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NON-PERVERSE PARITY SHEAVES ON THE FLAG VARIETY

PETER J. MCNAMARA

Abstract. We give examples of non-perverse parity sheaves on Schubert

varieties for all primes.

§1. Introduction

The notion of a parity sheaf was introduced in [JMW] and has since become an important

object in modular geometric representation theory. An even/odd sheaf on a complex

variety X with coefficients in a field k is an object of Db
c(X;k)1 whose star and shriek

restrictions to all points only have even/odd cohomology. A parity sheaf is a direct sum of

an even and an odd sheaf. (We only consider parity sheaves for the zero pariversity in this

paper.)

In this paper, we take X to be the variety of all complete flags in Cn, and only consider

sheaves which are constructible with respect to the stratification by Schubert varieties.

Then, by [JMW, Th. 4.6], for each w ∈ Sn, there exists a unique indecomposable parity

sheaf Ew whose support is the Schubert variety Xw, up to an overall homological shift. Up

to homological shift, these constitute all indecomposable Borel-constructible parity sheaves

on the flag variety X. We normalize this shift such that when restricted to the Schubert

cell, Ew is the constant sheaf shifted by dim(Xw). This ensures that when the characteristic

of k is zero, that Ew is isomorphic to the intersection cohomology sheaf IC(Xw;k). We call

such parity sheaves normalized.

Let p be the characteristic of k. We provide the first examples of normalised parity

sheaves on Schubert varieties which are not perverse for primes p > 2. Examples for

p = 2 were recently constructed in [LW]. Our family of examples also includes parity

sheaves which are arbitrarily non-perverse. We are not able to provide examples with

p greater than the Coxeter number, but we expect that such examples exist. One

geometric consequence is that by Theorem 5.1, the non-perverseness of these sheaves

proves that these Schubert varieties do not have any semi-small resolutions. Exam-

ples of non-perverse parity sheaves are also of representation-theoretic interest thanks

to [AR].

Our examples generalize constructions of Kashiwara and Saito [KS], Polo (unpublished),

and McNamara and Williamson [MW]. We have phrased things in terms of parity sheaves

as that is the more traditional formulation, although the construction of Theorem 5.1 is

more general. Despite this more general construction, we rely on some of the theory of

parity sheaves in our proof.
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1 Db
c(X;k) is the bounded derived category of constructible sheaves on X with coefficients in k. We always

work with the classical metric topology on X.
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2 PETER J. MCNAMARA

§2. Statement of the result

Let p be a prime. Let d and l be positive integers such that pd ≥ l≥ 3. Let q = pd. Define

the following permutation y ∈ Sq(l+2):

y(j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(l+1)q, if j = 1,

q+2− j, if 2≤ j ≤ q,

(l+2)q, if j = q+1,

(l+2)q+1− j, if q+2≤ j < (l+1)q and j �≡ 0,1(mod q),

(l+2)q− j, if q+2≤ j < (l+1)q and j ≡ 0(mod q),

(l+2)q+2− j, if q+2≤ j < (l+1)q and j ≡ 1(mod q),

1, if j = (l+1)q,

(2l+3)q− j, if (l+1)q < j < (l+2)q,

q+1, if j = (l+2)q.

Let Ey be the indecomposable parity sheaf supported on the Schubert variety Xy with

coefficients in Fp, extending the constant sheaf shifted by dim(Xy). Our theorem is the

following.

Theorem 2.1.

Ey �∼= pτ≤l−3(Ey).

Here, pτ≤l−3 is the perverse truncation operator. Since l ≥ 3, this implies that Ey is not

perverse.

§3. Intersection forms

If A is an indecomposable object in a Krull–Schmidt category and X is any object, write

m(A,X) for the number of times A appears as a direct summand of X.

Our main tool is the following result, which computes the multiplicities of a direct

summand via the rank of a bilinear form.

Proposition 3.1 [JMW, Prop. 3.2]. Let k be a local ring. Let π : Ỹ −→Y be a proper

resolution of singularities. Let y ∈ Y , and suppose that the fiber F = π−1(y) is smooth.

Write i for the inclusion of y in Y. Let n be the dimension of Ỹ , let d be the dimension of

F, and let m be an integer. Let B be the pairing

H2d−n−m(F )×H2d−n+m(F )→H2d(F ) (3.1)

given by B(α,β) = α∪β ∪ e, where e is the Euler class of the normal bundle to F in Y.

Then

m(i∗k[m],π∗k[n]) = rank(B).

Proof. By general results about multiplicities of indecomposable objects in Krull–

Schmidt categories, the multiplicity m(i∗k[m],π∗k[n]) is equal to the rank of the pairing

Hom(i∗k[m],π∗k ˜Y [n])×Hom(π∗k ˜Y [n], i∗k[m])→ End(i∗k[m])∼= k. (3.2)
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NON-PERVERSE PARITY SHEAVES ON THE FLAG VARIETY 3

The following commutative diagram appears in the proof of [JMW, Lem. 3.4] and arises

through applying base change and adjunctions. The pairing B′ arises through composition

with the canonical map from ωF [−n] to kF [n] (which comes from applying the canonical

natural transformation i! → i∗ to k
˜Y ), whereas the pairing (3.2) appears along the bottom

row.

Hom(kF [m],ωF [−n])×Hom(kF [n],ωF [m])
B′

��

∼=
��

Hom(kF [m],ωF [m])
∼=
��

Hom(i∗k[m],π∗k ˜Y [n])×Hom(π∗k ˜Y [n], i∗k[m]) �� End(i∗k[m])

Since F is smooth, ωF
∼= kF [2d] and the canonical morphism from ωF [−n] to kF [n] is

identified with the Euler class e. Therefore, the pairing (3.2) is identified with the one stated

in the proposition, completing the proof.

§4. Geometry

Let x be the permutation

⎛
⎜⎜⎜⎜⎜⎝

J 0 · · · 0 0

0 0 · · · J 0
...

...
...

...
...

0 J · · · 0 0

0 0 · · · 0 J

⎞
⎟⎟⎟⎟⎟⎠
,

where J is the q× q antidiagonal matrix.

We compute the slice to the Schubert variety Xx in Xy through the point x. Using the

techniques discussed in the proof of [W, Prop. 3.2], this is given by matrices of the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

J 0 0 · · · 0 0

Al 0 0 · · · J 0
...

...
...

...
...

...

A2 0 J · · · 0 0

A1 J 0 · · · 0 0

0 B1 B2 · · · Bl J

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

subject to the conditions

BiJAi = 0, rank

⎛
⎜⎝
Al

...

A1

⎞
⎟⎠≤ 1, rank

(
B1 · · · Bl

)
≤ 1 (4.1)

for all i. Here, each Ai and Bi is a q× q matrix. Let Y be this slice. So Y is the space of

all (2l)-tuples of q× q matrices A1, . . . ,Al,B1, . . .Bl subject to the conditions (4.1).

Let

Ỹ = {(h,�1, . . . , �l, �,A1, . . . ,Al,C1, . . . ,Cl) | h ∈Gr(q−1, q),

�1, . . . , �l, � ∈Gr(1, q),Ai ∈Hom(Cq/h,�i),Bi ∈Hom(Cq/�i, �)}
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4 PETER J. MCNAMARA

and π : Ỹ −→Y be defined by

π(h,�1, . . . , �l, �,A1, . . . ,Al,C1, . . . ,Cl) = (A1, . . . ,Al,C1J, . . . ,ClJ). (4.2)

This is a resolution of singularities of Y, and Ỹ is the total space of a vector bundle E
on Z := (Pq−1)l+2.

We have

H∗(Z)∼= Z[w]/(wq)⊗ (
l⊗

i=1

Z[ai]/(a
q
i ))⊗Z[z]/(zq),

where the variables w and z come from the factors of Z corresponding to the choices of h

and � in Ỹ , respectively, whereas the ai come from the choice of �i.

Lemma 4.1. The Euler class of E is given by

e(E) =
l∏

i=1

⎛
⎝(ai+w)

q−1∑
j=0

ajiz
q−1−j

⎞
⎠ . (4.3)

Proof. The bundle E is naturally a direct sum of 2l vector bundles

E ∼=
l⊕

i=1

Ai⊕
l⊕

i=1

Ci,

where the bundles Ai and Ci correspond to the choice of Ai and Ci in Ỹ . The bundle Ai is

a line bundle with first Chern class ai+w.

On Pq−1, write L for the tautological line bundle, and T for the trivial vector bundle of

rank q. Then, restricted to the appropriate Pq−1×Pq−1, we have

Ci ∼= p∗1(T /L)∗⊗p∗2L.

The total Chern class of (T /L)∗ is given by

c((T /L)∗) =
∞∑
j=1

aji .

The computation of e(Ci) proceeds via (4.4), whose proof follows easily using the splitting

principle:

Let V be a rank n vector bundle, and let L be a line bundle. Then

e(V ⊗L) =

n∑
i=0

ci(V )c1(L)
n−i. (4.4)

Using this, we obtain

e(Ci) =
q−1∑
j=0

ajiz
q−1−j .

Together with the formula for the Euler class (=first Chern class) of Ai, this implies the

formula in the lemma.
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Motivated by Proposition 3.1, we consider the pairing

〈·, ·〉 :H2(q−l)(Z)×H2(q−2)(Z)−→H2(l+2)(q−1)(Z)

given by

〈σ,τ〉= σ∪ τ ∪e(E).

The ring H∗(Z) has a basis consisting of monomials in the variables w,ai, z, where the

exponent of each variable is less than q. When computing the intersection pairing 〈·, ·〉
between two of these monomials in H∗(Z), one notices that it only depends on the power

of w in their product. If this power is j, then the pairing takes the value
(

l
q−1−j

)
, for this is

the number of ways of choosing terms in the product formula (4.3) for e(E) which produce

the right power of w, and once these choices are made, the rest are uniquely determined.

Deleting duplicate rows that are irrelevant for computing the rank, the matrix for our

intersection form with respect to the monomial basis becomes

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

l
(
l
2

) (
l
3

)
· · · l 1

1 l
(
l
2

) (
l
3

)
· · · l 1

1 l
(
l
2

) . . .
. . .

. . .
. . .

. . . l 1

1 l
(
l
2

)
· · · l 1

1 l
(
l
2

)
· · · l

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.5)

This matrix has q− 1 columns, corresponding to the powers of w between 0 and q− 2

inclusive that appear in H2(q−2)(Z) and q− l+1 rows, corresponding to the powers of w

between 0 and q− l inclusive that appear in H2(q−l)(Z).

§5. Reduction to the slice

This section is likely to be of independent interest. We require the following result about

direct summands of a pushforward sheaf. The same proof works when k is a local ring, but

for simplicity we assume that k is a field.

Theorem 5.1. Let X be an irreducible complex analytic space. Let k be a field. Then

there exists a unique indecomposable object E(X;k) ∈ Db
c(X;k) which restricts to the

constant sheaf shifted by dimX on an open subset of X, and is a direct summand of

σ∗kY [dimX] for any proper resolution of singularities σ : Y →X.

Proof. Let σ : Y →X and π :Z →X be two proper resolutions of singularities. Consider

Hom(σ∗kY ,π∗kZ)
∼=HBM

2d (Y ×XZ), whereHBM
∗ stands for Borel–Moore homology and d=

dimC(X). Let U be a connected open dense subset of X such that σ and π are isomorphisms

over U. Write j : U →X for the inclusion. As σ and π are isomorphisms over U, there is

a canonical inclusion of U into Y ×X Z. The closure U of U in Y ×X Z is an irreducible

component of Y ×X Z, and hence defines a fundamental class2 α := [U ] ∈HBM
2d (Y ×X Z)∼=

Hom(σ∗kY ,π∗kZ). This class satisfies j
∗α= id ∈Hom(kU ,kU ).

Similarly, we define β ∈Hom(π∗kZ ,σ∗kY ) with j∗β = id ∈Hom(kU ,kU ).

2 The definition of fundamental class is the same as in the algebraic case [CG, §2.6.12], using the fact that
the singular locus is of real codimension at least 2.
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6 PETER J. MCNAMARA

The category Db
c(X;k) is Krull–Schmidt. Therefore, since kU is indecomposable and

j∗(σ∗kY )
∼= kU , we can write σ∗kY

∼= A⊕C where A is indecomposable and j∗C = 0.

Similarly, we have π∗kZ
∼= B⊕D with B indecomposable and j∗D = 0. Using these direct

sum decompositions, consider the components of α and β. They induce morphisms which

by abuse of notation we call α :A→B and β :B →A.

Consider βα ∈ End(A). Under the ring homomorphism j∗ : End(A)→ End(kU )
∼= k, we

have j∗(βα) = 1. As A is indecomposable, End(A) is local. This implies that βα is a unit

in End(A). Similarly, αβ is a unit in End(B). We thus have two indecomposable objects A

and B, with morphisms between them α and β, whose compositions in each direction are

isomorphisms. This is enough to conclude A∼=B. This completes the proof, with E(X;k) =

A[dimX]. Note that E(X;k) always exists because a resolution of singularities always

exists.

Remark 5.2. For a Schubert variety Xy, the sheaf E(Xy;Fp) is the same as the parity

sheaf Ey, by considering a Bott–Samelson resolution of Xy [JMW, Prop. 4.11].

Now, we show how to use this result to restrict our attention to slices. Let X be an

irreducible complex analytic space. Let Z ⊂X be a closed analytic subset. Let Y be a slice

to Z in X. This implies that there exists an open subset U ⊂X and smooth V such that

U ∼= Y ×V and under this isomorphism the copy of Y in X gets sent to Y ×{v} for some

v ∈ V .

Let Y ′ → Y be a resolution of Y. Then Y ′ × V → U is a resolution of U. The sheaf

E(Y ;k)�kV [dimV ] on U is an indecomposable direct summand of the pushforward of the

shifted constant sheaf under this resolution which is generically constant, and hence by the

above theorem is isomorphic to E(U ;k).

Let j :U−→X denote the inclusion. Pulling back a resolution of X to U via j shows that

E(U ;k) is a direct summand of j∗E(X;k).

Therefore, E(Y ;k)�kV [dimV ] is a direct summand of j∗E(X;k). So, if we can show that

E(Y ;k) �∼= pτ≤l−3(E(Y ;k)), then that will imply that E(X;k) �∼= pτ≤l−3(E(X;k)). This is the

method by which we can restrict our attention to the slice.

§6. Fin

Lemma 6.1. The matrix M from (4.5) has rank q− l+1 over Q and q− l over Fp.

Proof. Identify the rows of M with the sequence of polynomials

(1+x)l−1

x(1+x)l

x2(1+x)l

...

xq−l−1(1+x)l

xq−l(1+x)l−xq.

If there is a linear dependence, then A+Bxq is divisible by (1+x)l for some constants A

and B. Over Q, this is impossible since A+Bxq has distinct roots over C. This computes

the rank over Q.
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Over Fp, the polynomial (1+x)l divides xq+1, which easily leads to a linear dependence

among the rows of M. It is obvious that the rank is at least q− l, completing the proof in

this case.

Recall the resolution π : Ỹ −→Y defined in §4. Let Z = Ỹ ×Y Ỹ .

Lemma 6.2. The Borel–Moore homology groups HBM
i (Z;Z) are free over Z and vanish

when i is odd.

Proof. The variety Z is

Z = {(A1, . . . ,Al,B1, . . . ,Bl,h,h
′, �1, . . . , �l, �

′
1 . . . �

′
l, �, �

′) |
Ai,Bi ∈Hom(Cq,Cq); h,h′ ∈Gr(q−1, q); �1, . . . , �l, �

′
1 . . . �

′
l, �, �

′ ∈Gr(1, q);

h,h′ ⊂ ker(Ai); im(Ai)⊂ �i, �
′
i ⊂ kerBi; im(Bi)⊂ �,�′}.

We now construct a stratification of Z. For each I ⊂ {1,2, . . . , l} � {s, t}, we define a

stratum ZI consisting of tuples (A1, . . . ,Al,B1, . . . ,Bl,h,h
′, �1, . . . , �l, �

′
1 . . . �

′
l, �, �

′)∈Z subject

to the conditions �i = �′i if i ∈ I, h= h′ if s ∈ I, �= �′ if t ∈ I, �i �= �′i if i /∈ I, h �= h′ if s /∈ I,

and � �= �′ if t /∈ I.

Each stratum ZI is a vector bundle over a product of spaces that are either Pq−1 or

(Pq−1 × Pq−1) \Δ, where Δ is the diagonal. Therefore, HBM
i (ZI ;Z) is free over Z and

vanishes when i is odd. Since the ZI stratify Z, the same is true for the Borel–Moore

homology of Z.

Reimagine Y as a subspace of the space of representations of the following quiver Q,

where there are l vertices in the central column.

The representations have dimension vector:

q q

q
q

q

The group G = GLq(C)
l+2 acts on Y in a manner such that [Y/G] is a substack of the

moduli stack of representations of Q.

Lemma 6.3. The map π : Ỹ −→ Y defined in (4.2) is a proper even3 G-equivariant

resolution of singularities, stratified with respect to a stratification Y = �Yλ such that

H∗
G(Yλ;L) vanishes in odd degrees for all G-equivariant local systems L on Yλ.

3 The definition of an even morphism is given in [JMW, Def. 2.33]. A sufficient condition that implies
evenness is that each fiber is equivariantly simply connected with no odd cohomology.
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8 PETER J. MCNAMARA

Remark 6.4. This lemma allows us to have access to the parity sheaf machinery from

[JMW] for G-equivariant sheaves on Y.

Proof. Let I and J be two subsets of {1,2, . . . , l}. Let
YI,J = {(A1, . . . ,Al,B1, . . . ,Bl) ∈ Y |Ai = 0 ⇐⇒ i ∈ I, Bj = 0 ⇐⇒ j ∈ J}. (6.1)

This is the stratification of Y intoG-orbits. We show that this gives the desired stratification

of Y. In the moduli interpretation of Y, inside each G-orbit, there is a unique representation

MIJ of Q, up to isomorphism.

The module MIJ decomposes as a direct sum MIJ = XI ⊕ YJ ⊕Z, where XI is an

indecomposable with dimension 1 at the leftmost vertex, YJ is an indecomposable with

dimension 1 at the rightmost vertex, and Z is a direct sum of simple modules, except

when I = {1,2, . . . , l} or J = {1,2, . . . , l}, when XI or YJ , respectively, do not appear in the

decomposition.

Put an order on these indecomposables where the simple at the leftmost vertex comes

earliest in the order, then XI , then the simples at the middle vertices, then YJ , then

the simple at the rightmost vertex. With this ordering, we can decompose MIJ into

indecomposables, MIJ =⊕m
i=1M

⊕ni
i where HomQ(Mi,Mj) = 0 if i < j.

Therefore, EndQ(MIJ)
× surjects onto

∏
iMatni(EndQ(Mi))

× with unipotent kernel.

Each EndQ(Mi) is isomorphic to C.

The quotient stack [YIJ/G] is isomorphic to [pt/EndQ(MIJ)
×]. This shows that

H∗
G(YIJ ;L) is a free k -module and vanishes in odd degrees since these properties hold

for the stack [pt/GLn(C)].

It is clear that π is a proper G-equivariant resolution of singularities, and thus is stratified

for the stratification into G-orbits. It is even because every fiber of π is a product of

projective spaces.

We now come to the proof of Theorem 2.1.

Proof. Let n = (q− 1)(l+2)+ ql be the common dimension of Y and Ỹ . Decompose

π∗Zp[n] into indecomposables

π∗Zp[n]
∼=

⊕
t

Ent
t .

The endomorphism ring of π∗Zp[n] is End(π∗Zp[n])
∼= HBM

2n (Z;Zp), which governs the

decomposition into irreducibles.

The spectral sequence with Ep,q
2 = Hp(BG;HBM

−q (Z)) converges to the G-equivariant

Borel–Moore homology HG
∗ (Z). This spectral sequence is concentrated in even degrees

by Lemma 6.2 and hence degenerates at the E2 page. Therefore, HG
2n(Z) surjects onto

HBM
2n (Z). As a consequence, each Et is the deequivariantization of an indecomposable G-

equivariant sheaf, which is an equivariant parity sheaf by Lemma 6.3.

Again by Lemma 6.2, the convolution algebra HBM
2n (Z;Zp) surjects onto HBM

2n (Z;Fp).

Therefore, each Et⊗Fp is also indecomposable.

Let i be the inclusion of {0} in Y. By Proposition 3.2 and Lemma 6.1, the multiplicity

of i∗k[l−2] in π∗k[n] is q− l+1 when k =Qp and q− l when k = Fp. Therefore, there exists

a unique t such that

m(i∗Qp
[l−2],Et⊗Qp) = 1 (6.2)

and Et is not a skyscraper sheaf at 0.
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NON-PERVERSE PARITY SHEAVES ON THE FLAG VARIETY 9

This setup is symmetric under the action of the symmetric group Sl which permutes

the indices {1,2, . . . , l} of elements of Y. So, by uniqueness of t, Et is Sl-invariant. From

the classification of equivariant parity sheaves in [JMW], Et is up to homological shift the

parity extension of a constant sheaf on an Sl-invariant G-orbit on Y.

There are only two Sl-invariant intermediate G-orbits in Y. They are Y{1,2,...,l},∅ and

Y∅,{1,2,...,l} in the notation of (6.1).

Let W be the closure of Y{1,2,...,l},∅. Let us assume that Et has support W. Define

W̃ = {(�,B1,B2, . . . ,Bl) | � ∈Gr(1, q),Bi ∈Hom(Cq, �)}.

Write σ for the map from W̃ toW . This is a G-equivariant even resolution of singularities.

Therefore, in the G-equivariant derived category, Et must appear as a direct summand of

σ∗Zp (up to homological shift) as it is the unique indecomposable G-equivariant parity

sheaf extending the constant sheaf and thus the same statement holds when we forget the

equivariant structure.

The space W̃ is the total space of a vector bundle F ∼= O(1)⊕lq over Pq−1, where the

zero section is the fiber over 0 ∈ Y . The Euler class e(F) is a power of the Chern class

c1(O(1)). In computing the intersection form (3.1) for the resolution σ, once irrelevant rows

are deleted, one is left with the antidiagonal matrix J, which has the same rank over Q

and Fp.

Since the rank does not change, we deduce that m(i∗Qp
[l−2],Et⊗Qp) = 0, contradicting

(6.2). Therefore, Et cannot have support equal to W.

Similarly, Et cannot have support equal to the closure of the other Sl-equivariant

intermediate stratum Y∅,{1,2,...,l}.

Therefore, Et is an extension of the shifted constant sheaf on the open stratum in Y. As

the stalk of Et at 0 is free over Zp and satisfies a parity vanishing property, it is nonzero

in degree l−2 using (6.2). Therefore, Et⊗Fp has nonzero stalk cohomology at 0 in degree

l−2. Thus,

Et⊗Fp �∼= pτ≤l−3(Et⊗Fp).

Since Et ⊗Fp is an indecomposable extension of the shifted constant sheaf on the open

stratum on Y and occurs as a summand of π∗Fp[n], by Theorem 5.1, Et⊗Fp
∼= E(Y ;Fp). By

the reduction to the slice argument made in the previous section, this completes the proof

of Theorem 2.1.
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