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QUASILINEAR WAVE EQUATIONS AND RELATED
NONLINEAR EVOLUTION EQUATIONS*

YOSHIO YAMADA

Introduction

In this paper we consider the relations between quasilinear wave equa-
tions

(1) u, — “Z=:1 a,(grad wu,; + cu, = f,

and related third-order differential equations

(2) u,, — Adu, — ianl a.(grad wu,, + cu, =f,
»J=

(A is a positive parameter) with the same initial conditions

u(x, 0) = uy(x) ,
(3) { (%, 0) = u(x)
u(x, 0) = vy(x) ,
where x = (xl’ Xoy = °y xn)a t= 0, u= u(x, t), U, = au/aty Uy = azu/atz, u;, =
oufox,, u;, = dufoxdx,, grad u = (u;, Uy, - - -, u,) and du = > 7., u;,. In equa-
tions (1) and (2), ¢ is a real number and a;, = a,; (i,j = 1,2, ---,n) are
real smooth functions satisfying
2 laij(ﬁ)fzfj = a(o)|&f, 1§ = Zi&f )
i,j= i=
for every ne R, |3] < p and &€ R", a)p) being a positive non-increasing
function.

Equations of type (2) were first proposed by Greenberg, MacCamy and
Mizel [7] in the case n = 1. They have dealt with equations of the form
(4) Uy — o(uz)uxz - 'zua:tx = 0’ A > 0 ’
to approach quasilinear wave equations for a nonlinear string model
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(5) Uy — a(ux)uxw =0 ’

where ¢ is a positive smooth function. Their idea is based on the viscosity
method; —2u,,, in (4) may be considered as a viscosity term and the limit-
ing procedure 1] 0 will enable to find a solution of (4). However, they
have not obtained any relations between (4) and (5), although they have
established the technics to treat equation (4).

In Chapter I, we give a systematic study of equations (2) with initial
conditions (8). Mixed problems for equations of the form (2) have been
considered by several authors, Cleménts [1], Ebihara [4], [5], Tsutsumi [19],
Yamada [20] and Kozhanov, Lar’kin and Janenko [25]. However, their
technics are based on the Galerkin’s method, which is not applicable to
our initial value problems. To overcome this difficulty, it is necessary to
seek a new approach. Our idea is to reduce the original problems to
the initial value problems for abstract evolution equations in a suitable
Hilbert space, so that general theory for evolution equations may be applied.

We introduce the usual Sobolev space H™ of order m, where m is an
integer such that m > [n/2] + 1. By defining a negative self-adjoint oper-
ator A by

Au= (U4 - Du for ue D(A) = H™**

(D(A) = domain of A), initial value problem (2), (3) can be written as

(6) {ut,—~2Au,—B(u)+(c——2)ut=f, t=0,
u0) = u,,  uf0) =10,
where
B@) = 3 a.(grad wu,, .
Ty j=
Now it is very convenient to introduce two unknown functions uv(f)
and w(t) by

u(t) = u,(d) and w(t) = Au(®) .
Then (6) is rewritten in the following form

7 {Uz(t) =AU@®) + BU@) + F@®, t=0,

U©) = U, = (v, Awo) ,

where
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U=(v>, A=(2A 0>’ B(U)=(B(A"‘w)+(1—c)v>, F=(f>.
w A 0 0 0

It is possible to show that 4 generates an analytic semi-group of
bounded linear operators, T(f), t =0, on H™ X H™ and that B(U) is a
locally bounded and Lipshitz continuous operator in H™ X H™. Therefore,
the differential equation in (7) may be regarded as a semilinear evolution
equation of parabolic type. Moreover, initial value problem (7) becomes
equivalent to the following integral equation

(8) U) = TOU, + j T(t — s)B(U(s)) + F(s))ds .

It is not so difficult to solve (8); for example, it suffices to make use of
the fixed point theorem to obtain the local existence of a solution for (8).
Hence, returning to the original problem, we can get the local existence
result of solutions to (2). To extend a local solution u to an appropriate
interval, it is sufficient to derive a priori estimates for u by the usual
energy method. In general, the existence interval depends on u, v, and
f.

Especially, to extend a local solution u to the whole interval [0, ),
we have to get some a priori bounds for u on [0, ). Roughly speaking,
this is possible if ¢ is positive and the data (u,, v,, f) are sufficiently small
in a sense. Thus, we can get sufficient conditions under which initial
value problem (2), (3) has a global solution u. Moreover, as is expected
from the presence of the dissipative term cu, (c > 0), the global solution
u does decay to zero as t— oo when f=0. The weighted energy method
yields precise decay estimates of such u.

In Chapter II we shall establish the existence results for initial value
problems (1), (3) by making use of the existence results for initial value
problems (2), (3). One of the typical examples of equations (1) is the fol-
lowing

z, 9 ( u; )
Uy — D) — +cu,=f,
" ; ax; \ 4/1 + |grad uft =1
which describes the nonlinear vibration of a string for n = 1 and that of

a membrane for n = 2.
Though there are a number of researches on the quasilinear wave
equations (see e.g. Dionne [3] and Sobolev [18]), our approach based on
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the viscosity method seems very new.

We now explain our idea. Let u* be a solution of initial value problem
(2), (8) (we put the superscript 1 to specify the dependence of 2). It is
natural to expect that »* will converge (in an appropriate sense) to a func-
tion as 2] 0 and that the limit function «’ will become a solution of initial
value problem (1), (3).

It is true that the local existence result in Chapter I assures the ex-
istence of a local solution u! of (2) and (3). But this is unsatisfactory,
because the local existence interval [0,7] with some z > 0 also depends
on 1 and z = (1) may tend to zero as 1} 0. Therefore, one needs to carry
out more delicate calculations than in Chapter I. By employing the energy
method, it is possible to show the existence of an interval [0, 7}], inde-
pendent of 2, on which any solution of (2) and (3) has a priori bounds
independent of 4. This assures the continuation of a local solution #* of
(2) and (3) to [0, T,].

It is in the standard way to prove that there exists a function u’(f)
= lim, , 4’(f) for 0 <t < T} (in a certain sense) and that the limit function
u° is a solution of (1) and (3) on [0, T;]. Our local existence result for
(1), (8) obtained in this way is not new, but the approach via the viscosity
method seems simpler than the existing one due to Dionne [3].

When c¢ is positive, we can also get the global existence result as in
the case of initial value problem (2), (3). The smallness condition on the
data (u,, vy, f) yields some a priori estimates for the solution to (1) and (3),
which enables the extension of the local existence interval to [0, ). In
this sense, the dissipative term cu, plays a role to stabilize solutions to
(1). Furthermore, it has a damping effect on solutions. In fact, if f=
0, one can derive the rate of the decay to zero for solutions to (1) as
t — oo,

In this paper our investigation is restricted to equations of the forms
(1) and (2). But the methods presented here can be applied essentially in
the same way to equations of more general forms

u, — 2du, — 3 ay(x,t, u, grad u, uu,; + b(x, t,u,gradu, u,) = f,
iy7=1
and
utt - Z aij(x, t’ u’ grad u’ ut)uij + b(x) t’ u’ grad u: ut) = f .
2,5=1
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Notation

We summarize some notation which will be used throughout this
paper.

Let x = (x, %3, - -+, x,) € R* and dx = dx,dx, --- dx,. Functions ap-
pearing in the present paper are all real (without their Fourier trans-
forms). As usual, denote by L? (1 < p < ) the space of all measurable
functions on R" such that

lulle = ([ 1u@pPds)” it 1<p< oo,

|||, = ess sup |u(x)| if p=oo.
XERM
If p =2, I’ is a Hilbert space with the inner product

(u,v) = fm u(x)v(x)dx .

For simplicity, we write |- || in stead of ||« ||.
Let k2 be an integer > 1. The Sobolev space H* of order 2 on R" is
defined by

H* = {u; Diue L’ for any a such that |a| < %},

where
aa1+ eectan

py=
oxs - .. oxar

a=(0(h-.-’an), [“|=Gf1+ +an’

and the derivatives are taken in the sense of distributions. We provide
H* with the inner product

(u’ v)k = Z (D;uy D;U)
lelSK
and the norm
luli = (u, Wi .

An equivalent definition of H* is given with the use of the Fourier trans-
form. If uwe L?, the Fourier transform # in L? is defined by
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a@) = @ [ eeruwds, g3,

where the integral convergence is taken in the sense of L>. Then
H* = {u; (L + [¢e)ae LY.

Denote by C; the space of all infinitely differentiable functions with
compact support. It is well known that C; is dense in H* for any k.

Let I be any subinterval of [0, c0) and let X be any Banach space.
We denote by C(I; X) (resp. C,(I; X)) the space of all functions u such
that u is strongly (resp. weakly) continuous from I to X. C/(I; X) (resp.
Ci(I ; X)) denotes the space of all functions ue C(I; X) (resp. C,(I; X))
such that u is j-times strongly (resp. weakly) continuously differentiable
from I to X. We provide C/(I; X) with the uniform (strong) convergence
topology on I

Chapter I. Nonlinear Evolution Equations with Strong
Dissipative Terms

§1. Problems and results

In this paper we consider initial value problems for the following
differential equations

(1.1) u,, — Adu, — i} a,(grad Wu,, + cu,=f, xeR*, t>0,
2 J=

(1.2) w(x, 0) = uy(x), xe R",
(13) ut(x’ 0) = vo(x), xe Rn ’

where 2 is a positive constant and c is a real number. We sometimes call
the linear term —24u, a “strong dissipative term”. (This terminology is
due to Ebihara [4]).

An equation of type (1.1) was first proposed by Greenberg, MacCamy
and Mizel [7] for n = 1. They considered equations of the form

Uy — G(ua:)uzz - Zuxt.t - 07 A > 0 s
to approach quasilinear wave equations of the form

Uy — U(ua:)uzx =0 ’
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where ¢ is a positive smooth function (see also the works of MacCamy and
Mizel [11] and Kozhanov, Lar’kin and Janenko [25]). For general n = 2,
equations of type (1.1) have been treated by Cleménts [1], Ebihara [4], [5],
Tsutsumi [19] and Yamada [20]. However, problems treated by them are
mixed ones in a bounded domain with the Dirichlet boundary condition.
The initial value problems (1.1)-(1.3) have not been solved yet.

Throughout this paper we assume the following. Put N = [n/2] + 1
([-] denotes the Gaussian bracket) and let m be a positive integer satis-
fying m > N.

(A.1) a,(p) belongs to the class C™*'(R") for every i, j =1, 2, -+, n.

(A.2) a,p) = a;(y) for every peR* and i, j=1,2, -+, n.

(A.3) There exists a positive non-increasing function @, satisfying

25 s = welel, 16T = 24t
for every ne R, || < p and &€ R".
Now we begin with the local existence theorem for (1.1)-(1.3).

TueoreM I (local existence). Let u,€ H™*?, v,e H™ and fe C'([0, o);
H™). Then there exists a positive constant t such that the initial value
problem (1.1)-(1.3) has a unique solution u on [0, 7] satisfying

ue C([0, z]; H™*) N C([0, <]; H™) N C'((0, z]; H™**) N C*(0, <]; H™) .
In particular, u also satisfies
ue C([0,<]; H™")  if v,e H™*',
and
ue C'([0,<]; H™?) N C([0,<]; H™)  if voe H™**.
As to the global existence of solutions to (1.1)~(1.3), we have

TrHeOREM II (global existence). Assume that c is positive. Let uy€
H™** vye H**' and fe C'([0, o0); H™) N C([0, oo); H™*'). Then there exists
a positive number § (which depends on 2, ¢, m, n and Dia; (a| £ m + 1))
such that, if the data (u, v,, f) satisfy

max {[ oy [0l [ £ idls) < 0,

then the initial value problem (1.1)~(1.8) has a unique solution u on [0, o)
satisfying
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ue C([0, c0); H™**)N C'([0, o0); H™*)N C'((0, 00); H™*)N C*((0, o0); H™) .

In addition, u satisfies

(1.4) sup @ llnse < o0,

(L5) up | UO)ln 1 < 00,

@6 [T i) nds < oo,
@.7) [ Ngrad u(@)fuds < oo .

Theorem II assures the existence of a bounded global solution u of
(1.1)-(1.3). So we may investigate the asymptotic property of such a global
solution u. For simplicity, we set f = 0.

THEOREM III (asymptotic decay). Assume ¢ >0 and f=0. Let u be
the solution of (1.1)~(1.3) in Theorem II. Then u decays as follows.

(1.8) llgrad u(@®) 7 = OCF") ast—>o0.
(1.9) &) lnsr = OCE™) as t—> oo .
(1.10) | du(@®)|z = O@F?) as t—> oo .
(1.11) llgrad u,(®)|2 = O@F™*) as t—> oo .

§2. Some Lemmas

In this section we shall prepare some lemmas which will be used later.

Lemma 2.1. Let F, G and H be non-negative continuous functions on
[0, T]. If

F@y < j "GOF@d: + H@), 0<t<T,
0
then
1 t
Flt) < _j G()dr + sup H(s)'”, 0<t<T.
2 Jo 0=s<t

Proof. Put

X(s) = fo G()F(J)dr and H.(f) = sup H(s) .

0ssst
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It follows from the assumption that
d 1/2 1
d—(X(S) + H.0)'"* < -2—G(S), 0=s=<t.
s

Integrating the above inequality over [0, f], we obtain the conclusion.

[q.e.d.]
For the Sobolev space H*, the following result is well known (see e.g.

Mizohata [14] or Sobolev [18]).

LEMMA 2.2 (Sobolev’s lemma). Let ue H¥(k = 1).
(i) If k= N=[n/2] + 1, then, for |a] < k — N, D:u belongs to # (the
space of all bounded continuous functions on R"). In addition,

D5l < Cllull.  for la| < k— N,

where C is a positive constant depending on «, k and n.
(ii) If k< N — 1, then u belongs to L* with
1 [1 k1

el - zl-©

b
In addition,
lull. < Cllulls ,
where C is a positive constant depending on p, k and n.
Moreover, we have the following result based on Sobolev’s lemma.

LEmMA 23. (i) Lete m=N (=[n/2l +1) and let v’ (j=1,2,---,1)
belong to H™. If multi-indices v’ (j =1,2, - - -, r) satisfy >3}, |v'| < m, then

Diu'Div? - - Diure IF
In addition,

| D2w D2t - - - Dywr| < C z 7.

where C is a positive constant depending on n, v', 1%, «- -, 0",

(ii) Let m=N+1 and let v'eH™, v'eH™?' (j=2,8,---,r). If
multi-indices v (j=1,2, ---,r) satisfy V| = V| (j =2,8, ---,r) and >37_, V]
< m, then

DuDMu - - - Diume L
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In addition,
ID2w D2 - - D || < Ol [T 1%/ llnes »
j=2

where C is a positive constant depending on m, n, V',2%, -+, .

Proof. For the proof of this lemma, see e.g. Mizohata [14, Chapt. 7].

[q.e.d.]
Now we are in a position to show the next fundamental lemma which

will be of frequent use. For convenience, put
M) = sup{|Dsa,(n|; 1 < i,j < n, la| < &, for ye R* with |7] < p}
and denote by C(a, b, - - -) various positive constants depending on @, b, - - -.

LemmA 2.4. Suppose that (A.1) holds.
(i) Let u,ve H™*:. Then

|| a:(grad wu,, — a.(grad vV)v,|l.
@ < C(m, n){(M,(grad ull)(L + [[grad w]) | 4w — v,
~ + M,.(lgrad u|l, + |grad v|l.)(1 + ||grad u[f + [ grad v|[7)
X [|4v]n llgrad (w — v)|ln} ,

for every 1 < i, j < n.
(ii) Let ue H™** and let |a| < m. Then

2.2 | Di{a.,(grad w)u,;} — a,(grad w)Diu,,l,
< Cla, n)M,, ..(lgrad z|l)(1 + ||grad w|i¥) | du|¥ e »

for 1<, j < n, where N(a) = max {|a|, N}.
(iii) Let u,ve H™** and let || < m. Then

HD;{au(grad u)vu} - au(grad u)D3vy,||
(2.3) < C(a, M, (|| grad ull..)(1 + [ grad |5
X | duflyw llgrad vy »

for 1 <i,j < n, where N(&) = max {|a|, N}.

Proof. (i) Letu, ve H™* Decomposing a,(grad wu,; — a,(grad v)v,,
as

a;(grad w)(u,; —vyy) + {a.(grad w) — a,(grad v)}v,;=1(u, v) + Ly, v),

we shall estimate each I(u,v), i=1, 2
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By Leibnitz’ formula,

D:l(u,v) = 3, (C‘; )Dﬁ{a“(grad WD (uy; — vyy) ,

BZa

where a = (a, @y, -+, &), B= (Br, fos * =5 Bu) »

<a>= al - a,! ,
ﬁ (al—'lgl)!”'(an_ﬁ'n)!ﬁl!"'.Bn!

and B < @ means 8, < «, for every 1 < j < n. From the chain rule of a
composite function, it becomes that D:{a,,(grad u)} is expressed as a linear
combination of functions of the form

(Dyay,)(grad u) Iqll Dfru,, Uy, = oulox,, ,
i1

where [r| < 8], ¢ < 18| and |g| = Z3.|g| Since ue H™* (m 2 N) and
e — Bl + 22%..|8%| = |a|, it is possible to show with the use of Lemma 2.3
that

@24 ||D:L(u, v)|| £ Cla, )M, (|| grad u|.)(1 + |igrad u|5) 4@ — V)lyw »

with M) = max {|a|, N}, where we have used the following inequalities:
for any s = 0,

lwls < llgradufl, 1<i<n,
luyls < 1dul,, 1<ij<n.
(These inequalities can be derived from Plancherel’ theorem
| Dzl = 1§l )
Hence it follows from (2.4) with || < m that
@5)  |L(g, Vlln = Clm, )M,,(|grad ull.)(1 + ||grad vl |4z — V)|, .
To estimate I(u, v), we note
a;(grad u) — a,,(grad v)

n 1

=3[ 9% (g grad u + (1 — 6) grad v)do(u, — v,) .
k=1Jo aﬂk

Therefore, for |a| < m,
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DiI(u, v) = i (g)Dﬁ{a“(grad u) — a,(grad v)}D; v,

=ﬁ§kz; (g)(f ) L D;{%(e grad u + (1 — 6) grad v)}do

X D.ﬁ_r(uk - vk)D.:_ﬁvij .
Since D{da,/on.(0 grad u + (1 — 6) grad v)} is expressed as a linear com-
bination of functions of the form

(Dai)0 grad u + (1 — 6) grad v) [ DZ(6ws, + (L — 0)vs,),

where 6| < |7]+ 1, ¢ < |r] and |y| = 222, |r?], it follows from Lemma 2.3
that

(2.6) | D:I(u, v)|| £ Clar, n)M,,,.(|| grad u|.. + |grad v||.) || 4v|lx
X (1 + |lgrad u|l¥ly + |Igrad v|¥ly)lgrad (¥ — V)|lyew »
with N(a) = max {|e|, N}. Since (2.6) with |a| < m yields
@n 5@l < Cm MM, (| grad u].. + |lgrad v].)] o]l
X (1 + |lgrad u| + ||grad v|7)|lgrad (@ — V)| ,

we obtain (2.1) by combining (2.5) and (2.7).
(i1) Let ue H™** and || £ m. By Leibnitz’ formula

©2.8) Di{a,(grad wu,,} — a,,(grad w)Dzu,,
=2 (% )Dtau(erad wyDzrusy
0<Fse \

where B> 0 means that g, = 1 for some k. For convenience, set D.® =
0/0x,. Then, for some 1< k < n,

n

Difa, (grad w} = D {33 24 (grad uyu,, |
o,

= f} N <‘B o 1(k))D§c {%%if—(grad u)}D;Z“"‘)"uke .

¢=1 rSp-1(k) T

Hence, as in (i), (2.8) is expressed as a linear combination of functions of
the form

g
(Dja,,)(grad u) 1—[1 D7u,, Di*® “Tuw Dy Puy,
p=

where 1 < (Bl <lal, [rl <181 =L 8| <yl + 1, g=<Iy| and |7] = 231 1r"l-
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Consequently, applying Lemma 2.3 we can deduce
| Di{a:,(grad wyu,;} — a.,(grad w)Dsu,,|;

1/2
= [Ia;sl ”D;'{D;(au(grad u)uu - a“(grad u)D;u“} Hz]
< C(a, n)M,,,..(|grad u|l.)(1 + [lgrad w4l @ »

which is the desired inequality (2.2).

(iii) Let w, ve H™** and let |¢| < m. As in the proof of (2.2), it is
seen that D:{a,,(grad w)v,;} — a,(grad w)Div,, is expressed as a linear com-
bination of functions of the form

q ;"
(Dja;)(grad u) I Dfu,, D ® 1w, Dyt Py,
2=

where 1 < gl <|a|, [y 18l 1, 16| <7l + 1, ¢ <Ir| and || = 222 ("]
Hence (2.3) follows with the use of Lemma 2.3. [g.e.d.]

§3. Abstract formulation

In this section we shall formulate the initial value problem (1.1)-(1.3)
to an abstract initial value problem in the Sobolev space H™ with m >
N (=[n/2] + 1).

We first define a closed linear operator A with dense domain D(A)
in H™ by

— m+2
3.1) {D(A) =H
Au=(U4—- u for ue D(A) .
It is easy to see that A is a negative self-adjoint operator in H™. There-
fore, A generates an analytic semi-group of bounded linear operators 7'(¢),
t >0, on H™. Moreover, it follows with the aid of Plancherel’s theorem
that

(3.2) 1 TOull. < llull,  for ue H™.
The original problem (1.1)-(1.3) can be written as

(3.3) U, — AAu, — Bw) + (c— Du, =f, t=0,
(3.9 u(0) = u, ,
(3.5) uc(o) =V,

where B(u) = > 7 ;. a,(grad u)u,;. By Lemma 2.4 (i), B(u) has the follow-
ing property:
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| Bw) — BOlln < Clm, n}{M(|grad ull)(L + [l grad u[) | 4w — )]l
36) + M,.(|grad ull. + || grad v]..)||dv],
X (1+ ||grad uliz + |grad v]) | grad (u — V)la} ,

for u, ve D(A),

where C(m, n) is a positive constant depending on m and n.
Let T > 0 be fixed. Assuming u,e€ H™*?, v, H™ and fe C'([0, T']; H™),
we intend to seek a solution u of (3.3)-(3.5) within the class

87 wueC([o, T1; H»*)N C([0, TT; HMN CY((O, TT; H™*)N C*((0, T1; H™) .

For this purpose, we shall reduce second-order equation (3.3) to a
system of first-order equations (cf. Krein [9, Chap. 3] and Yamada [21]).
Introduce two unknown functions v and w by

(3.8) v=u and w = Au.

Since A is closed and it has a bounded inverse A~* (recall definition (3.1)),
equation (3.3) is rewritten in the form

{vn(t) = 2Av(®) + B(A"'w(@®) + @ — () + f@) ,

(39) w,(t) = Av(t) .

System (3.9) may be regarded as a single equation in the product space

H™ x H™:
(3.10) Ut) = AU®) + BUQR) + F(®) ,
where
7= (3) 4= (4 ) sor= (PAWEE=), ro(]),

Thus the original initial value problem (3.3)-(3.5) is reduced to another
initial value problem for (3.10) with the initial condition

(38.11) U©0) = U, = “(v,, Au) .
Furthermore, it is easy to verify
(8.12) UeC([0, T]; H*XH™)NC'((0, T]; H* X H™) ,

if u is a solution of (8.3)-(8.5) in the class (8.7).
Conversely, let U be a solution of (3.10), (3.11) satisfying (38.12). Then
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(3.13) u(t) = uo + f w(s)ds

will be a solution of (3.3)-(3.5). In fact, we have

Proposition 3.1. Let uy,ec H™*:, vye H™ and fe C'([0, T1; H™). If u is
a function satisfying (3.3), (3.4), (3.5) and (3.7), then U = (v, w) defined by
(3.8) satisfies (3.10), (3.11) and (3.12).

Conversely, if U = (v, w) is a function satisfying (3.10), (3.11) and (3.12),
then u defined by (3.13) satisfies (3.3), (3.4), (3.5) and (3.7).

Proof. The first part is evident from the preceding consideration.

We shall prove the latter half. Let U be a function satisfying (3.10)-
(3.12) and define u by (8.13). Since ve C([0, T'l; H™) N C'((0, T1; H™), it
becomes easily that u belongs to C'([0, T']; H™) N C*(0, T'1; H™) and that
it satisfies

(3.14) u(t) = AAu(t) + B(A"'w(®)) + A — c)ut) + f(©) ,
on (0, T). Moreover, w, = Au,€ C((0, T]; H™) implies ue C((0, T]; H™**).
On the other hand, note

7 t
u(t) — ue) = j u(s)ds = I u(s)ds
for any 0 < ¢ < T. Hence, since A is closed, we have
13 13
Au(t) — Aue) = f Av(s)ds = f ws)ds = w(t) — wee)

from which, by letting ¢ | 0, it follows that

(3.15) Au(t) = w(®) on [0, T].
Since we C([0, T]; H™), (8.15) implies ue C([0, T']; H™*?). By (8.14) and
(8.15), it is easy to verify (3.3). Thus we complete the proof. [g.e.d.]

Proposition 3.1 assures the equivalence between initial value problem
(3.3)~(8.5) within class (3.7) and initial value problem (3.10), (3.11) within
class (3.12). So we may deal with (3.10), (3.11) to solve (3.3)~(3.5).

It is easily verified that 4 is a closed linear operator with dense
domain D(4) = H™** X H™ (in H™ X H™). Moreover, A also generates an
analytic semi-group of bounded linear operators T(f), t = 0, on H™ X H™;

_(T@p) 0 . .
@) = ( (TGt — TY2 I)’ I = identity operator ,
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where T'(¢) is the analytic semi-group generated by A. It is convenient
to provide the product space H™ X H™ with the following norm

Ul = 10l + @l U= ", w).
Then it follows from (3.2) that
ITAUlln = 1 TQOV|lm + 127{TQ) — I}v + win

(316) < (14 2)ivke + ol = (1 + 2)1UL

for U= (v, w)e H™ X H™. Let s, be a positive constant such that
(3.17) lul. < sollully  for ue HY ;

the existence of such s, is assured by Lemma 2.2 (i). Then, as to the
nonlinear operator B(U), we have from (3.6)

IB(U") — B(U?)|ln. = | B(A"'w") — B(A™'w)ln + |2 — c[[[v' — V¥
< C(m, n)}{M(so|| w' ;)1 + @ [[m-Dl| W' — W
(3.18) + My (sl ly + WP lD)A + @ 71 + [ w?lln-1)
X W lnl|w' — wlln-i} + 12 — c|l|v) — V*[ln ,
for U =Y, w'), i=1, 2,
where we have used Plancherel’s theorem. Hence, (3.10) can be regarded
as an abstract semilinear evolution equation of parabolic type. It is well

known that, if U is a solution of (3.10), (3.11), then it satisfies the next
integral equation

(19  UQ=TOU + [ 7¢ - 9BUG) + Felds, 0<t<T.

(see e.g. Krein [9]). Furthermore, we have

ProrosiTioN 3.2. Let u,e H™**, v,e H™ and fe C'([0,T]; H™). If U
e C([0, T1; H™ x H™) satisfies (3.19) with U, = ‘(v,, Au,), then U is a solu-
tion of (3.10), (8.11) within class (3.12).

Proof. Let UeC([0, T]; H™ X H™) satisfy integral equation (3.19).
Then the function ¢ — B(U(?)) is strongly continuous in H™ X H™ by (3.18),
so that it is bounded in H™ X H™. Hence it follows by virtue of Pazy’s
result [17, Lemma 5.1] that the function

t—> j T(t — s){B(U(s)) + F(s)}ds
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is strongly Hoélder continuous on [0, 7] with exponent 0 <6 <1 in H™ X
H™, Since T(¢) is the analytic semi-group, U is also strongly Hélder con-
tinuous on (0, '] with exponent 0 < § <1. Therefore, the local Lipschitz
continuity of U— B(U) (see (3.18)) implies that the function ¢— B(U(¥))
is, indeed, strongly Hélder continuous on (0, T]. Hence it follows from
the well known result in the theory of evolution equations of parabolic
type (see e.g. Krein [9, Chap. 1 §6]) that U is strongly continuously dif-
ferentiable on (0, T'], i.e., Ue C'((0, T]; H™ X H™), and that U satisfies
equation (3.10) on (0, T']. Since U clearly satisfies U(0) = U,, the proof
is complete. [q.e.d.]

Remark 3.1. Suppose v, € H™** in Proposition 3.2. Since U, = (v,, Au,)
e H™** X H™ = D(A), it is possible to show Ue C'([0, T]; H™ X H™). In
this case, u defined by (3.13) belongs to the class C'([0, T']; H™*®) N
C¥([0, T); H™).

Remark 8.2. The abstract formulation developed in this section has
been employed by the author [21] to treat the mixed problem for the special
case n = 1 with zero Dirichlet condition. (The existence result in [21] is
slightly better than that of Greenberg, MacCamy and Mizel [7]).

By Propositions 3.1 and 3.2, it suffices to find a strongly continuous
solution U of (3.19) in order to solve (8.3)-(3.5) in the class (3.7). In the
next section, we shall show the existence of a solution of (3.19).

§4. Proofs of existence theorems

4.1. Proof of Theorem I

We first assume u,€ H™*?, v,e H™ and fe C'([0, 0); H™). From the
results in the preceding section, we have only to consider integral equation
(3.19) in order to treat initial value problem (3.3)—(3.5).

Define a set

w1 K={U='0weCOd;H" X HY; UO) = U= (v, Au),
) and || U®)|l. < L on [0,7]},

where positive constants L and r will be determined later. Clearly, the
set K is closed in a Banach space C([0,z]; H™ X H™) equipped with the
norm

WUl = sup | U@ | -
0stSe
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For each Ue K, define a mapping U = SU by
@2 U@ =TOU, + j Tt — {BOG) + F@Ms, 0<t<c.

(By (3.18), S maps K into C([0, z]; H™ X H™)). We shall take suitable L
and ¢ so that S becomes a strictly contraction mapping from K into itself.

By virtue of (3.16), (3.17) and (3.18) (with U? = 0), it follows from (4.2)
that

10@ 1 = (1 + 2) {1000 + [ ABOO + 1FG])ds)

ISR

(4.3) < (1 2)[1 il + (O, WMAsLXL + L)L + 12 — el L)t

+ [ 1f@ds],  0=t=c.
We take a sufficiently large L such that
4 L>(1+2)1Ul,
and choose z so small that

(1 + _2.)[Il Uyllm + {C(m, n)Mu(s,L)(L + L™L +|2 — c|L}r
(4.5) 2

+ [ 1@ inds] = L
may be true. Then it is easily seen from (4.3) and (4.5) that

U@ <L for0<t<r,

which implies that S maps K into itself (recall definition (4.1)).
For each Uie K (i=1,2), set U* = SU* (i =1,2). Since

U@ - U0 = [ 1¢ - 9BO'E) - BOONds, 0=t=c,
by (4.2), it follows with the use of (3.16) and (8.18) that
100 - U@l = (1 + 2) [[1BO6) — BO)]ds

(4.6) < (1 n % ) [C(m, M, (s,L)(1 + L™)
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+ M @sIXL + 2L} + (2~ cf|
x [106) - U@lds, 0<t=e.

Therefore, making r sufficiently small (if necessary) so that

(1.+_%)[COn,nXALx%LX14—Lm)+-ALH12&LX14—2Lmﬂ3
.7 2

+u—q}<1,

is satisfied, we see from (4.6) and (4.7) that S: K — K is a strictly contrac-
tion mapping. Consequently, S has a unique fixed element Uc K. In
other words, there exists a unique solution U = (v, w) € C([0, z]; H™ X H™)
of (3.19). Therefore, Propositions 3.1 and 3.2 assure that the function z
defined by (3.13) is a unique solution of (3.3)-(3.5) in the class (3.7). Thus
the first part of Theorem I is established.

Next assume v, H™*?, By Remark 3.1, the solution u constructed
above belongs to C'([0,z]; H™*?) N C¥([0, z]; H™).

Finally, it remains to prove ue CY[0,<]; H™*') if v,e H™*'. To see
this, take a sequence {v3};., € H™** such that v} — v, in H™*' as p — oo.

We consider initial value problem (8.3)(8.5) with initial value v,
replaced by v?. Let u® be the corresponding solution. Since the existence
interval is determined by (4.4), (4.5) and (4.7), we may conclude that u?
exists on [0, z] (independent of p) and that it belongs to C!([0, z]; H™**) N
C%([0, z]; H™). Moreover, it follows from the preceding proof that there
exists a positive constant L, independent of p, such that

(4.8) [Au*@)|ln < L and [uf(@®)|. <L on [0,7]

(see (4.1) and (4.4)).
Set U?(f) = “(ur(t), Aur(t)). Since U? satisfies the integral equation
(3.19) with U, = Up = “(v?, Au?), we have

U*(t) — U') = TOXU? — U + || T¢ — HBU6) — BU))ds
for 0 <t < 7. Hence making use of (3.16), (3.18) and (4.8) we get

2
9 e+

+ M [ | Us) = U)lnds)
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with some M > 0. Application of Gronwall’s inequality to (4.9) yields

1070 — U@l < (1 + 2 ) exp {(1 + 2 )t }1UP = T,
' 0t 7,

which implies that both {u#} and {Au?*} are Cauchy sequences in C([0, z1; H™).
Consequently, by the uniqueness of solutions, u? converges to u in C([0, z];
H™* N CY0,]; H™) as p — oo.

Moreover, we shall show that u? converges to u in C'([0, z]; H™*').
Note the next identity:

@10) Deuh — ug) — ADzA(uE — up) — D{B(u") — B(u?)} + cDy(u? — uf)

b

where « is a multi-index such that |¢| < m. Taking the (L*—) inner product
of (4.10) with — Dz4(u? — uf) gives

1d
411) 2 dt
< || DY B(w?) — B} ||| Ded(up — ud)|| + |c|l| Dz grad (uf — ud)|] .

|| D grad (u? — ud)|f + 2| Ded(uf — ud)|}

Adding (4.11) for || < m and arranging the resulting expression, we obtain

1.d
412 2 d:
< M(|lu? — u?|l.s + llgrad (wp — u)|2), O0=t<r<c,

lgrad (u? — ud)| + %Ild(u%’ —ud)p,

with some M, > 0, where we have used (3.6) and (4.8). Integration of (4.12)
with respect to te [0, z] leads to

llgrad (uf(®) — w7 < llgrad (v — VI

(4.13) .
+ 2M, [ (1u(6) = WOl + l1grad (up(s) — uf(s) s .

Since u®? converges to u in C([0, z]; H™*?), application of Gronwall’s ine-
quality to (4.13) assures that uf converges to u, in C([0, z]; H™*"). Hence,
ue C([0, z}; H™*"), which completes the proof. [g.e.d.]

Remark 4.1. The existence interval [0, z] of a local solution u of (3.3)-
(3.5) depends on m, n, 3, c), Doy (ol < m 4+ 1), (uolln.e (Volln and {f@) .
See (4.4), (4.5) and (4.7).

Remark 4.2. Cleménts [1], Ebihara [4], [5] and Tsutsumi [19] has con-
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sidered the mixed problems for equations of type (1.1) with a strong dis-
gipative term in a bounded domain. Their approach is based on the
Galerkin’s method, which is not applicable to our initial value problems.

4.2. Proof of Theorem II

Assume that c is positive and that the data (u,, v,, f) belong to H™**
X H™**' X {CY([0, 0); H™) N C([0, o0); H™*')}. From Theorem I we already
know the existence of a positive constant r such that the initial value
problem (1.1)-(1.3) has a unique solution u on [0, z] satisfying

ue C([0, <]; H™**)N C([0, ], H™*)N C*((0, z]; H™**)N C*((0, <]; H™) .

We shall extend the existence interval [0, z] to [0, 0). To see this, it is
necessary and sufficient to show the existence of a solution of integral
equation (3.19) on [0, ). (Note Propositions 3.1 and 3.2.)

Let U = “(u,, Au) be a solution of (3.19) on [0,7]. We extend this U
to the interval [0,z + ¢/] (' > 0) by defining U@#) =V({t) for t <t < v+ 7,
where V is a solution of

(4.14) V) = T(t — 0)U@) + j T — $){B(V(s)) + F(s)}ds .

The existence of a solution V of (4.14) on an interval [z, z + /] with ¢/ >
0 follows from Theorem I. Hence U becomes actually a solution of (3.19)
on [0,z + 7'].

Let [0, 7,-) be the maximum interval to which U can be continued.
Suppose that z,,; < oo and supicccp,, | U@In < 0. Then we can show
in the standard way that the solution U can be continued to an interval
[0, 7mex + /] with ¢/ > 0, which contradicts to the maximality of 7., (see
e.g. Pazy [17]). Therefore, it suffices to obtain an a priori bound for || U(?)|..
to show the global existence of a solution of (38.19). To this aim, we shall
deduce some a priori bounds for || u(®)||,.. and || &.(t)|l..:, ¥ being a solution
of (1.1)-(1.3). (Recall Propositions 3.1 and 3.2.)

Let T be any fixed positive number and let uz be a solution of (1.1)-
(1.3) satisfying

ue C([0, T]; H™*)N C([0, T1; H™*)N CY((©O, T]; H™**)N C*(0, T1; H™) .
Taking the m-inner product of (1.1) with —4u, leads to the following

2. (Diuw, Dy(—Mu,) + 2 2. (Dzdu, Didu,)
la|=m

lal=m
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+ 37 3 (au(grad u)Diu,,, Didu,)

lajsm i,j=1

+ 3 i (Di{a.,(grad w)u,;} — a,(grad uw)Dzu,, Didu,)

lajsm i,
+ clalzs:m (D;ut’ z(—A)ut) +I IZSm(D;f’ D:Aut)

=L+ L+L+L+L+
=0, 0=t<T.

It is easy to see
(4.15) I = ——Ilgrad (@)l »

(4.16) I, = 2||du®)|
(4.17) I = c|lgrad w,®)|I%
(4.18) I, = — (grad f(¢), grad u(®), = — | grad f(®)|. | grad w, )| -

Since

- 3 0
L= 'Zl<ax,,

lalsm i,5,k=

{a.(grad wu,;} — a,(grad w)Diu,), Diu.,) ,

we get in view of Lemma 2.4 (ii),

@19 Lz — Cm, M, ..(|grad u(t) )L + [ grad u(®)|:
X | 4u() . lgrad w (@)l ,

with m = N = [n/2] + 1. Finally, note the following identity:

I = Iué:m ‘ 2. (ay (grad w)Diu,;, D3u,..)

1

1 Jok=
=2 f} (a.(grad w)Dsu,,, Diu;y,)

lajSm %,7,k=1
+ 2 2 (aa“ (grad u)(uy Diuw — wD3uey), Diu)
lal=m %,7,k,6=1 a Ne

which is obtained by integrating by parts. Since a,; = a,, by (A.2), I, can
be rewritten as

- %_(% 5 z"; (a:,(grad w)Dzuy, Diuyy)

Ism i,j,k=1

lalsm ©,7,k,4=1

1
2
+ 3o ““ - (grad )y Dithe — D), Dit) -

lalsm i,j,k,8=1

> i <a§;j (grad w)u, Diu., Diu;y)
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Hence, by Lemma 2.2 (i) and Plancherel’s theorem,

Lz %—d— > 3 (au(grad u(e)Diun(®), Dius)

dt lal=m i,j,k=1
— C(m, n)M,(||grad u(®)|..){lIgrad w,(2)|» || du@)|?,
+ || du@®) Iy | du®) |} || grad w,@) |}

Therefore, adding (4.15)—(4.20) and integrating the resulting expression with
respect to ¢, we can obtain

}grad w(Of, + dau(| grad u().)]| 4u(d) |
+ 2 [ 14u@lads + ¢ [ | grad us) ds
(421 < Hlgrad wl, + nMllgrad w].)| duol
+ C(m, ) || M. (lgrad u) )L + lgrad u() )
X [|[du(s) |l grad u.ls)|ds
+ [ Igrad f@nlgrad uo)lads ,

(4.20)

where we have used (A.3) and m = N.
Taking the L*-inner product of (1.1) with u, yields

_;_dinu,(t)nz + 2|lgrad Q)|

*22) = 3% (@u(grad u®)u®), u) + cluf

S IfOlMlw@] -
Since, in view of (A.2), — Z;‘,,-=1 (a,(grad w)u,;, u,) can be written
_;_.;_ti};l (a:y(grad wu,, u;) — —;— > . (aai%(gl‘ad Wy U, uj)
2
ye=

Ty 7,8= nl

+ 37 (22 (grad wuyu, v,
4,79=1 \ 9,

integration of (4.22) with respect to ¢ gives
Hlu)IF + ailgrad ud)|l.)|lgrad u(?)|?
+ 2 lgrad u@fFds + c [ ue)Irds
(4.23) < $volP + nMy(lgrad wl..)l|grad u,|?
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+ C@) [ M(lgrad u(s)|..)|| grad u(s) s
X ([us)lll4u(s) || + llgrad us)||grad w(s)|)ds
+ [ If@Neeids,

(use Lemma 2.2 (i)).
We now introduce

[ellfmsr = |l + ||grad u|f
and
||lgrad u||[7.. = |lgrad ulf + ||dulf, .

(it is easy to see that |||:|||x.: is an equivalent norm to |- |,.;). Com-
bining (4.21) and (4.23) we get

l@lEss: + ax(lgrad u@)l.)llgrad wdlf..
+ 22 llgrad w@lfads + 2 [ 111)ds
t20 < vl + nM(lgrad woll)lllgrad wl.s
+ 2 [ 1Al s

t
+ Cm, m) [ Ma.i(lrad u(@)].)1 + 1 grad u(s) )
X |||grad w(s)|||frsilll w(S)llm s -
We next take the m-inner product of (1.1) with —4u; then

> (Dzuy, DA(—A4w) + 2 >, (Didu,, Didu)

lal=m lalsm
+I ‘Zsl Z}l (a;/(grad u)Dsu,;, D;du)
algm i,j=
(4.25) + 3 35 (Dsfay(grad wuy} — a,(grad w)Diu,, Didu)
algm i,j=
+ cHZéI (Dsu,, Dy(— 4du)) + ]ZSI (Dsf, D;du)
=di+dh+Jd+J+J+J
=0.

It is easy to see the following:

(4.26) Jy = gt—(grad ut), grad u(t)), — ||grad u, ()7 ,
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A d
4.2 o, = . —||du@®|, ,
(4.27) = o | du(@)||
d
4. J =<2 d 3
(4.28) 5 a1 llgrad u(?)||

(4.29) Jy = — (grad f(?), grad u(?)), = — ||grad f())|.|lgrad u(®)|l. .

By Lemma 2.4 (ii), J, can be estimated below as L,;

(4.30) J, = — C(m, )M, .,(|grad u(?)|..)(1 + | grad u(®)|z)
X || du(®) |7 grad u()|m .

Finally, since

Jy= 3 3 (ay(grad w)Dsuy, Diuy)

lalZm 4, 57k=1
2 (aa“
la1Em i,4,%,6=1 \ 97,

+ (grad w)(u,,Diuy — ueDiuyy), Diwy) ,

it follows with the aid of Lemma 2.2 (i) and (A.3) that

@sy 9= allgrad u®l) | dud)l
— C(m, m)M(|grad u(t)|l) | 4u(t) s |4u(®)|ln | grad (@)l -

Add (4.26)-(4.31) and integrate the resulting expression; then
— llgrad (Dl | rad u®ln + 4| du(OI
+ < llgrad u(®lf + || oullgrad u(s) )| u(s)lds
(4.32) < llgrad vil | grad thln + 21 duells + [l grad s,

+ [/ lerad u@(ids + [ grad f6) Il grad u@)|nds

+ Clm, m) || M. (lgvad w(@)]. ) + llgrad u@)|2)
X |1 4u@)]f | grad u(s) lds ,

for 0t T.
By taking the L’-inner product of (1.1) with v and integrating with
respect to ¢, it is possible to derive

— Nl w@)] + 5l grad w@ + 2 |uOIF
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+ [ allgrad u(@).) | grad u(s)|Fds

(4.33) < llvolllwoll + % lerad wlf + S uol?

+ [ lw@irds + [ 17l uts)ds
+ C(m) || Mlgrad u() 1) 4us) llgrad u@|1 1) xds ,

for 0 <t < T. Hence, (4.32), together with (4.33), gives

= 2Ol 12O + Al x| + cll|wD
+ 2 [ ax(lgrad u(e)].) lgrad u(s)|.ds

(434) < 2100l il oll s + Al gracd e + el ol
+ 2 [ Nl ds + 2 [ 117Gl

+ C(m,m) [ M,..(|grad u@)]..)1 + lgrad u(s)|2)

X |||grad w(s)||[nsall|w(S)||n..ds
for 0t T
Now addition of (4.24) and (4.34) X 2¢/5 yields

SOl + (allerad u@) + 224 ) grad u) ..

2c* .
+ 2 @) s
+ 22 [ lgrad w(@llfnds + 5 [ 112OEds
+ [, {5 caligrad u(s)|.) — Clm, MM,..(Igrad u(s)].)

(*.5) X (1 + llgrad w(s) (14l s + 1)l

% |l|grad w(s)|fs..ds
< |||UO|”3n+1 + nMo(ngad uollw)lllgrad uolH?m

+ %&(lelvolllmnllluOIHm“ + 2lllgrad ol + clll oll[7s)

2 [ 1A s (12 s + 21}
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for0<t< T
Let us define

D(uO’ Vo, f)

= {lenlEs + nM( grad wo]. )l grad vl
(4.36) 00 e
+ 2 @Al + Al rad ol + elll el

+ 2 [ MOl srds

We choose a sufficiently large number p satisfying
(4'37) 5ﬁsoD(u07 vO, f)/zc < p ’
(where s, is a positive number in (3.17)) and fix it. We next restrict

”u0”m+29 ”v0”m+1 and J:' l|f(s)“m+lds so that

(4‘38) %cao(!’) > C(m’ n)MmH(p){l + (5ﬁD(u0’ v09 f)/2c)"‘}D(u0, Uo, f)

holds.
Since

| %ollm1 < 5 2 D(uy, vy, f)[2¢

and

Vol s + %c—muommﬂ < V2 DUy, v, f)

by (4.36), it follows from (4.37) and (4.38) that both
(439 lgrad u(). < o
and
2 cay(|grad u(d).)
(440) > Cm, WM, ,(|grad wd]lXL + | grad u() )
X (Ol + 26Ol )

are true near ¢ = 0.
Suppose that [0, T;), with 0 < T, £ T, is the maximum interval on
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which both (4.39) and (4.40) are true. Then, either
(4.41) lgrad w(Ty)|l. = o,
or
2 car(lgrad u(Ty).)
(4.42) = C(m, MM, grad w(T)|.)L + l|grad w(T) )

X (1T er + 2T )

If (4.41) is true, then Lemma 2.1 is applicable to (4.35) (0 <t < T))

with
FQ = 75 1wl + S lw@llf)
GO = 41Ol

and

H = [||v||fns: + nMlgrad u|..)|||grad w|[7.
2
+ —55—(2|||vo!||m+1llluolen + Alllgrad w1 + clll ol 5

so that

_ 1 . L Ac . "
o FO = o {1l + 5 @)}
< H" + [ G(s)ds < D, vs, )

on [0, T;]. In particular, (4.43) gives, with the use of (3.17) and (4.37),
llgrad u(To)l. < sollgrad u(To)lly < soll| (T} 41

é 5‘\/—2— soD(uOy Vos f)/2c < [

which contradicts (4.41).
On the other hand, let (4.42) hold. The same procedure as above
leads us to (4.43) for 0 <t < T, so that

H grad u(TO)“m = 5ﬁ D(uO, Vo, f)/zc

and
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N @dlT|lm+s + 2?clllu(To)IHmn < 2D(uy, vy, f)
Hence, in view of (4.38) and | grad u(TY)|.. < p, it follows that
—z—cao(llgrad wTy)|l) — C(m, n)M,,.(|grad u(To)||.)(1 + llgrad w(Ty)|7)
2c
X (4T + 2 AT 1)

> -§—cao(m — 2C(m, WMy (D)1 + (532 D(t, vy, £)/26)™} Dty 3, f)
>0,
which contradicts (4.42). Therefore, both (4.39) and (4.40) are true on [0, T'].
Again applying Lemma 2.1 to (4.35) (0 < ¢t < T) with
FO = { T ®llf + (a)+ 22 )l grad u)f
2c* 2 ¢ 2
+ 2 u®llfes + 22 | llgrad w o)l .ds
25 0

6c [t ) 2 ¢ ) 1/2
+ 8 [ @t ds + 2 cate) [ ligrad u(s)lhds

and G(t), H(t) as before, we get
(4.49) F@® < D(uy, v, f), 0=t<T.

Since T is an arbitrary number and D(u,, v, f) is independent of T
(see definition (4.36)), estimate (4.44) assures the existence of a unique
global solution u of (1.1)—(1.3) satisfying (1.4)-(1.7). Recalling (4.36), (4.37)
and (4.38), we obtain the conclusions of Theorem II. [q.e.d.]

Remark 4.3. Let us consider more general equations than (1.1);

(4.45) U, — AMdu, — 3, aylx, t, u, u, grad v)u,; + b(x, t, u, v, grad u)
. iy5=1
=f, xeR*, t=0.

By making some appropriate conditions on a,, and b, our method developed
in §§3 and 4 will apply to initial value problems for (4.45).

§5. Asymptotic behavior
This section is devoted to the proof of Theorem III. Let § be the
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positive constant in Theorem II. Suppose that f= 0 and the data u, and
v, satisfy

[tollmse < 6 and ||Uylln.: < 6.

By Theorem II, there exists a unique solution u of (1.1)-(1.3) satisfying

6D lgredu®). <o, t20,
and
62 Ok + U0 s + [ 1u@leds + | lerad u)i.ds

=C, tz0,

with some p, C; > 0 (see (4.39) and (4.44)).

However, it is expected that u will decay to zero as ¢ — co by virtue
of dissipative terms —24u, (A>0) and cu, (c>0). To investigate the
decay properties of u, we employ the weighted energy method and seek
a weight function ¢(f) — oo as t — oo satisfying

PO w D |Psr + llgrad u@ (B} < oo,

for large £. See also Yamada [21], [22].

Let ¢(t) € C*[0, c0) be a monotone increasing and non-negative function.
Taking the m-inner product of (1. 1) (with f = 0) with —g¢(#)du,, we obtain,
as in the derivation of (4.21),

8Oflgrad w @Ol + ao) | 4u®)2)

+ 2 [ 9@ dus)ds + 2¢ [ 40l grad uo)lads
63 < pO){Igrad vl + nMo) | dus|2)

+ [[#©lerad w@)lids + nMio) [ §©))du(s)ds

+ Cm,n,0,9) [ $@ 14U lgrad u@)lnds , 20,
where we have used (5.1) and (5.2). As in §4.2, set

el = P + lgrad ulty  for ue H™",

and

lllgrad ullls: = [lgrad ulf + [|du|,  for ue H™**,
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l*lllm.: being an equivalent norm to |- ||,.,,- It is also possible to derive
the following inequality:

SO nes + o)l grad w@Ilf )
+ 22 46l grad w@lliads + 2¢ || 46 o) nds
GH = gOlwllln + nMol|grad wlf.)
+ [ @@ li.ds + nde) [ §Olligrad uol..ds

+ Cm,m, 0,0) [ 4l grad u@(Fucllle@llneds . 20,

(cf. (4.24)).
Now we set ¢(f) = ¢ in (5.4) and make use of (5.2). Then

i@l 4 aolo)ll grad u@)||f..}

+ 22 | slllgrad w(@)lfds + 2 [/ slllu@)Ifds

(5.5)
< G, + G slligrad w@ Il uln . ds

< G+ of sllw@llhds + 52 [ slligrad ulsds

for some constants C,, C, > 0. After some rearrangements of (5.5), we get
for some C, > 0

| wDllnsr + aoo)|l| grad w7}
6) + 22 [ slllgrad u(@[fds + ¢ [ sllu@Ifds

< G, + G, sa(o)l|grad u(s)lf.ill| grad u(s)|[rds

Consequently, by Gronwall’s inequality, the right-hand side of (5.6) is bounded
by C,exp (C, [ lllgrad u@l|Eads). Since | lgrad u(s)|fyds < oo by (5.2),

it is easily seen that
(5'7) sup {tn ut(t)“m-id tngad u(t)"m+1 + j S ”ut(s)”m+2ds} < o ’

which asserts (1.8) and (1.9).

In order to show (1.10) and (1.11), we take the m-inner product of
(1.1) (f=0) with —¢'()du and integrate the resulting expression with
respect to ¢; then we can derive
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— 2§/@) ) grad 1Ol | grad u) + 29O JuO) 1,
+ (e§®) — #"@) 1 grad u®d[
+ [0 — ep @)l grad us)|ds
8) + [} o) s) — 271 4uto) ds
< 2§/0)1grad vl grad walln + 33O duaf,
+ (e — ¢"O)grad wlh, + 2 || #6)|grad ue)lads

+ Clm, m,0,0) || #(0)|14us) |3 grad uls) s -

Let k be a positive parameter. Addition of (5.3) and (5.8) X k yields

#(®)llgrad u @) + (alo)p(?) + g’ @) du®)|7
— 2k¢'(%)]| grad u,(8)|| | grad u(®)|ln

+ ke ® — ¢"@)|grad u®)lfs + 22 || 6] 4u)uds
+ [ @ep() — () — 2kg'(s)) | grad ue) ds
69 + | (@kar(e) — nM(e)§(s) — kg (@} duds) s

+ k[ ¢76) — c"©)]|grad ul(s) uds

< ¢(0)lIgrad vyl + (RMi(p)$(0) + 2kg'(0)) || duso|I7
+ 2k¢'(0) || grad vyl || grad u||. + k(cg'(0) — ¢”(0))] grad u,|l;,

+ Cm,m, 0,0) || 14u() 29(O) | grad u()
+ k¢'(s)l| grad u(s)|l.}ds .
Since (5.2) and (5.7) are true, it follows by putting ¢(f) = ¢ in (5.9) that
3t grad u, () |n + ae)?’ | du@®) |

+ 22 & du@lads + 2 || oHlgrad us)lds
(56.10) ¢
+ 2 (@kar(e) — nMo)s | du(s)|ds
< G+ G, [ 14u6) 45" rad u @l + 2ks] grad u(s)}ds

for some C, and C; > 0. (Note that C; can be taken independent of &.)
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On the other hand, from (5.2) and (5.7), we have
G, [, 1 4u@)]i lgrad u©)]nds

(5.11) < ¢ #lerad ) lnds + % [ #12u@sds

< ¢ lgrad u@lpds + C, || sl duls) ids ,
0 0
with some C, > 0 (independent of k) and

1
KC, [ slldu(s)|fllgrad u(e)]nds
kK Ch
2
EC3
2

< = [ slduo)ds + EZ5 [ sl duts) i grad u(s) s

(5.12)

< + [ slduto)lds + EZ+ sup (sl du@)[k} || lgrad u@lds
0 $20 0

< lr s|| du(s)|nds + C
= 2 0 m 8 9

with some C; > 0.
Therefore, it becomes from (5.10), (5.11) and (5.12) that

%tzngrad w @I + alo)l| du)[?,
(5.19) + 22 Sl du@nds + e[ slgrad u(o)lads

+ [ {2(kage) — ndi(o) - €, - —;—}SIIAu(S)Hi’ndS
<C+ G,

which enables us to get (1.10) and (1.11) by taking a sufficiently large
k such that

2(2kas(p) — nMy(p)) — C, — $ > 0. lq.ed]

Remark 5.1. In this section we have assumed that f = 0. However,
if f(¢) tends to zero (in an appropriate sense) as t— oo, we can apply the
same method to obtain decay estimates of solutions to (1.1).

Remark 5.2. The weighted energy method developed in this section
is found in the work of Uesaka [23], where the total energy decay of
solutions to linear wave equations with first-order dissipative terms is
treated.
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Chapter II. Quasilinear Wave Equations: An Approach
by the Viscosity Method

§1. Problems and results
In this chapter we discuss the relations between initial value problems
(1.1), ul, — Adu} ——MZZ:I a(grad v)ui, + cui=f, xeR*, t=0,
(1°2)2 ul(x, 0) = uo(x) ’ xeR",
W3, wi, 0) = vyx) xeR",

with 1 > 2= 0 (we use the superscript 2 of u* to specify the dependence
on 2) and initial value problems to quasilinear wave equations

(1.1), uy, _,-}; a,(grad wuy; + cul=f, xeR*, t=0,
(1'2)0 uo(x, 0) = uo(x) ’ xe Rn ’
(1.3), ul(x, 0) = vy(x) , xeR".

Here we put the same assumptions (A.1)-(A.3) on a;,. One of the typical
examples of (1.1), whose coefficients a,, satisfy (A.1)-(A.3) is the following:

0 ( ul ) o
w, —> i cl=f,
w 1§. dx, \ /1 + |grad u°} tou=f

which describes the nonlinear vibration of a string for n =1 and that of
a membrane for n = 2,

In Chapter I we have obtained the local and global existence results
of solutions to (1.1),~(1.3),, The strong dissipative term —Aidu}(2 > 0) in
(1.1); may be regarded as the ‘viscosity’ term (see e.g. Greenberg, MacCamy
and Mizel [7]), so that we employ the viscosity method to get the local
and global existence of solutions to (1.1)~(1.3),, In other words, by letting
210 in (1.1),, we shall show that the limiting function of #* is a solution
of (1.1),~(1.3),.

We state our results.

THEOREM 1. Let 0<2< 1 and let (uy, vy, f) € H™** X H™** X {C'([0, o0);
H™) N C([0, 0); H™*")}.

(i) There exists a positive constant T, independent of 2, such that
the initial value problem (1.1),—(1.3), has a unique solution
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w' e C([0, Tol; H™*)N CX([0, Tol; H™*)N C((O, To]; H™**)N C*(0, To]; H™) .
Furthermore, for all 0 < 2 < 1, {¢'} and {ui} are bounded in C([0, T,]; H™**)
and C([0, T\]; H™*"), respectively.

(ii) There exist
u’(t) = lim u'(¢) , strongly in H™*' and weakly in H™**
v uniformly for te [0, Ty] ,
and
ul(t) = lim ui(?) , strongly in H™ and weakly in H™*' ,
e uniformly for te[0, Ty] ,
u® being a unique solution of (1.1)~(1.3), such that
u’e C([0, T,]; H™**%), i=0,1,2.
In particular, if fe CY([0, c0); H™*'~%) with i =0,1, +--, m, then u’e
C«([0, Ty]; H™** %) with i = 0,1, ---, m + 2.

Remark 1.1. As to the strong convergence of u* (resp. u}) to u’ (resp. u)),
it is possible to show

@ |0 — w1, + llgrad (o) — WA < CA,
for0<t<T,,

where C is a positive constant independent of 2 and ¢.

Remark 1.2. Let (u,, v, f) belong to H™** X H™*' X {C'([0, o), H™) N
C([0, 0); H™*")}. It is interesting to see that u’ is better behaved than u?
at £t = 0, for u}, need not be strongly continuous in H™ at ¢ = 0.

Remark 1.3. Since m = [n/2] + 1, it follows from Sobolev’s lemma
(Lemma 2.2 in Chap. I) that #° constructed in Theorem I is twice continu-
ously differentiable in (x, £) ¢ R* X [0, T,] and, therefore, it becomes a classi-
cal solution of (1.1),~(1.3),.

THEOREM II. Let ¢ >0, 1=2>0 and (u, v, f)e H™** X H™* X
{CH([0, 00); H™) N C(0, oo0); H™)}.

(i) There exists a positive constant é,, depending on m, n, ¢ and D:a,,
(je] £ m + 1), but not A, such that, if the data (u, v, f) satisfy

max {[tolmsss Ntule s [ IF@lnsids) <,
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then the initial value problem (1.1),~(1.3), has a unique solution

ue C([0, c0); H™**) N C([0, 00); H™**) N CY((0, 0); H™*?)
N C*((0, o); H™) .

Furthermore, u* satisfies

(1.5) sup 1D lm vz + | 6l@lm i} < o0,
121>0

and

(1.6) sup I: (lgrad uX(s)|n+1 + | ui(s)nsn)ds < oo .

(ii) For any T > 0, there exist
u’(?) = lim u'(?) , strongly in H™*' and weakly in H™** ,
e uniformly for te[0, T,
and
ud(t) = lim ui(®) , strongly in H™ and weakly in H™*' ,
e uniformly for te[0, T],
u’ being a unique solution of (1.1)—(1.3), such that
u e C¥([0, 00); H™**"%) with i=0,1,2.

In addition, u° satisfies

a7 SUp ([ &'l 2 + 4D ln i} < 0,
and
18) [ lgrad w@) s + 1) Far)ds < oo

In particular, if fe C¥([0, o), H™*'"%) with i =0,1,---, m, then u’e
CY[0, o0); H™**-%) with i = 0,1, ---, m + 2.

Remark 1.4. As in Remark 1.1, we can show

19) e — w1 + lgrad (W) — WO < Ce™ 2,
for t =0,

where C, C’ are positive constants independent of 2 and ¢.
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Remark 1.5. Greenberg, MacCamy and Mizel [7] has first proposed
the equation

Uy — a(u.z)u:m: - luuz = Oa A> 0 )
to study the quasilinear wave equation
Uy — a(uz)uzx =0 ’

where ¢ is a positive smooth function. However, they have not obtained
any results about the relations between these two equations. For the
mixed problem, Davis [2] has succeeded in getting the similar results to
Theorem I in the special case n = 1 and ¢(r) = a, + a,r* with a,, a, > 0.

By Theorem II, if the data (u,, v, f) are sufficiently small, then the
initial value problem (1.1),~(1.3), has a unique global solution #’. Moreover,
by (1.7) and Sobolev’s lemma, not only #° but also its derivatives up to
the second-order are bounded in (x, §) € R* X [0, ). However, because of
the dissipative term cul(c > 0), we may expect that u’ actually decays to
zero as t— co when f(¢) tends to zero as ¢ — oo . For simplicity, we set
f=0 to investigate the asymptotic properties of solutions to (1.1),~(1.3),.

THEOREM III. Suppose that f=0 and ¢ > 0. Let u® be the solution
of (1.1),~(1.3), in Theorem II. Then u° decays like

(1.10) lgrad w'@) . = OC¢™")  as t—> o0,
(1.11) @@ s = O(™) as t—> oo,
1.12) |dw@) |2, = O?) as t—>> oo,
(1.13) llgrad w@)|2, = O@™?) ast—> oo .

We can also estimate the rate of the decay of u’ with respect to the
supremum norm.

CoroLLARY. Under the conditions of Theorem III, u° decays like

voo[OET ifnz2,
(1.14) 1w@l. = {O(t_m) Fno1

(1.15) @l , @@l = O "), 1<i<n,
(1.16) w0l , @l =0¢", 1<i,j<n,

as t — oo, where N = [n/2] + 1.
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Remark 1.6. Recently, Matsumura [12], [13] has obtained some decay
estimates of solutions to quasilinear evolution equations of type (1.1),.
Our results (Theorem III and its Corollary) are sharper than the corre-
sponding ones in [12] and [13].

§2. Proofs of existence theorems

2.1. Proof of Theorem I

Let u,e H™*?, v, H™! and fe C'([0, o0); H™) N C([0, c0); H™*'). Theo-
rem I in Chapter I shows the existence of a solution #* of (1.1),~(1.3), on
a certain interval [0, z]. However, the existence interval [0, z] depends on
2 and 7 = 7, may tend to zero as 1|0 (see (4.5) and (4.7) in Chapter I).
Therefore, in order to prove the assertions of Theorem I (i), we have to
choose an appropriate interval [0, T,] (with T, > 0 independent of 1), on
which both ||z*(®)||n.. and | 4i(®)|.., can be bounded by a positive constant
independent of i. (Recall the arguments of Chap. I, § 4.)

To this aim, we shall make use of inequality (1.4.24) (which means
(4.24) in Chapter I): we have

Nwi@llfns: + as(lgrad w'@).)|l| grad w(@)|][

(1
+ 22 llgrad wi(s)..ds
< [wlles + nM(lgrad ugl )]l grad wlss

2.1 ¢ ¢
+ 2lel [[ M@l ads + 2 [ 176l wOln.ids

+ Cm,m) | M, (lgrad @] + lljgrad w()17.)
X llgxed w(s) 1128 s

with a suitable constant C(m, n) > 0, depending on m, n, but not on A.
(In what follows, C(e, g, - - -) denotes various positive constants depending
on &, f, ---, but not on 1) In (2.1), recall

Nl = llulf + llgrad wlf;,
and

lllgrad ||[s.. = llgrad u|" + || dulf;, .

Take a sufficiently large p > 0 such that p = 4 ||grad u,||.. and suppose
that

2.2 lgrad w'@)].. < o
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is true on [0, T'], where T > 0 is an arbitrary fixed number. Put
2.3 EX#) = [||ui®)|[5s1 + aolp) ||| grad ui(@) || -
Then it follows from (2.1) that
() + 24 [l grad w(s)|[.uds
< vl + M@ lgrad wllfes + [ H1FOlads
+ C(m, n, T) + Cim, n, o) j EXs)monds,  0<t<T,

where we have used the following inequality:

ab<la+lp, 4b>o0,
q

b
with p > 1 and 1/p + 1/¢ = 1. In other words, we have

2.4) X(t) < D, + D, j: X(s)'*?ds
with
X = B@) + 2 |lgrad ui®llnds ,
D, = ([l + nM@ll1grad wollfs + [ 1 FOIlfnads + Ci m, T)

D, = Cy(m, n, p) and0=m;-1.

Since (2.4) implies
X(@® < D1 — 6D!D,t)~*
on [0,1/6D!D,), we may conclude that
(2.5) B + 22 [llgrad wi().ds < 2D,
0
holds on a certain interval [0, T*] with T* (< min {7, 2/(m + 1)D{™*V/*Dy}),

independent of 2. Let s, be the positive number in (I1.3.17) and take a
positive constant T, satisfying 4v2D;s,T, < p and T, < T*. Since

lgrad w(®)l. < llgrad ol + [ | grad ui(®)lds
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]
< £ + s, || grad ui(s)lds
0

¢
< Lt s [/ 11 s
4 0
it follows from (2.5) that
lgrad #(9)].. < % + v2D;s, Ty < % on [0, T}],

which justifies (2.2). Thus, noting the validity of (2.5) on [0, T;], we com-
plete the proof of ().

We next prove (ii). Let 1= p= 21> 0 and let v, u* be solutions of
the corresponding initial value problems. Taking the difference of the
two equations yields

(ul, — ut) — 24(u; — uf) + (p — Ddug
(2.6) - iz {au(grad w) — a.(grad w)ju,
- z.};%(grad uul; — wy) et —u) =0, 0<t<T,.
Set v = u* — u* and take the m-inner product of (2.6) with v,; then
2, (Divw, Div) — 2 33 (Didv, Div) + (e = D) 3 (Dedut, Drv)

lel=m
-2 _};1 (DY a.(grad v) — ay(grad u)}ui;, Div,)
- |Z iZI (Di{a;,(grad u?)v,;} — ay(grad u)Dsv,,;, D3v,)
alEm i,j=

— >0 2. (ay(grad u*)Divyy, Div,) + ¢ é (Dzv,, D3v,)

lajzm &,j=1

=L+L+L+L+L+ L+
0, 0<:t<T,.

f

We shall arrange each I, (1 <i < 7). It is easy to show

1 d 2
2.7 I = —Z‘E”vt(t)“m ,
2.8) L = 2| grad v()| ,
(2.9) L= — (g — D) 4u@ vl
(2.10) L = cllv®|fn = —lellv®ln -

By virtue of (I.2.7), I, can be estimated as follows;
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@1y L= — CmmM,.(grad w@l. + |grad w@)].)] 4],
X (L + lgrad (@) + | grad w@)|) | grad o)l [0D ] -

Lemma 2.4 (iii) in Chapter I gives

@19 L= — CommM,(grad w(®)|.)1 + |lgrad w(®) |z )| 4w
X [|grad v@®)ln || V.2 n -

Finally, since

(ai,(grad u*)Dgv,, D2v,,)

Y
n
3

™~
It
MM§

£y
A
s
-
~.
=
Il

+
:'l.\ﬂg
t

994 (grad wyus,Dev, D;vt)
oy

2o -

> (ai(grad u*)Dgv,, Div;)

£y
"
s
-
I\

DM 3

Moo= e

,...

(aa” (grad u*)uf,Dev,, D;v:)
771c

2
1A
3
-
s

+

Y

A

B

-

N

Ms

X

A~ w

““ (grad uut, D, D2v))

it follows that

Lz 12 5 3 (@ygrad w®)D:u®), Do)

I=m

2.13
@19 C(m, n)M(|| grad u*(?) ||..){ll grad uf(®) ||y ||grad v(®)|};,

+ 14w @) lx || grad v() | l[vd®n} »

where we have used Sobolev’s lemma.

Thus, by combining (2.7)-(2.13), it is possible to derive the following
estimate with the aid of (A.3), (2.2) and (2.5);

[048) 17 + an(e)lgrad @), + 24 . | grad vi@) ds

(2.14) <u ﬁ | dug(s)|Eds + C(m, n, o) J.z {Ilv&)m

+ a.p) | grad v(s) | }ds .

T
Since pf ollAu;‘(s)H‘;‘,,ds is bounded by some positive constant independent of
0

¢ (see (2.5)), (2.14), together with Gronwall’s inequality, implies that

(2.15) () = lim u*(¥) exists in H™*!, uniformly for te¢ [0, T,]
210
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and that

(2.16) u)(t) = lim ui(t) exists in H™, uniformly for t¢ [0, T,] .
240

Clearly, v’ e C([0, Ttl; H™*") N C([0, Ty]; H™) from (2.15) and (2.16). (Letting
210 in (2.14) and applying Gronwall’s inequality we get estimate (1.4) in
Remark 1.1.)

Furthermore, since ||u}(f)|f2.1 + ai(o)|grad v*(t)|2.,, is bounded by a
positive constant independent of 1 on [0, T,] (see (2.3) and (2.5)), it can be
shown that, as 2} 0,

@17 w(t) — u’(t) in H™**, uniformly for t¢ [0, T,] ,
and
(2.18) ul(t) — ud(t) in H™*', uniformly for te [0, T,],

where -~ means weak convergence. Hence, u’ e C,([0, To]; H™**) N CL([0, T,];
H™*') from (2.17) and (2.18).

Now from Lemma 2.4 (i) in Chapter I, {B(uw)} = {337 ,., a./(grad u)ul,}
is bounded in C([0, T,]; H™) for all 0 < 1 < 1. We shall show that

2.19) B(uX(t)) — B(u'(®)) in H™, uniformly on [0, T,] .
Since m = [n/2] + 1, it follows from (2.15) that

(2.20) ui () —> ul,(t) in L*, uniformly for ¢e¢ [0, Ty]
and
2.21) grad u*(x, t) —> grad u’(x, t) uniformly for (x, ) e R* X [0, T,]
(use Sobolev’s lemma). Hence, for any ¢ ¢ Cj,

(BEAO), Pn = T (—D"(3] a,(grad w(O)ui®), Di9)
converges to

(=133 augrad w®) @), D) = (B@O), P
uniformly for ¢te[0,T;] as 1] 0. This shows (2.19), because C; is dense
in H™.

We are ready to prove that u’ is a solution of (1.1),—(1.3),. Note that
the next identity holds for any ¢ e Cp;
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(u:(t)y ¢)m = (vo, ¢)m + X(Aul(t)’ ¢)m - '2(Au09 ¢)m
(2.22) — (W), P)m -+ c(Uo; P)m
+ [, B + ), Puds,  0=t=T.
Letting 21} 0 in (2.22) and making use of convergence properties (2.15),
(2.16), (2.17) and (2.19), we get
(ug(t)9 ¢)m = (v09 ¢)m - c(u°(t), ¢)m + c(uO) ¢)m
+ [ B@©) + f(e), $)ads
This implies that ¢ — #)(f) is weakly continuously differentiable in H™ and
that
(2.23) (@), P)m = (BE(®)) — cwi(®) + f@), Py 0=t T,

for any e Cy. Since C; is dense in H™, initial value problem (1.1)~
(1.3), has a unique solution %’ (in the sense of (2.23) for any ¢ € H™) such

that
(2.29) w e C([0, To]; H™*)N C([0, Tol; H™)N Ci([0, To); H™**-%)
with i =0, 1, 2.

Before proving that u° actually belongs to the class C*([0, T,]; H™**"?),
i=0,1, 2, it is very convenient to show the uniqueness of solutions to
(1.1)~(1.3), within the class (2.24). Let u’, v* be two solutions of (1.1)~
(1.3), satisfying (2.24). If we put w’ = v’ — v°, we have

wh, — 3 {a.,(grad u’) — a,(grad v)}us,
(2.25) 4.7=1

B iil a,(grad V)ul; + cwy = 0.

Take the m-inner product of (2.25) with w?. (This is possible because w?
belongs to C([0, T;]; H™) and each term of the left-hand side of (2.25) be-
longs to C,([0, T\]; H™).) Then, as in the derivation of (2.14), we can show

1Ol + ae)l grad w
< [ W@k + a@lgrad w(o)i)ds, 0<t< T,

with some p, C > 0, which, together with Gronwall’s inequality, implies
wd(®) |l = || grad w'(®)|. = 0, i.e., w’=0. Thus we have shown the uniqueness
of solutions to (1.1),~(1.3), within the class (2.24).
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Now we shall prove that the solution u’ constructed above actually
belongs to the class C[0, T,]; H™**"%) with i = 0,1, 2. We make use of
the following inequality whose derivation is essentially the same as that
of (I.4.24):

w®lle + 25

n
lals=m i,5,k=1

(au(grad u () Dsul (1), D::ul}k(t))

+ 35 (@ grad wO)ui®), wi®) + 24 || llgrad wi()[f..ds

n

= lvol| s +Ia§ ) 2. (ay(grad uo)D;uo,zm Dzu,, ;)

=m %,j,k=1

(2.26) +i;"=: . (aij(grad uo)uo.i, uo,j)
¢ ¢
+ 2_[0|||f(8)|||m+1|||ui(s)lllmnds + 2lcljolllu§(s)|\|fn+1ds

+ Cmy ) [[ M. (| grad wi(@)]L)1 + | grad w(s)])

X |llgrad wX(S)| 71 l[wi(s)|]m s -
Note that each integral of the right-hand side of (2.26) is bounded by Ct
with some C > 0, independent of 2 (recall (2.5)). Letting 2} 0 in (2.26), we
can conclude by convergence properties (2.15)-(2.21) and (A.3) that
[z2@1[+s +, a‘Zém 2. (ay(grad w@)Dzuiy(?), Diul (1)

1,0 k=1

+ 37 (au(grad w®)ud), ul(®)
(2.27) T

n
= |||v0|”fn+1 +' |Z§:m _Zk:= (aij(grad uo)D:uo,im Dguo,jk)

1

57

+i§1 (@i (grad upuy,q, uy,;) + Ct .

We set b,(x) = a,(grad u(x)) and provide H™** with a new inner
product defined by

n

(u, v)b,m 2 = Z (szD;uuu -D.:vjk) +“Z=:1 (bijui’ vj) + (w,v).

laT=m 1,77k=1
The associated norm is defined by

[%llo,ms2 = {(, Wo,m+a}'"*
which is equivalent to |- |l.... Recall that

u*e C([0, Tol; H™) N Cu([0, Tol; H™**)N CX([0, Tol; H™) N C([0, Tol; H™*Y) .
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Since
lim grad u’(x, {) = grad u,(x) uniformly in xe R",
ti0
by Sobolev’s lemma, it follows by letting ¢ | 0 in (2.27) that

lim sup {|l|wd®|fars + W@ 15,mea}
= 0ol + [l ol mss -

(2.28)

On the other hand, by the weak continuity of ¢ — u’(f) in H™** and ¢ —
w(t) in H™*!, we have

[].lntll]énf”uo(t)“%,m+2 ; ” uO”%,m+2

Him inf [[[wd@lFss 2 [[[00llfss -

(2.29)

Hence, (2.28) and (2.29) imply

{lziflol “uo(t)”b,m+2 = ”ut)”b,m+2

(2.30) .
Hm ([l 1 = [1[Volllm s -

Consequently, (2.30), together with the weak continuity of ¢ — u’(t) in H™**
and that of ¢ — u)(f) in H™*, yields the strong continuity of ¢ —u’() in
H™** and that of t — ul(f) in H™*! at t = 0.

To prove the same result at any ¢,¢ [0, T;,], we consider the initial
value problem to (1.1), for ¢ = ¢, with initial data {£°®%,), ui(f,)}. Then the
preceding consideration assures that there exists a unique solution ¢° in
the class (2.24) with [0, T}] replaced by [¢, To] (Ts > £,). Moreover, at ¢ =
t, V° is strongly continuous in H™** and 1! is strongly continuous in H™*!.
Hence, by the uniqueness result proved before, we see that u’ (resp. u?)
is strongly right-continuous in H™** (resp. H™*') at t = {,.

To prove the left-continuity of u’, we consider the next initial value
problem

- 3 aylgrad vl — et = f(T,— 1), O0<t<T,

1y

v(0) = u(T) e H™**
v)(0) = wi(To) e H™** .

The existence of a solution v° within the class (2.24) is already known from
the above arguments. Moreover, both ¢— v°(f) in H™** and ¢ — v)(¢) in
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H™*' are strongly right-continuous on [0, 7;). On the other hand, the
uniqueness result implies uw%(t) = (T, — t), which shows that (1.1), is re-
versible in £. Therefore,

u’ e C([0, Ty]; H™**-%) , i=0,1.

Furthermore, it follows from (1.1),, with the aid of Lemma 2.4 in Chapter
I, that u, € C([0, T,]; H™).

Finally, it remains to show u’e C¥([0, T\]; H™***) (i = 0,1, ---, m + 2)
if fe CY[0, 0); H™*'-*) 1 = 0,1, ---, m). However, this is a direct conse-
quence of the following proposition. [q.e.d.]

ProrosrtioN 2.1. Let (u,, Uy, f) € H™** X H™*' X C¥[0, o0); H™*'~%) with
i=0,1,.---, m. Suppose that the initial value problem (1.1),—(1.3), has a
solution u’e C¥[0, T); H™**"%), with i = 0,1, 2. Then

wWeCY0, T]; H** Y with i=0,1,---,m+ 2.
The proof of this proposition is given at the end of this section.

Remark 2.1. The viscosity method has produced satisfactory results
in various fields. See e.g. Lions [10], Oleinik [16] and Kozhanov [24].
One of the typical applications is found in the work of T. Kato [8], where
he has treated the initial value problem for the Navier-Stokes equations
by the theory of nonlinear evolution equations to approach the initial
value problem for the Euler equation.

The existence result obtained here for initial value problems (1.1)—
(1.8), is not new, but the approach via the viscosity method is new and
seems simpler than the existing one due to Dionne [3]. (In [3], precise
arguments on the smoothness of coefficients of linear hyperbolic equations
are needed.)

Remark 2.2. We can apply the technics developed in this paper to
initial value problems for more general quasilinear wave equations

U, —ianla”(x, t, u, grad u, u,)u,; + b(x,t, u,gradu, u,) =f,
with some appropriate assumptions on a;, and b. See also Remark 4.3 in
Chapter 1.

2.2. Proof of Theorem II
Let ¢>0,1>2>0 and (u, vy, f) e H™*?* X H™**' X {C'([0, o0); H™ N
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C([0, 0); H™*')}. To prove (i), it suffices to show that ||t'(®)|ln.z || LiE)||mr1s
r llgrad u'(s)|2...ds and r |ui(s)|%+1ds are bounded above by some positive
0 0

constants (independent of 2) for all ¢ > 0.
Recall the arguments in Chapter I, §4. We first note that (I.4.35) is
true with u replaced by u’. Set

6 = max {|[vulln s 11878 toll i 1l ess 11 FGlln 1)

and
D) = 6[{1 + nM(s,0) + %c(8 + c)}'* + 2] .
We fix an arbitrary p > 0 satisfying p > 54/25,D(1)/2¢c and choose a
sufficiently small 0 < d, < 1 such that
$cai(p) > C(m, m)M,, ..(oH1 + (5v 2 D(3,)/2c)"}D(5)

(cf. (1.4.36) and (I.4.38)). Note that §, can be taken depending on m, n,
¢, p and Dia;; (e| £ m + 1), but not on 2.

By repeating the procedure in Chapter I, § 4.2, it is found that, if ¢
< §,, then

2 2 9 Cz
2Ol + (o)l grad WOl + S| Ol
+ 22 llgrad wi@)lfnds + 2 [ lu@)..ds
(231) 0 ¢ m+1 5 Jo t m+1

+ 2 car(e) [ Illgrad w) . ds
5 0
< D@,y , for all =0,

(cf. (I.4.44)), which assures (1.5) and (1.6). Thus the proof of (i) is complete.
The proof of (ii) is essentially the same as that of Theorem I (ii), so
we shall only sketch it here.
Since (2.14) is true on [0, o0) for all1 = x> 2> 0 and ¢ = 0, it follows
with the use of (2. 31) that there exist

(2.32) u’(Y) = lim v*(f) strongly in H™*!, uniformly in ¢e [0, T']
210

and

(2.33) ud(®d) = lim ui(f) strongly in H™, uniformly in ¢e [0, T']
210
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for any T > 0. Hence, inequality (1.9) in Remark 1.4 is easily derived from
(2.14), (2.31), (2.32) and (2.33).
Furthermore, by (2.31), (2.32) and (2.33),

2.34) u'(t) = 12111? u'(t) weakly in H™*?, uniformly'in te [0, T]
and

(2.35) ul(t) = ltlln(? ui(t) weakly in H™*!, uniformly in z¢ [0, T]
for any 7> 0.

Making use of these convergence properties (2.32)—(2.35), we repeat the
arguments in § 2.2 to show that «° is a global solution of (1.1),—(1.3), satis-
fying (1.7), (1.8) and

w e C([0, o0); H™*') N CY([0, 00); H™) N Ci([0, o0); H™+*-%)

with i = 0, 1, 2. On the other hand, Theorem I and the uniqueness result
within the class (2.24) enable us to conclude u°e C¥[0, o0); H™**"%) with

1=0,1,2.
In case of fe C¥[0, o0); H™*'-9) (i =0, 1, - - -, m), we have only to note
Proposition 2.1. [q.e.d.]

Remark 2.3. Recently, A. Matsumura [12] has obtained remarkable
results on the existence of global solutions to (1.1),~(1.3),, while his proof
(based on Dionne’s result) is very technical. Our proof seems simpler to
follow than that of Matsumura, although our existence result (Theorem II
(ii)) is almost the same as his.

2.3. Proof of Proposition 2.1
Here it is convenient to use the following notation

alal
D=
050z - - - mdr
where
a=(a,a, -, a,0) and |al=a+a+ - +a,+a,.

We shall prove u’e C¥([0, T]; H™**"%) with i =0,1,2,---, m + 2 by
induction. Suppose that

wWe Ci([o’ T]; Hm+2—i) , i = 0,1,2 ---,s s

is true with s = 2. Note the next identity
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(2.36) D:,Lugt = _ZID;,t{aij(grad uo)ugj} - CD;,zug + D;,tf s
Gyje=

where multi-index « satisfies || < m and a, = s — 1. Since both Dg,u!
and Dg.f belong to C([0, T1; H') < C([0, T']; L*) by assumptions, it is suf-
ficient to show

D3 {a.,(grad v’)ui;} € C([0, T]; L)
for every i, j=1,2, ---, n.

By Leibnitz’ formula,

Dz fau(grad wuty) = 3 (§ ) Dsi*lau(erad w) D ,

B=a

so that D; {a.(grad u’)u};} is written as a linear combination of functions
of the form

(2.37) (Dya.)(grad w) T] D2 DE.dy

where [8| < |a|, [r| S le— Bl, ¢ < e — 8] and 238, |0, = & — BI.
First we shall show that (2.37) belongs to L* for each te[0,T]. By

assumptions,

(2.38) D,'Z,,u‘;j e C([o, T]; H™'#),
and

(2.39) Ditus, € C([0, TT; H™+'-101) .

Recalling Sobolev’s lemma, we may assume g =1, m — |8| < [n/2] and
m+ 1 — |5, < [n/2] to estimate the L*-norm of (2.37). By virtue of Lemma
2.2 (ii) in Chapter I, it follows from (2.38) and (2.39) that

@40 Diat,eC(O, T I) with — e[ — M1l 1] oy,
p 2 n 2

and

@41) Db, e C(0, T]; L) with L e [l _m+1-]a] l] —(0}.
D 2 n 2

Denote by 1/P and 1/P, the infimum of 1/p and 1/p, satisfying (2.40)
and (2.41), respectively. Then
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1,51 l_m—lﬁl) Q(l__m+1—|511)
P+AZ=1 P, 2 n +JZ=J:l 2 n
1 ng — 2m — 2g(m + 1) + 2|« |
=+
2 2n
1 qln — 2m — 2)
s = .
’“2+ 2n
Since m = [n/2] + 1,
q 1
*5p <3

Hence there exist some positive numbers p, p,, - -+, p, such that

q
¢=1 Dy 2’

so that application of Hé6lder’s inequality to (2.37) gives
[ I(Dra.)Erad w) [1 Dt D2, Pl
£=1
q 2/pe 2/p
= M (eradwly [T ([ 1Dz romds)™ ([1Dsuomds)
i=1
q
= CM!rI(” grad u’|..)* :11 HDil,tu(I)u” 134 ”Dx zuzj”m 181

Therefore, we have shown that D; {a;(grad u’(t))u;(t)} with || < m and
a,=8— 1 belong to L’ for any 0 <t < T.
It is essentially in the same way as above to prove that

HD;;,,{ai,(grad uo(t))u(;j(t)} - D;,t{aij(grad u°(to))u3j(to)}l| —>0,
asat—>4,,

with |¢] < m and ¢, = s — 1. Consequently we get
uo e Cs+1([0’ T]; Hm+1—a) ,
which completes the proof. [q.e.d.]

§3. Asymptotic behavior

Theorem II asserts the existence of a positive constant §, such that,
if

mak {1 s [l [ 16 el <
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then the initial value problem (1.1),~(1.3), has a unique solution ©’e¢
CY([0, c0); H™**-%) (i = 0, 1, 2) satisfying (1.7) and (1.8). Thus, the dissipative
term cul (¢ > 0) in (1.1), plays a role to stabilize solutions. Moreover, we
shall show that this dissipative term has a damping effect on solutions
to (1.1),.

3.1. Proof of Theorem III

Let ¢ >0and f= 0. Let u be a solution of (1.1),~(1.3), satisfying (2.31).
Then repeating the arguments in Chapter I, § 5, we can show
Gy HIEOF. + lgrad W@l + [ slu@)hads < C,

forallt=0 and 1>2>0,
(cf. (1.5.6)) and
£l grad w@®|n + |1 4u* @ |1}
(32) + [ slw@inds + [ #llgrad ui@lads < €,
forall =0 and 1=1>0,

(cf. (1.5.18)) with some C > 0.

On the other hand, convergence properties (2.32)-(2.35) are already
known. Thus letting 1] 0 in (3.1) and (3.2), we obtain decay estimates
(1.10)—(1.13). [q.e.d.]

3.2. Proof of Corollary
We use the following well-known inequality due to Nirenberg-Gagliardo
(see e.g. [15]):

(3.3) lulle < Clufllulf~*  for ue H*,
for some C > 0, where £ > n/2, 6 = n/24 and
Juf = 33 I Dsulf
It follows from (3.3) that
(34) 2@l < Cl@® v @I,

with N = [n/2] + 1 and § = n/2N. Hence, if N > 2 (i.e., n = 2), we have
from (1.7), (1.12) and (3.4)

@@l < ClAw@li-ollw @I < Cldw’@) |l @[~ < Ct*,
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which shows (1.14) for n = 2. If N=1 (ie, n=1), we see from (L7),
(1.10) and (3.4)

@@l < Clgrad w5, [[w @)~
< Cllgrad v’ @)l [l w @)~
< Cror = Gt

Other decay estimates (1.15) and (1.16) are derived from (1.10)-(1.13)
and (3.4) in the same way as above. [q.e.d.]

Added in proof. After this paper was submitted for publication, the
author was informed of the paper of H. Pecher, “On global regular solu-
tions of third order partial differential equations, J. Math. Anal. Appl.,
73 (1980), 278-299”. He treats with the global existence of solutions for
third-order differential equations which are similar to ours.
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