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Abstract

Error estimates are derived for a finite element analysis of plane steady subsonic flows
described by the full potential equation. The analysis is based on the use of the theory of
variational inequalities to accomodate the subsonic flow constraint and leads to a
suboptimal estimate relative to that obtained for linear potential flow. We then consider
an alternative dual formulation of the problem and obtain an optimal estimate subject to
reasonable regularity assumptions.

Introduction

Plane steady compressible flow problems are of practical interest in analysis of
nozzle flows, cascade flows in turbomachines and, particularly, exterior flow past
airfoils. Let us consider a profile such as an airfoil with uniform incident flow in
the far field. If the incident velocity is sufficiently moderate, the flow is every-
where subsonic (subcritical) and the governing equation is elliptic. Above a
critical incident velocity, the flow becomes transonic with a local imbedded
supersonic "pocket" adjacent to the airfoil and is of mixed type—elliptic in the
subsonic flow and hyperbolic in the local supersonic flow region. At sufficiently
high incident velocities, the supersonic region may be terminated by an imbedded
shock discontinuity. For the subsonic flow case, and even for slightly supercritical
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[21 Finite element error estimates 89

flows including weak shocks, the flow may be assumed to remain irrotational and
governed by the full potential equation [17,19].

The mathematical theory for subsonic flows is relatively well developed with
existence and uniqueness results established for sufficiently regular data using
both classical analysis based on quasiconformal mapping and also functional
analytic techniques [1,10,11,16]. Analytic solutions for the mixed elliptic-hyper-
bolic problem have been constructed via hodograph transformations, but the
analysis of these flows in general is more difficult [2,13] and the standard-func-
tion analytic techniques associated with elliptic problems clearly are not applica-
ble.

Several finite element methods have been developed to compute approximate
solutions to the full potential equation [3,4,5,14,18]. A viable finite element
theory should include error estimates for the approximations and conditions on
the regularity of the solution or data for convergence. While these estimates are
easy to obtain for the standard linear potential flow problem, the nonlinear
problem is more difficult. Very restrictive estimates have been obtained for the
special case of a fictitious (non-physical) gas using techniques based on those for
analysis of the minimal surface equation and applied for shock-free redesign
[6,7]. A viable error analysis for the subsonic flow of a real gas has not previously
been developed. A major complication for the error analysis of subsonic flow of a
real gas stems from the mathematical restriction that, for ellipticity, the flow
should be everywhere less than the speed of sound in the gas. The constraint is
violated for supercritical flow, but the established error analysis techniques are
then no longer applicable. This factor was overlooked in an earlier attempt [15] to
provide error estimates for this problem.

In the present study, we derive error estimates for the full potential equation
using the theory of variational inequalities to include the mathematical restriction
that admissible velocities be subsonic. In Section 1, we define the subsonic
compressible flow problem, constraint subset and variational inequality formula-
tion for the potential solution. This is followed in Section 2.1 by the finite element
approximation to the variational inequality and error analysis. Since the ap-
proximation subset is not contained in the constraint subset, the analysis leads to
a suboptimal estimate. This difficulty has led us to explore an alternative dual
formulation involving velocity components in Section 2.2. The central idea is that
the subsonic constraint is easier to accommodate directly in terms of the velocity
components, rather than as a condition on the gradient of the potential. We can
thereby avoid the difficulty in the previous formulation which led to a suboptimal
estimate. However, the far-field boundary condition now enters in a more
complex manner. We consider two formulations in which the far-field condition is
embedded in the space and using a Lagrange multiplier, respectively. Using the
latter formulation, an optimal error estimate is obtained for the dual formulation.
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1. Analysis

1.1 Formulation
Consider the steady flow of a compressible gas having density p and velocity q.

Conservation of mass implies

V -(pa) = 0 in fi. (l)

where p = p{q2) with q = |q|.
The adiabatic equation of state for pressure p = kpy and the equation for the

speed of sound, dp /dp = a2, yield

where p0 is the stagnation density, a0 is the stagnation speed of sound, and y is
the ratio of specific heats for the gas. Typically, y lies in the interval (1,2) for a
gas.

For irrotational flow q = Vu and, using this with (1) and (2), we have the full
potential equation

V -(p(|Vu|2)v«) = 0 in B. (3)

The classical form of the subsonic flow problem is then to solve (3) subject to
prescribed boundary data on the boundary 8 $2 = Fo U I\ of the flow domain £2
(Fo and I\ are disjoint). In particular, one frequently deals with data of the form

u = g0 on To, (4)

representing a prescribed asymptotic far-field boundary condition on a remote
boundary To in the uniform flow region and a mass flux boundary condition on a
profile such as an airfoil. We remark that in practice g1 = 0 and we shall restrict
our analysis to this case. In addition, for lifting airfoils, the circulation must be
specified by means of the Kutta condition (using, for instance, a branch cut with
circulation determined as a potential jump). We shall restrict our attention to
flows without circulation. The flow domain fl is a simply-connected bounded
domain in U N or a multiply-connected domain for which the flow problem can be
posed on a simply-connected subdomain by appealing to physical and geometric
symmetry, as in uniform flow past a symmetric airfoil at zero angle of incidence
to the flow. The above problem statement is complete for subsonic flows, i.e.,
q < am, where a, is the critical velocity and is equal to /2/(y + l) a0- For
transonic flows, (3) is no longer elliptic, and one must include a further entropy
condition to prevent non-physical rarefaction discontinuities.
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Rather than working with the classical statement of the subsonic full potential
problem, one can instead consider a functional minimization problem on a closed
convex subset Ks specifying the subsonic flow constraint. We first introduce the
following function spaces and notations. Let

be equipped with the Hi norm || • ||. Then provided that meas(r,) =£ 0, Hr is a
Hilbert space for / = 0,1. Let H'T denote the dual space of Hr and let ( • , •)
denote the duality pairing on H'T X HT . The norm on Wm'r(Sl) is denoted by
|| • | |m, and the norm on Z/(fi) by || • \\Lr. To consider the variational formula-
tion of (3)-(5), we first note that (3) is the Euler-Lagrange equation of the
variational functional

/(„) = f / W \p(t)dtdx (6)

We see from (2) that the functional J is well defined for functions u in i
that satisfy the constraint |vw| < am a.e. in fi. Thus, we consider the variational
minimization problem:

Find u e Ks such that

J(u) = nun J(v); v^Ks, (7)

where

Ks = [v e H1^); v = g0on ro and \vv\ < S < a* a.e. in ft}. (8)

The introduction of the constant 5 enables us to obtain positive, finite bounds for
the density and its derivatives and to write the subsonic constraint as a non-strict
inequality to facilitate the analysis. We assume 8 is close to a*. It is clear that Ks

is a bounded, closed and convex subset of g0 + HT(). In fact, Ks is compact in
HX(Q). We shall show later that J is continuous and strictly convex on Ks. These
results enable us to deduce the unique solvability of (7).

Taking the first variation of / in (7), the variational statement for subsonic
flow can be expressed as the equivalent variational inequality problem:

Find u e Ks such that

(J'u, v - u) > 0 for all v in Ks, (9)

where / ' is the Gateaux derivative of / . Thus, / ' corresponds to the full potential
operator in the classical statement of problem (3) and is a non-linear operator
defined according to

(J'u,v) = f pVu • Vvdx (10)
•'o

for all u in Ks and v in HT .
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The properties of J' depend on the form of the nonlinearity—that is, on the
properties of the density p = p(q2) in (2). We have:

(i) for 0 < q < 8 < a+, p is positive bounded below and above. In fact,

/ v _ i \i/(r-D

Po > P U 2 ) > P(52) > Po(l - \

since y > I for a real gas. Moreover, as p' = -pJ~1p2"Y/2ao' \P'\ is bounded
above by po/2a\.

(ii) Since

then

{p(q2)q)'>0 if

( P ( q 2 ) q ) ' < 0 i f 9

Furthermore, if 0 < q < 8 < a+, for 8 arbitrarily close to a*

(p^2),?) ' > P
2-»(«2)(l - 82/a\)Prl > C(8),

where

(iii) For ^G[0 ,a t ) , p(q2)q is a Lipschitz function of f̂ with Lipschitz
constant p0, as one may easily derive from (ii). Now, suppose y, z e 05", n > 2,
and |j>|, |z| < a»; then

+ 2p(\z\2)p(\y\2){\z\\y\-yz)

~A •

Thus, p(|.y|2).y is a Lipschitz function of y in U" provided that \y\ < a*.
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We now show that J' is Lipschitz continuous and monotone in Ks. For any u,
v, in Kg and w in HT ,

(J'u - J'v,w) = j [p(|vw|2)vw - p(|vt>|2)vi>] • Vwdx

po|Vu - v « | |Vvv|rfx

< Pol l " - HI II HI-
Thus

\\J'u - J'of < Po\\u - v\\, (11)

where || • ||* is the norm on H'Tg. As a consequence, the functional J is
continuously differentiate in Ks.

From (ii) and the mean value theorem, we see that for any u,v e Ks, u =£ v,

(J'u — J'v,u — v) = I ( P ( | V M | ) | V M | — p ( | V u I ) | V U | ) ( | V M | - \ w \ ) dx
\ ' / / \ \ ' / ' ' ^ \ I T

 I / I * I y \ I T I I * I /

+ / p ( | v « | ) + p ( | V f | ) ( | V M | I V f I — V « • Vi>) dx

2- L r ̂ {t)t)t
ds(\vu\ -\vv\)2dx

f = i|VM|+(l-J)IVu|

+ 2Pminf (|V"| |Vf | - VU • Vv)dx

and hence
</'« - J'v, u - v) > 0.

Thus, 7' is strictly monotone on Ks and consequently / is strictly convex. As Ks

is bounded, the existence and uniqueness of solutions of (7) and, equivalently, of
(9) may be established by appealing to standard theory. Furthermore, we may
deduce from (i) and (ii) that

(J'w-J'v,u-v)>C{8)\\u-v\\2 (12)

for all u, v in Ks.

2. Estimates

2.1 Standard Finite Element Method
Let Th be a triangulation of fi and Pk(Q) be the space of piecewise polynomi-

als of degree < k in ft. Let Vh c T/^fi) be the space of linear finite elements
with respect to Th. Let u be the weak solution of the variational inequality
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problem (9), and let uh be the corresponding finite element solution, that is,

(J'uh,vh -uh)>0 for all vh e Kh
s, (13)

where Kg = Vh n Ks is a finite element subset of Ks. Setting v = uh in (9) and
adding it to (13), we get

= (J'uh-J'u,vh-uh) + (J'u,vh-u).

Thus

(14)(J'u - J'uh, vh - uh) < (J'u, vh-u).

Now, by the monotonicity of / ' in Ks given in (12), we have

C ( 5 ) | | H - uhf < (J'u - J'uh,u - uh)

= (J'u - J'uh, u-vh) + (J'u - J'uh,vh - uh)

for all vh in Kg. Thus, using (11) and (14),

C(S)||« - uh\\
2 < po||u - uh\\ | |u - oh\\ + (J'u,vh - u). (15)

Integrating the term (J'u,vh — u) in (15) by parts and applying the Holder
inequality, we obtain

lS(Q)n
(16)

where p > 2 and \/p + \/p' = 1. To see that the term ||V • (PVM)IIZ.*'
 1S

bounded when u e W^2p(fi), first note that

|V -(pVw)| 2 p ' |v« | 2 | | | V « | 2 3 2 H

Recalh'ng that |V M|2 < 8 a.e. in B, we have from (i) and (ii)

||V

(17)

since p > 2. Here C denotes a generic constant. Now from (16)

\\2 < c- uh I " -
so
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whence

||« - «J | 2 <S C-2(8)PI\\U - vh\\
2 + C-\8)C\\u\\2,P\\u - oh\\LP. (18)

Note that as 8 -• a+, C~l(8) -* oo and thus the error estimate becomes invalid
when the flow is no longer subsonic.

Let Uh denote the linear interpolation operator on C°(S2), with respect to the
triangulation Th, i.e., for v e C°(S2),

n * o | r e ' i ( y ) for all Tin 7;

and Uhv(P) = v(P) at all nodal points P in Th.
As M e Ks and WhQO(Sl) •-> C°(B), Uhu is well defined. However, as Uhu <£

Kg in general, we cannot set vh in (18) as Il^w to obtain an optimal estimate.
Instead, we shall construct an element in Kg with which approximation results
may be obtained easily.

From standard approximation theory, we have, for v in W2'p(&), p > 2,

\v(Ulp-v)(x)\<Ch1-2"\\oh.P
for a.e. x in fi, where C is a constant independent of v and h. If we restrict v to
Kg, then

for a.e. x in £2. Based on this inequality, and motivated by the analysis of [8,12],
we introduce the element

SU.u

where p > 2. Note that as h -> 0, rhu -» lihu. Also,

|rAM | < S a.e. in fi.

Thus, rhu e A"j. Moreover,

| | « - r , « | | = 0 (* + *1-V') (20)

and

\\u-rhu\\LP = O{h^ + h^"). (21)

Thus, using (20) and (21) in (18), we have the estimate

| | M - U , | | = O(/i1 /2-1 /p) for u e W2'"{Q), p > 2. (22)

REMARKS. 1. The suboptimality of this result relative to the O(h) result for
linear thoery originates from the "incomplete" approximation theory for the
subset Kg rather than the nonoptimality of the abstract error estimate.

2. One can obtain an estimate without making the above regularity assumption
on M as follows: The second term on the right-hand side of (15) is bounded by
C||/'M||*||t;A - u\\ and the first term on the right-hand side is, as before, bounded
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by

ic(«)ll«-«*H2 + ip3c-1(«)ll«-«*ll2-
Thus,

||« - uh( < p2
0C-2(8)\\u - vhf + CC-\8)\\vh - u\\. (23)

With this approach, we do not need to impose the regularity condition u e=
W2'p($l) for p ^ 2. However, the error estimate is necessarily suboptimal because
of the presence of the second term on the right-hand side of (23).

3. With the establishment of the error estimates, it is easy to prove the
convergence of the finite element approximation uh to the solution u.

2.2 Dual Finite Element Method
The error estimate (22) derived in the previous section is useful in proving the

convergence of the finite element approximation. However, even if we assume u
to be in W2>0°(Q), this error estimate would still be suboptimal due to the
inadequacy of Kg. More specifically, with this strong smoothness assumption, the
bound on \\u — uh\\ would be of O(h1/2), which is inferior to the standard O(h)
estimates obtained for many other problems. The presence of the nonlinearity and
critical flow degeneracy at q = a* may lead one to admit the possible subopti-
mality, but numerical evidence suggests that the energy error for q < a* is
actually O(h) [4]. In this section, we follow a successful approach used for
elastoplastic torsion problems [8,9,12] to derive an optimal estimate for the dual
finite element approximation for subsonic flow. (By working with the velocity
directly rather than the potential, the previous difficulty—Remark 1, Section 2.1
—can be circumvented.)

Let M G Kg be the unique solution of the variational inequality problem (9)
and let v be an element of Ks. We introduce as new variables for a dual
formulation

9M 9M \ , I dv dv
•5—, - 75— a n d t) = -5—, - -5
oy ox ] \oy 0

Clearly, the subsonic constraint becomes

The subsonic constraint in this formulation appears as a constraint on the
magnitude of the elements in Ls. This seemingly trivial change is actually an
important step in establishing the optimal error estimate. While we cannot
guarantee that the linear interpolant of elements of Ks be in Kg, a fact leading us
to a suboptimal estimate, the constraint in Lg involves no derivative and the
linear interpolant of any element in Ls will belong to the approximating space Lh
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of Ls defined in the next section. This then allows us to utilize the optimal
approximation result in our error analysis. The far-field boundary condition
</> = g0 on Fo may be restated in terms of 3go/3T where T = (n2, -«i) is the
tangent vector. We first embed this condition in the space for the dual problem
and then subsequently consider using a Lagrange multiplier for the boundary
constraint. An error estimate is finally derived for the finite element approxima-
tion of the dual formulation with multiplier treatment of the boundary condition.

We first shqw that the vector £ defined above is a solution of the following dual
variational inequality problem. Find £ e Ls n H such that

L
where

P ( £ 2 ) 4 - ( T | - £ ) < / * 3*0 for all T| in Ls n H, (24)

H = | t | e L2(U) XL2(fi); f i\-Vwdx = ( -^-wds for all w e Hr \.

For notational convenience, henceforth we shall write Hv for HT . Now

= f p(t2)l-(n-£)dx (25)/ { \ \ ) ( ) f
follows directly from the definition of £ and r\ and the property

Furthermore, since r\ = (dv/dy, -dv/dx) and v = g0 on T0(v G Ks), then for
any w in Hr,

I r\ • Vwdx = / WT) • nds — I ( v • r\)wdx
JQ JTQ

 JQ

-w^A. (26)

Thus, t) G H and so £ is a solution of the dual variational inequality (24).
In fact, the converse is also true, i.e., if £ is a solution of (24), then one may

find function w satisfying (9) and such that curl u = £ (see (27) below). To show
this, we take TJ e Ls n H. Then, for all w e HT, we again have (26). Now, for w
in HQ(£1) C HT, (26) is reduced to /0(V • i\)wdx = 0 which implies V "n = 0
a.e. in Q. Consequently, we have fr<jwr\ • nds = }T(j-wdg0/dTds for all w G Hr;
therefore,

T) • n = -3go/3T a.e. on ro. (27)
Next, observe that as fi is simply connected, there exists a function v in Hl(Q),

unique up to an additive constant, such that

TJ = curio = 3— , - - 5 -
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(so that v • T) = 0 is satisfied automatically) and that by (27)

To fix v, we may take v = g0 on Fo to obtain v e Ks. In particular, we may set tj
to 4, and the corresponding v to u. Thus, in view of equation (25), we have shown
the converse.

Formuiation (24) is, in some sense, an unconventional mixed problem, as most
mixed problems involve a Lagrange multiplier and may be related to a saddle-point
problem. This situation is clarified by noting that the space H involves a
constraint arising from the far-field boundary condition and may be relaxed with
the aid of a Lagrange multiplier.

In order to relax the constraint fai\ • Vwdx = Jro-(dgo/dT)wds for w in HT,
we introduce the multiplier x e HT and consider the variational problem using
Lagrange multipliers: find the pair (£, x> m (Ls n H) X HT such that

f p(£2)i-(i\-l)dx> f v x • ( ! -€)<** forall t i inL,. (29)

This formulation (29) will be useful later when we estimate the error of the finite
element approximation.

We have the following theorem:

THEOREM. The mixed variational inequality problem (24) is equivalent to the
variational problem (29).

PROOF. Let (£, x) be a solution of (29). By restricting TJ in (29) to the set
Ls O H, we have

since x G HT. Thus, 4 is a solution of (24). Next, let £ be a solution of the mixed
problem (24). To prove the existence of x in HT such that (29) holds for all TI in
Ls, first observe that £ is the solution of the minimization problem: find
£ e LSC\ H such that

yi(4) = min/1(i1), i , e L , n # , (30)
where

JaJa Jo l

We shall prove the desired inequality by contradiction. Suppose that for all x
HT, there exists TI in Ls such that

(31)
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Clearly, r\ =£ £, otherwise we have an immediate contradiction. This and the
uniqueness of i imply that J^i) < Ji(i)) for all x- Now, let {x*} be a sequence
of functions in HT converging to 0, and let {i\k } be the corresponding sequence
in Ls. As Ls is a compact set in L2(fl) X L2(fi), there is a convergent subse-
quence {%} converging to some t) in Ls. From (31), we have

Taking the limit k -» oo, we have ^(ii) < Jx(£) which contradicts the fact that £
is a minimum point of (30). Thus, we have shown the existence of x in HT such
that (29) holds for all TJ in Ls, since }a 4 • Vx dx = 0.

REMARK. The variational problem (29) may be shown to be equivalent to the
saddle point problem: find (£, x) £ Ls X HT such that

L{i,w) < L(i,X) < L{n,X) (32)

for all (n, W) in Ls X ̂ r , where

,w)= ( ft \p(t)dtdx- (irvwdx+ f ^
Ja Jo l Ja Jr0 °

T

2.3 Error Estimate for Dual Method
Let us now consider the approximate dual method. Given a triangulation Th of

finite elements of fl, we define the following approximation spaces:

X L2(i2); g j r e P0(T) for 7 in 7,} ;

for T in r», wk = 0 on

and

( / & = 0 for all wA in

The approximation to the dual problem (24) takes the form: find £A e Lh C\ Hh

such that

f{eh)ih-^h-Udx>0 (33)

for all r\h in LA n i/A. If (4, x) is a solution of the variational problem (29), then
setting r\ = £h(& Lh C\ Hh n Ls) in (29), we have

fQ P ( £ 2 ) 4 U* - Z)dx > jf v x •(€* - 0 & . (34)
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Adding the inequalities (33) and (34), we have

h (35)

Using the rnonotonicity property (iii) of the function p(t2)t and (35), we have

p(«)tk - p(|2)t) •(«» - 4) A

/Q

Jf P ( « ) € * -(ii* - 4 J <fc - Jf v ( x -*>„ + wA) -(6* - €) dx

i ^ / ^ ) ! 2 ^ . (36)

where wA is an arbitrary element in Vh.
Now, 5A G ^A and ^ ^ H, so /„ v wA • (4A ~ 0 ^ = 0. Moreover, as £A | T

P 0 ( r ) x P 0 ( r ) , so

Thus

for all T in 7;

and hence P(IA)5A G ^A- NOW, LA is a closed, convex subset of L2(ti) X L2(fi).
Thus one may define an orthogonal projection Rh from L2(i2) X L2(fi) onto Lh.
Setting r\h in (36) as Rh£, we clearly have

f
Finally, let IIh: C°(Q) -» KA be the ^-interpolation operator on rA. The
regularity assumption x G H2{Q,) -* C°(J2) allows us to conclude IIAx G ^, and

Setting wh = IIAx in (36), we then have
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or

We summarize this result in the following theorem:

THEOREM. Let £ be the solution of the mixed variational inequality problem (24)
and £A be the finite element solution of the approximation problem (33). Let x be
the Lagrange multiplier in (29) corresponding to (24). Under the regularity assump-
tion x e H2(Sl), we have ||£ - U t f x i ' = O(h/C(8)).

REMARKS. 1. In the proof above, the multiplier formulation rather than the
original dual formulation is used because £A is not necessarily in H. The
multiplier relaxes the restriction for £A.

2. Notice that, in the above proof, the regularity of £ is not needed. Instead, the
regularity of the multiplier x is required.

3. In practice, it is easier to implement and numerically solve the saddle point
problem (32) than the variational problem (29). Since these problems are equiva-
lent, the error estimate established is also applicable to the numerical solution of
(32).
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