Xanthomonadaceae
↑ Rhodobacter
↑ Planctomycetes
↓ Cetobacterium

X X X – Nielsen et al., 2018b

Tebuconazole,
difenoconazole

16S (V3, V4) 21 ↑ Bacteroidetes
↑ Firmicutes
↑ Proteobacteria

– X X – Jiang et al., 2021

Tetracycline 16S (V3, V4) 60 ↓ Bacteroidetes
↓ Firmicutes
↑ Proteobacteria

X X X – Keerthisinghe et al.,
2020

TiO2 NPs Cultured
methods

14 ↓ Aeromonas spp.
↓ Lactobacillus spp.
↓ Pseudomonas spp.

X X X – Sherif et al., 2021

Water-soluble crude oil
components þ chemical
dispersant

16S (V3, V4) 96 h ↓ Fusobacteria
↑ Proteobacteria

– – – – González-Penagos
et al., 2020

Others

Arsenic 16S (V4) 14 ↑ Bacillus
↓ Geobacter
↑ Ochrobactrum
↓ Staphylococcus
*

X X – – Wang et al., 2019

Cadmium Transcriptomics 30 ↑ Archae
↓ Bacteria
↓ Eukaryotes
↓ Virus

– X – – Yang et al., 2018

Mercuric chloride 16S (V3, V4) 30, 60, 90 ↑ Proteobacteria
↓ Spirochaetes
↑ Tenericutes

– X – – Zhou et al., 2020

Abbreviations: C, chronic; ERC, environmentally realistic concentrations; GBI, gut barrier integrity; HH, host health; LS, long-term study; m, mouse; Me, metabolites; Mi, microbiota; NEW, newly emerged workers; NPs,
nanoparticles; r, rat; RS, recovery study; SC, sub-chronic; SS, short-term study; W, worker bees.
*Other microbial groups changes were found.
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membranes influence the composition of gut microbiota, and this communication is essential to
maintain the integrity of the epithelial barrier and the immunological niche. However, xenobiotics
and other antigens in foodmay interact with epithelial mucous and trigger pathological states associated
with dysbiosis, which is defined as the loss of microbiota homeostasis that is characteristic of inflam-
matory, metabolic, neurological, and autoimmune diseases and disorders (DeGruttola et al., 2016).
Changes in feedback processes may or may not induce inflammatory responses, although they can
modify the permeability of the epithelial barrier and permit the translocation of bacteria from the
intestinal lumen to the circulatory system. This disrupts cytokine production, T cell pro-inflammatory
proliferation, and T cell anti-inflammatory inhibition, which provokes intestinal immunological niche
dysfunction that ultimately results in a chronic inflammatory state within the host (Pagliari et al., 2017;
Tilg et al., 2020).

Although epithelium-microbiota interactions that maintain homeostasis are highly complex,
exposure to xenobiotics can result in distinctive dysbiotic patterns (Figure 2a). For instance, a decrease
in the abundance of Bifidobacterium spp. and Firmicutes bacteria, particularly those of the Clostri-
diaceae family, precedes inflammatory conditions and may possibly play an important role in the
development of obesity due to the overexpression of pro-inflammatory cytokines, which interrupts
insulin signalling (Malaisé et al., 2017). These alterations lead to the reduction of anti-microbial
activities and the disruption of IgA synthesis, a critical component that supports the integrity of the
epithelial barrier. Additionally, xenobiotic-induced changes have been reported in the abundance of
butyrate-producing bacteria, which are considered to be energy sources for epithelial cells in the colon
that promote proliferation and differentiation (Weiss and Hennet, 2017). In this regard, members of
the Lactobacillaceae family are reportedly the most affected by exposure to benzo-ɑ-pyrene, glypho-
sate, and arsenic (Aitbali et al., 2018; Gaulke et al., 2018; Ribière et al., 2016; Tang et al., 2020). Also,

Figure 1. Relative frequencies of 45 studies with dietary-oral exposure and gut microbiota evaluations published between 2013 and
2022. Information on the kind of experimental organism, methodological approach to the microbiota evaluation, main bacterial
groups that are affected after exposure, range of experimental concentrations (ER Concentration [environmentally realistic concen-
tration] vs. Hi Concentration [high concentration when assessing actionmodes]), and evaluations of host health (HH Evaluation [host
health evaluation] vs. Mi Evaluation [microbiota evaluation only]). The figure was made with sankeymatic.
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changes in Bacteroidetes and Proteobacteria (Zhou et al., 2020) have also been associated with pro-
inflammatory conditions that are similar to those observed with Paraprevotellaceae, Desulfovibrio-
naceae (Ribière et al., 2016), and Enterobacteriaceae (Stedtfeld et al., 2017). Of note, few studies
incorporate evaluations of metabolite and gut barrier integrity changes, and most of these only discuss
these effects (Table 1).

Changes in the intestinal architecture constitute a primary focus of multiple experiments that have
aimed to evaluate the effects of dietary xenobiotics at a systemic level. In a murine model, the
modification of intestinal structures was related to different inflammatory states that were the result
of polynuclear and inflammatory cell (IL-6, IL-6ß) infiltration due to oral methylmercury exposure (Lin
et al., 2020). Furthermore, evidence of changes to epithelial tissues in regions of the small and large
intestines have been reported with benzo[a]pyrene (Lin et al., 2020; Ribière et al., 2016), in addition to
reductions in villi height,modifications to the proportions between these structures, and changes in crypt
depth due to glyphosate exposure (Tang et al., 2020). In the worst-case scenario, a full depletion of
epithelial tissue has been reported (Ribière et al., 2016). In poultry exposed to mercuric chloride, a
complete absence of villi in some intestinal regions and cell infiltrations in the stratrum propri zone
associated with inflammatory effects have been found (Zhou et al., 2020). In addition to the intestines,
the kidneys and liver have been evaluated with histological analyses, and evidence of glyphosate dose-
dependent lesions has been found in the latter (Mesnage et al., 2021). These effects are similar to those
observed in other biological models. However, dysbiosis patterns are unique for each model due to
genetic, metabolic, and gut niche particularities (Figure 2b).

Figure 2. Understanding homeostasis and dysbiosis in different biological models. (a) Summary of the loss of gut homeostasis due to
xenobiotic exposure. The feedback between the gut microbiota and host could promote host health. Alternatively, at the onset of
dysbiosis due to xenobiotic exposure, different mechanismsmay be elicited thatmay result in different outcomes that affect the host.
(b) Although gut microbiota studies have been performed with different species, extrapolating the results among them is not viable.
Each model has its own genetic, metabolic, and gut microbiome particularities. The figure was made with Biorender.
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Linking gut dysbiosis and physiological effects due to xenobiotics

The murine model has been widely used in pharmaceutical and medical research. Twenty-seven of the
studies included in this review employed rodents (Table 1). However, when evaluating and analysing gut
dysbiosis, some key aspects must be considered to better understand the processes involved. For instance,
the inherent variability within the microbiomes of the same species, particularly with regard to resident
microorganisms, depends on the physiology of the digestive system; therefore, the identification and
standardisation of external factors capable of modifying microbial communities should be considered
(Franklin and Ericsson, 2017; Hugenholtz and de Vos, 2018). In this sense, knowledge gaps also need to be
considered. However, one of the main limitations appears to be that functional predictions of metabolic
routes and affected genes are only possible at the in-silico level without a subsequent step to evaluate
systemic effects. Complete studies should evaluate the general effects associated with gut dysbiosis using
biochemical approaches to determine specific biomarkers and histopathology techniques and, if possible,
to evaluate mechanistic approaches in terms of immunology, behaviour, and survival rates.

Only 6 of 45 papers included a biochemistry analysis of blood serum. In these experiments, molecules
related to inflammatory processes were quantified, including inflammatory and neurotrophic factors (Lin
et al., 2020), interleukins (Nielsen et al., 2018a), and C-reactive protein (van den Brule et al., 2016). In the
same way, molecules associated with lipid metabolism (one of the most important routes affected by gut
dysbiosis), adiponectin (Gaulke et al., 2018), and triglycerides (Lai et al., 2018) were determined and
quantified. The results from these analyses allow xenobiotic concentrations in the bloodstream to be
determined (Zhan et al., 2018). Histopathological techniques were used in 5 out of 45 studies. The intestine
was the target organ in these approaches, and the main aim of these studies was to identify structural
changes in different intestinal regions as well as the infiltration of inflammatory cells (Lin et al., 2020;
Mesnage et al., 2021; Ribière et al., 2016; Tang et al., 2020; Zhou et al., 2020). Finally, some organism-level
changes were considered in the experimental approaches such as behavioural changes due to the critical
role of the gut–brain axis (Aitbali et al., 2018; Dechartres et al., 2019) and survival rates after exposure to
xenobiotics (Lee et al., 2020;Motta et al., 2018;Wang et al., 2020). In the previous experiments, omics tools
were used to explore these changes, including metabolomics to evaluate changes in gut and faeces
metabolites (Chi et al., 2017; Lin et al., 2020; Nielsen et al., 2018b), transcriptomics (Wang et al., 2020;
Yang et al., 2018), and proteomics (Li and Cui, 2018; Yang et al., 2018).

Only 7 of 45 studies in this review dealt with the effects of pesticides on pollinators (Blot et al., 2019;
Botina et al., 2019; Dai et al., 2018; Daisley et al., 2018; Motta et al., 2018; Rouzé et al., 2019; Wang et al.,
2020). This topic is of particular importance because the ecological roles of pollinators appear to be
threatened by non-target exposure to xenobiotics (Cullen et al., 2019). Likewise, the prevalence of
contaminants in water bodies highlights the importance of studies that assess the effects of using fishes
as research models. In this study, eight publications employed fish models, of which most were zebrafish
(Bao et al., 2020; Buerger et al., 2020; Cheng et al., 2022; González-Penagos et al., 2020; Jiang et al., 2021;
Keerthisinghe et al., 2020; Sherif et al., 2021; Xie et al., 2020). In addition, other studies considered other
organisms such as spiders (Yang et al., 2018), arthropods (Wang et al., 2019), and poultry (Zhou et al., 2020).

Gut dysbiosis in the murine model

Most mammal studies that have assessed the impacts of xenobiotics on gut microbiota have been
conducted in murine models. However, even if the same species is used in different studies, various
biological factors could induce variability among responses. In addition, some responses have shown a
pollutant-type dependency. Nevertheless, some evidence has emerged indicating possible patterns at the
taxonomic level. This is the case of the Firmicutes phyla. In this phyla, changes in abundance that are
mainly due to changes in the abundance of the Lachnospiraceae family have been associated with heavy
metals (Breton et al., 2013b). Similarly, Lactobacillaceae abundance has shown responsiveness to
exposure to methylmercury (Lin et al., 2020), benzo[a]pyrene (Ribière et al., 2016), glyphosate and its
commercial formulations (Aitbali et al., 2018; Mao et al., 2018; Tang et al., 2020), and trichloroethylene
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(Khare et al., 2019). Interestingly, these bacteria are essential for butyrate synthesis. Butyrate is related to
gut barrier integrity and is a source of energy for epithelial cells in the colon (Silva et al., 2020).

In the previously mentioned studies (Aitbali et al., 2018; Khare et al., 2019; Lin et al., 2020; Tang et al.,
2020), decreases in Firmicutes abundance were observed, whereas in experiments conducted with poly-
brominated diphenyl ethers (Li et al., 2018) and bisphenol A (Malaisé et al., 2017), increases in Firmicutes
abundance were observed after exposure. Furthermore, Chi et al. (2017) demonstrated that changes in
Firmicutes abundance were sex-dependent due to manganese exposure, with increases and decreases
observed in males and females, respectively. Likewise, Lozano et al. (2018) described changes in Lactoba-
cillaceae abundance associated with exposure to roundup, although they were only present in females.
However, although several studies in murine models indicate changes in this phylum, Wang et al. (2016)
reported that no significant changes in the abundance of this group were observed after exposure to
aflatoxin B1. Similarly, the phylum Bacteroidetes also presents different outcomes depending on the
exposure. Pollutants, such as trichloroethylene (Khare et al., 2019), aflatoxin B1 (Liew et al., 2019),
methylmercury (Lin et al., 2020), benzo[a]pyrene (Ribière et al., 2016), and glyphosate (Dechartres
et al., 2019; Nielsen et al., 2018a), could promote positive or negative changes in Bacteroidetes abundance
that are mainly associated with changes in Bacteroides abundance. It is worth noting that both Firmicutes
and Bacteroidetes play important roles within mammalian microbiota ecosystems. It has been reported
that imbalances in their abundance have been involved in different intestinal disorders while also being
associated with an obesogenic phenotype (Buerger et al., 2020; Lozano et al., 2018).

Dysbiotic changes may also be linked to physiological effects that affect the overall fitness of the host,
with manifestations such as changes in body composition, survival rates, immune conditions, metabolic
production, and behaviour as well as additional transgenerational effects. Changes inmetabolismmay be
identified through blood biochemistry and metabolomics analyses, which can also help to identify
biotransformations of target xenobiotics and the synthesis of enzymes and transport molecules such as
the ones associated with bile acidmetabolism (Li et al., 2018).Metabolic changes can also be identified by
the production of neurotransmitters such as serine, GABBA, L-tyrosine, and aspartic acid (Lin et al.,
2020). Other impacts of xenobiotic exposure have been associated with changes in oxidative stress and
glutathione (GSH), glutathione peroxidase (GSH-Px), and adiponectin levels (Gaulke et al., 2018; Tang
et al., 2020). Also, studies evaluating inflammatory processes have reported changes in the production of
metabolites, such as IL-33, IFN-gamma, and IL-3, and changes in cytokine levels (eg. IL-12, IL-17F,
GM-CSF, eotaxin, and MIP-1-α chemokine) that are directly associated with intestinal immunoregula-
tion (Khare et al., 2019). Furthermore, exposure to glyphosate-based herbicides promotes changes in the
gutmicrobiota that result in anxiogenic and depressive behaviour inmurinemodels (Aitbali et al., 2018),
which confirms that chemical pollutants can alter animal social behaviour at individual and group levels
(Michelangeli et al., 2022).Moreover, exposure to bisphenol A induced a significant and gradual increase
in weight over the experimental period, even without changes in the food intake rate (Malaisé et al.,
2017). This outcome is one of the main reasons to classify bisphenol A as an obesogen toxicant and thus
one of the most studied endocrine-disrupting xenobiotics (Chiu et al., 2020). Body composition
measurements are determining factors that must be considered when attempting to understand the
overall impact that a xenobiotic compound may have on an organism.

Gut dysbiosis in insect pollinators

Worldwide, ecotoxicological research onpollinating insects arises from their inevitable chronic exposure to
pesticides and the fundamental roles they play within ecosystems (Cullen et al., 2019). Pollinating insects
play critical roles inplant reproduction cycles,which can influence biodiversity and ecosystem serviceswith
impacts that transcend agriculture (Lautenbach et al., 2012; Potts et al., 2016). Recent studies have shown
the effects on gut microbiota due to exposure to glyphosate (Blot et al., 2019; Dai et al., 2018; Motta et al.,
2018), spinosad and cooper sulphate (Botina et al., 2019), chlorpyrifos (Daisley et al., 2018), atrazine (Wang
et al., 2020), fipronil, imidacloprid, thiamethoxam, and coumaphos (Rouzé et al., 2019). However, similar

11

https://doi.org/10.1017/gmb.2023.3 Published online by Cambridge University Press

https://doi.org/10.1017/gmb.2023.3


to what has been observed with murine models, major changes in the abundance of Proteobacteria,
Firmicutes, and Actinobacteria have been reported, although patterns are difficult to identify given that
responses are likely dependent on exposure conditions. For instance, glyphosate exposure has been linked
tomicrobiota changes, such as those observedwithin theActinobacteria phylum that are characterised by a
reduced abundance ofBifidobacterium spp. (Blot et al., 2019), or changes in Firmicutes abundance that are
mostly driven by the increased abundance ofClostridia, Ruminococcaceae (Dai et al., 2018), Staphylococcus
spp., and Lactobacillus spp. (Blot et al., 2019). Motta et al. (2018) reported a decrease in the abundance of
Lactobacillus spp. In this sense, it is unclear if the role of Lactobacillus spp. is just as relevant as it is in the
murine model. However, these studies are mostly based on 16S rRNA (Dai et al., 2018), and thus fail to
include detailed taxonomic identifications or even functional inferences. Despite these limitations, when
the studies have also included qPCR techniques, they have been able to identify specific species of interest.
For example, within the Proteobacteria phylum, it was observed that glyphosate exposure promoted a
decrease in the abundance of Snodgrasella alvi, which is a characteristic member of the core microbiota of
bees (Blot et al., 2019; Motta et al., 2018). Remarkably, bees with conventional microbiota that have been
exposed to glyphosate exhibited an overall susceptibility to opportunistic pathogens (Motta et al., 2018).
Other studies have reported changes in the abundance of Gilliamella apicola, a dominant gut Gamma-
proteobacteria in honey bees and bumblebees, after exposure to pesticides such as fipronil, spinosad, and
glyphosate (Blot et al., 2019; Botina et al., 2019; Motta et al., 2018; Rouzé et al., 2019).

Aside from the direct effects on host fitness, such as dose-dependent survival rates,Wang et al. (2020)
reported that changes in gut microbiota derived from atrazine exposure could exert inherited effects on
the progeny, which suggests that legacy microbiota could provide protective effects due to the enrich-
ment of Serratia marcescens and Pseudomonas protegens, which are associated with atrazinemetabolism.
In this sense, research using biological models with short reproductive cycles, like insect pollinators,
allows for the crucial aspects of the overall effects of a particular xenobiotic to be assessed at higher
organisational levels. Examples of these assessments include survival rate analysis, linking dysbiosis with
disease and xenobiotic exposure, and evaluating transgenerational effects due to inherited microbiota
with population-level consequences.

Gut dysbiosis in fishes

Although there is an increase in publications related to gut microbiota dysbiosis, studies using aquatic
organisms, such as fishes or amphibians, are scarce compared to murine model investigations (Evariste
et al., 2019). Among aquatic model organisms used in dysbiosis experiments, fish models stand out,
particularly the zebrafish model. Zebrafish are particularly interesting models due to the homology of
their genome and intestinal structure and functionality with those of mammals (Howe et al., 2013;
Lickwar et al., 2017). Zebrafish have been used to evaluate changes in microbial richness and diversity,
the general structure of the microbiota, and possible disruptions in the intestinal tract due to aquatic
exposure to environmental pollutants (Zhong et al., 2022). For instance, carbendazim exposure elicited
decreases in the abundance of Firmicutes, Bacteroidetes, and some members of α- and γ-Proteobacteria
(Bao et al., 2020), which is similar to what has been reported with tetracycline exposure (Keerthisinghe
et al., 2020). In contrast with these changes, exposure to diethylhexyl phthalate and benzo[a]pyrene
increased the abundance of Proteobacteria and Firmicutes, respectively (Buerger et al., 2020; Xie et al.,
2020). Another group with significant changes in abundance is Fusobacteria. In this taxa, exposure to
α-cypermethrin promoted an increase of specific taxa (Cheng et al., 2022), in contrast to the observations
described by Buerger et al. (2020) and Jiang et al. (2021) in which exposure to diethylhexyl phthalate and
triazole fungicides decreased the abundance of Fusobacteria.

As with the murine model, different authors have indicated that changes in the Firmicutes:Bacter-
oidetes ratio in the gut microbiota serve as an obesity biomarker in zebrafish. These studies detected
changes in body weight after exposure to carbendazim (Bao et al., 2020) and diethylhexyl phthalate
(Buerger et al., 2020). Also, in the study conducted by Xie et al. (2020), the associations between zebrafish
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gutmicrobiota and inflammatory responses after benzo[a]pyrene exposure were described, emphasising
increases of IL1β cytokine, IL6, IL8, and Ifn1 protein, which could be related to the inherent genetic
background of the zebrafish intestine.

Another fish species widely used in xenobiotic experiments is the Nile tilapia (Oreochromis niloticus).
However, only Sherif et al. (2021) explored changes within the Aeromonas, Lactobacillus, and Pseudo-
monas genera after exposure to titanium dioxide nanoparticles, which induced higher mortalities when
fish were challenged with Aeromonas hydrophila. However, the study relies on traditional bacterial
counting and not on molecular approaches or technologies.

Gut microbiota study criteria

Experimental considerations

An experimental design for assessing alterations in the gut microbiota must consider key aspects to
produce accurate results. Among these is establishing the proper population size for statistical purposes.
However, socio-ecological restrictionsmust be also considered to determine the proper group size within a
specific space (Shülke and Ostner, 2012). This is crucial in rodents and other social species, such as
zebrafish, which are gregarious animals that establish complex relationships within their groups (Green,
1966). These dynamics, specifically any dominance hierarchy, play an essential role in feeding behaviour
and could affect stress responses, as some of the main characteristics of dominance include chasing,
fighting, and avoidance behaviour (Mondragón et al., 1987). The feeding strategy is another relevant
variable thatmust bedefined in these studies, especially considering that subordinate organisms take longer
to feed than dominant organisms. In rodents, ad libitum feeding is typically employed. However, this
method makes it difficult to control xenobiotic dosing, and differences in feeding could also influence the
susceptibility to these compounds (Hart et al., 1995). An alternative that compensates for ingestion
differences, is timed feeding, which grants animals illimitable access to food in a specific period and
considers the social dynamics within a group (Carey and Merrill, 2012). These feeding periods can be
flexible and may depend on the experimental species and their biological rhythms. Timed feeding can
synchronise many behavioural variables such as anticipatory food activity (Satoh et al., 2006). Dietary
exposure to xenobioticsmust also be addressed. For instance, in studies usingmurinemodels, ensuring that
the proper concentration of xenobiotics is supplied is achieved byorally gavaged dosing, but employing this
method may not be feasible with other organisms such as fish and invertebrates. Nevertheless, it is
important to consider possible stress arising from the methodology employed.

Other considerations must also be considered when establishing a dysbiosis experimental design. The
sampling protocol for gut content must be standardised to yield comparable results, as the composition
and dynamics of the microbiota depend on specific target (tissue and/or organ) conditions such as the
enzymes involved in nutrient metabolism, the molecular patterns associated with cell-surface attach-
ment, and the ability to avoid immune responses from the host (Adak and Khan, 2019). In turn, these
factors are related to specific gastrointestinal tract regions. Therefore, this is also applicable to estab-
lishing comparisons between histological analyses that are mainly due to the microanatomy of every
intestinal region and each species (Mowat and Agace, 2014). Only a few studies include autocritiques on
possible experimental artefacts that will help to improve future experiments such as the importance of
estimating exposure periods and origin of the recollected samples to extract microbial DNA (Chi et al.,
2016), sample size, and bioinformatic parameters (Wang et al., 2016).

Sequencing strategies

In this review, 35 of the 45 selected studies used the taxonomic 16S rRNA amplicon fingerprinting
approach to evaluate changes in bacterial communities due to the dietary intake of xenobiotics (Table 1).
Notably, the amplification of theV3�V4 conserved regionwas themost frequently employed approach.
The 16S method is widely used in gut dysbiosis studies due to its cost-effectiveness and various
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bioinformatics tools. However, this method comes with some limitations that should be considered.
These considerations include (1) a putative association of the 16S gene with taxa defined as operational
taxonomic units and the resulting difficulty of assessment (Poretsky et al., 2014); (2) a lack of
reproducibility as a result of different experimental variables, including sample management, the 16S
gene variable region selected, and the bioinformatic pipelines employed (Han et al., 2020); and (3) an
inability to establish reliable species or strain functional predictions (Ranjan et al., 2016).

The 16S rRNA amplicon fingerprinting method classifies the identified taxa from phylum to genus,
with an observable decrease in specificity at the lower levels, making it particularly unreliable at the
species level (similar to the difference in results obtained using OTUs vs. ASVs). In this sense, whole-
genome sequencing (WGS) approaches, also known as metagenomics or shotgun sequencing, allows for
more information to be retrieved from genera with low abundance (Durazzi et al., 2021). Moreover,
WGS can be used to infer functional features such as the genes present and metabolic routes involved in
responses to xenobiotic exposure (Mesnage et al., 2021; Stedtfeld et al., 2017). In addition to functional
assessments, theWGS approach allows for diversity indexes to be more accurately estimated and for the
taxonomic structures of complex microbial communities to be elucidated, taking into consideration
species and even strains of bacteria, archaea, viruses, fungi, and protozoans (Han et al., 2020; Poretsky
et al., 2014; Ranjan et al., 2016). For example, in a study by Mesnage et al. (2021), increases in the
abundance of three species (Eggerthella isolate HGM04355, Acinetobacter johnsonii, and Akkermansia
municiphila) were detected after glyphosate and MON 52276 exposure. Also, the authors characterised
and quantified the abundance of the EPSPS gene encoding the target enzyme of this herbicide and
performed a functional analysis using KO assignments specific to their biological model. However,
exploring multivariate and multidimensional microbial communities with this approach is highly
expensive for large-scale studies with deep sequencing. A more affordable alternative is to adjust the
metagenomic sequencing depth according to the experimental hypothesis of the study, focusing on the
required reads to detect the species, functions, and biomarkers expected as outcomes. In this regard,
shallow shotgun sequencing is a viable option to determine common species and functional profiles in
samples at a slightly higher cost than that of 16S fingerprinting without losing valuable information
(Hillmann et al., 2018). Although the WGS method usually provides complete information about the
structure and functionality of the microbiomes, this approach cannot necessarily be generalised, as
particular changes may be required for specific depth adjustments. This was the case with the study of
Stedtfeld et al. (2017), who were unable to determine variations in the abundance of antibiotic-resistance
genes with lower abundance. They then used qPCR to overcome this limitation.

Data analysis reproducibility

The different methodological approaches used in microbiota experiments create substantial difficulty
when integrating the resulting data of different studies. Restrictions when comparing outcomes stem
from the different methods used to extract and store DNA/RNAmaterial, the sequencing strategies and
platforms used in each study, and the bioinformatics pipelines and databases employed. It is desirable to
use a specific database to reference sequence assignments such as the Murine Microbiome Database
(MMDB). However, it is also necessary to be able to compare among general databases to avoid size,
updating, or management-related biases, which are mainly due to the search space or the quantity of
undiscovered microbial groups, as this can lead to false positive and negative classifications, respectively
(Ye et al., 2019). This also applies when exploring the effects of xenobiotic exposure that may induce
changes associated with new or unclassified microbial groups, which may be dismissed because
databases may not include abnormal or disturbed microbiota. In addition, a standardisation of available
metadata is important to provide additional context for the samples and raw reads available in public
repositories (Dundore-Arias et al., 2020). For some experiments, such as evaluations of dysbiosis under
conditions of xenobiotic exposure, their outcomes require a clear workflow with sufficiently detailed
information on the algorithms and parameters used for data processing in order to ensure
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reproducibility. Thus, data accessibility is crucial for creating a robust conceptual framework to increase
our understanding of the dynamics of microbiota changes due to xenobiotic exposure.

Conclusions

The gut microbiota was explored as a dynamic interaction system, which can be perturbed due to
xenobiotic exposure. According to the studies reviewed herein, impacts on specific gut microbial
communities could be associated with pathologies and changes at intestinal, metabolic, and systemic
levels. Thus, the overall health of the organismmay be at stake due to xenobiotic exposure. In this sense,
using bioinformatics tools and biological models is a relevant strategy to explore dysbiosis mechanisms.
Murine models are the most studied in these experiments. Exploring the effects of xenobiotic exposure
on the structure and composition of the gut microbiota from organisms that are exposed to several
contaminants in natural environments, such as pollinators and fishes, could extend our knowledge of the
main microbial groups that are susceptible to xenobiotics and the overall impacts that these compounds
have. While 16S approaches could be used as exploratory approaches, more WGS and physiological
studies with standardised and specific experimental designs are needed to understand how xenobiotics
can perturb the gut microbiota and how the results may be extrapolated.
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