Biodiversity of Sierra del Cristal, Cuba: first insights

J. E. Fa, J. P. Soy, R. Capote, M. Martínez, I. Fernández, A. Avila, D. Rodríguez, A. Rodríguez, F. Cejas and G. Brull

Abstract Cuba has the highest combined animal and plant diversity, and the highest degree of endemism, in the West Indies. In 1998 we undertook the first major biodiversity survey of the Sierra del Cristal National Park, in the Holguín province in eastern Cuba, to address the need for baseline data on the wildlife of the forest habitats of this biologically important mountain range. This area was chosen because it is known to be a major stronghold of the endemic Cuban solenodon *Solenodon cubanus* (Insectivora, Solenodontidae). The project initiated and supported field activities of two Cuban institutions involved in nature conservation. The study focused on indicator taxonomic groups. We recorded a total of 220 species of plants, 53 spiders, 28 molluscs, 10 amphibians,

19 reptiles, 51 birds, and three species of mammal. The highest number of species were recorded in montane forest. Thirty-five percent of the taxa recorded are endemic to the area or to Cuba. Information gathered during the study will form the basis for developing long-term management plans for habitats and resident species, in conjunction with the authorities responsible for environmental conservation.

Keywords biodiversity assessment, Cuba, endemic species, forest, Sierra del Cristal, *Solenodon cubanus*.

This article contains supplementary material that can only be found online at http://journals.cambridge.org

Introduction

Cuba is the largest island (110,922 km²) in the Caribbean, and has the richest biodiversity in the region, with an estimated 6,200 species of flowering plants, 628 vertebrates and 7,500 insects and arachnids (Santana, 1991). The island has also the highest degree of endemism in the West Indies, with *c*. 50% of the flora and 32% of the vertebrate fauna unique to the island (IES/CENBIO, 1998). Approximately two-thirds of the total land area of Cuba is plains (*llanuras*), and the remainder is foothills and highlands, comprising isolated groups of mountains, the highest of which is the Sierra Maestra in the east (MINAG, 1991). The fertile soil of the lowlands supports extensive sugar

J. E. Fa (Corresponding author) Durrell Wildlife Conservation Trust, Les Augrès Manor, Trinity, Jersey, JE3 5BP, Channel Islands, UK. E-mail: jfa@durrell.org

J. P. Soy, I. Fernandez and G. Brull Empresa Nacional para la Protección de la Flora y la Fauna, Ministerio de Agricultura, Conill y Avenida Independencia, Havana, Cuba.

R. Capote, A. Avila, F. Cejas, M. Martinez, D. Rodriguez and

A. Rodriguez Instituto de Ecología y Sistematica, Ministerio de Ciencia, Tecnologia y Medio Ambiente, Carretera de Varona, Km 3.5, Boyeros, Havana, Cuba.

Received 2 August 2000. Revision requested 1 November 2000. Accepted 26 February 2002. cane, rice and coffee plantations. Most of the island was originally forested, but deforestation since the Spanish conquest and especially after independence, when the lowlands were converted to sugar cane plantations, has left only c. 15% of the island's original vegetation cover intact.

Since 1959, Cuban institutions have striven for the implementation of effective conservation policies via legislation and creation of protected areas, of which there are currently 236 (CNAP, 2000). However, although advances have been made in documenting biodiversity, some areas, particularly mountainous massifs such as the eastern highlands, are poorly known (IES/CENBIO, 1998).

Together with western Hispaniola, the mountains in eastern Cuba (Sierra Maestra and the Nipe-Sagua-Baracoa range) are remnants of ancient crustal upthrusting and are the most prominent centre of speciation in the Antilles (Garrido & Jaume, 1984; Schwartz & Hedges, 1991; Rodriguez Schettino, 1993; Borhidi, 1996). They are also important centres of origin for over 24 Caribbean plant genera, and more than 1,500 plant species are endemic to the eastern Cuban highlands (Capote *et al.*, 1989; Borhidi, 1996). Because of their variable geology, topography and climate, together with anthropogenic effects, these mountains are a mosaic of vegetation types ranging from lowland seasonal rainforest to montane formations (Borhidi, 1996).

© 2002 FFI, *Oryx*, **36**(4), 389–395 DOI: 10.1017/S0030605302000741 Printed in the United Kingdom

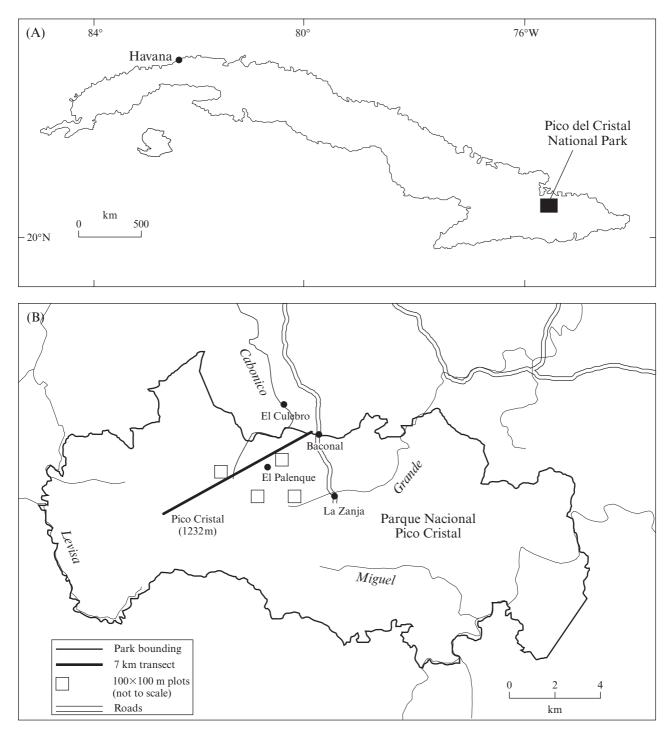
Information from biodiversity inventories and monitoring, and the expertise to analyse these data, are essential for identifying key biodiversity policy and management goals for these regions. In this paper we describe the results of field studies carried out in an area of the Sierra del Cristal, in the Holguín province, by a multidisciplinary team from the Empresa Nacional para la Protección de la Flora y Fauna (ENPFF, Cuba) and the Instituto de Ecología y Sistemática (IES, Cuba), in collaboration with the Durrell Wildlife Conservation Trust (Jersey, UK). The study area was chosen because it is known to be an important stronghold for the endemic Cuban solenodon Solenodon cubanus (Insectivora, Solenodontidae). The ENPFF is the national bureau for nature protection and employs personnel in 46 protected areas throughout the island. The IES is a leading institution, within the Ministry of Science and Technology, dedicated to scientific research on Cuban flora and fauna. The principal aim of the project was to collect baseline biodiversity information within the Sierra del Cristal National Park. We focused on representative taxa, namely plants, spiders, molluscs and vertebrates, that could act as indicators of overall biodiversity (di Castri et al., 1992).

Study area

Cuba lies within the Neotropical region, just south of the Tropic of Cancer. The climate is tropical with hot summers and mild winters (Núñez Jimenez, 1972). The dry season is in the winter, with 1–2 dry months at the mountain fringes, but with permanently humid rainforest in the interior (Borhidi, 1996). Annual precipitation is 1,600–2,300 mm (Borhidi, 1996). Cyclones are frequent, particularly in September and October. Within the study area, climate is affected by elevation, distance from the ocean and presence of vegetation. Temperatures may be highly variable, from a minimum of c. 9°C to a midday maximum of c. 29°C. Relative humidity is high, ranging from 55% at midday to 95% before dawn (Eisenberg & Gonzalez Gotera, 1985).

Sierra del Cristal forms part of the Nipe-Sagua-Baracoa mountain range in eastern Cuba (Fig. 1). This massif consists of deeply inclined conical hills and sharp ridges. The lower sections are covered by ferralitic soils, and by yellowish-red montane clays above 700 m (Borhidi, 1996). The Sierra is situated between two main river valleys: the Río Mayarí valley in the west and Sagua de Río Tanamo valley in the east. The Sierra is an almost circular massif *c*. 40 km across. The only main road into the area is along the north of the Sierra (Núñez Jimenez, 1972).

Sierra del Cristal was the first protected area in Cuba. Through Decreto No. 487, the area then known as El Cristal, Realengo del Cristal or Sierra del Cristal, was declared a National Park on 24 April 1930. Approximately 26,000 ha within the Municipal sectors of Mayarí and Sagua de Tanamo were dedicated to nature protection. However, protection did not become effective until 23 November 1992, when jurisdiction and management of the Sierra were granted to the ENPFF (Resolución No. 454, Ministry of Agriculture). In the 1992 legislation only 15,000 ha were protected from hunting and extraction of natural resources. The park has a buffer zone, but zoning is incomplete. The ENPFF manages the protected area, through staff at the Unidad Territorial de Holguín in Mayarí. The park staff consists of a Chief of Personnel and 15 wardens based within the park.


The Sierra del Cristal region and adjoining areas have been affected by centuries of human occupation and use. Humans have hunted animals, especially hutias (Rodentia, Capromyidae), logged the forests, and extracted a variety of non-timber products. However, there is an elevational limit to human occupation, with no settlements above 400 m. The five main villages in the area (El Culebro, Limoncito, El Palenque, Baconal and La Zanja) are in the foothills of the Sierra (Fig. 1). During the study period, Baconal and El Palenque, which are within the park's buffer zone, had a combined population of 32 people, within eight households. Most of the men were employed by the ENPFF or by the regional agricultural agency (Empresa Municipal Agropecuaria).

Agricultural land is confined to small patches surrounding habitation. Most families cultivate cacao and coffee to sell to state-run industries, and grow root crops such as malanga *Xanthosoma sagittifolium* (Family Araceae), as well as plantain *Musa paradiciaca* and cassava *Manihot esculenta* for their own consumption. About 30% of the inhabitants raise some pigs and chickens, and a smaller proportion keeps goats. Extraction of timber and non-timber forest products is limited, but fronds from the palms *Roystonea regia* and *Calyptrogyne occidentalis* are used extensively for roofing.

According to recent classifications (Capote *et al.*, 1989; Borhidi, 1996) the vegetation of Sierra del Cristal is of four main types: (1) scrub forest, which is a dry and relatively depauperate scrub vegetation typical of areas of serpentine rock; (2) montane forest, which is the climax vegetation type over altitudes of 400–900 m (Borhidi, 1996); (3) evergreen forest, which is a moist forest type associated with lowland areas; and (4) pine forest, which is a formation of endemic pines patchily distributed along the mountainous regions of eastern Cuba.

Methods

Before the fieldwork commenced we organized a threeday workshop to introduce all team members to the

Fig. 1 (A) Cuba, illustrating the location of the Sierra del Cristal National Park, and (B) detail of the study area with localities mentioned in the text, the 7 km transect and four 100×100 m plots used for the flora survey, and major rivers.

ecological planning process and field studies. The workshop consisted of instruction and discussion around principles of conservation biology and conservation project management. Aerial photographs were used to identify the main vegetation types within the study area. Fieldwork was undertaken during August-September and November-December 1998, in an area of 48 km². We undertook habitat inventories, including plant species

© 2002 FFI, Oryx, 36(4), 389-395

collection and vegetation community analyses, and conducted surveys for the presence of selected animal groups – spiders, molluscs, and terrestrial vertebrates (amphibians, reptiles, birds and mammals) – in three of the four vegetation types (evergreen, montane and scrub forest). The team comprised three botanists, six zoologists and five field assistants.

We set up a 7 km transect covering the representative habitats of the area, and collected plants at 21 points between 370 and 600 m altitude (Fig. 1). We also surveyed four 100×100 m plots to describe the vegetation in more detail.

Spiders were sampled daily throughout the study period using sweep netting and collection of individuals in the tree, shrub and ground vegetation layers. Some sporadic night-time sampling was also carried out. Terrestrial molluscs were sampled daily, from trees, shrubs and ground layers.

Extensive searching for amphibians was undertaken throughout the study area every day and night using standard techniques (Jones, 1986; Heyer *et al.*, 1994). Frogs were located at night by inspecting suitable sites with the aid of flashlights, and by listening to advertisement calls of vocally active species. Microhabitats that are known to be diurnal refuges for anurans, such as epiphytes, fallen logs, loose bark, tree buttresses and rock crevices, were extensively searched during the day. Reptile species were recorded along two line transects (250×4 m) per habitat, i.e. a total of eight transects. All counts were carried out during 08.00–12.00.

Birds were surveyed using general searching, point counts, and mist netting (Bibby *et al.*, 1992). Sixty point counts were made in total, during the morning or afternoon, at intervals of 100–150 m along trails in montane, evergreen and scrub forest. On each 10-min count all birds heard or seen were recorded.

Trap-lines for mammals were set within 11 sites in montane forest. In each line 100 Tomahawk single door live traps ($82 \times 23 \times 23$ cm) were placed at 10 m intervals. Tinned sardines were used as bait. Each line was operated for 5–10 nights for a total of 1,477 trap-nights.

Results

A total of 220 species of plants (Appendix 1), 53 species of spiders (Appendix 2), 28 species of molluscs (Appendix 3), 10 species of amphibians (Appendix 4), 19 species of reptiles (Appendix 5) and 51 species of birds (Appendix 6) was recorded (Table 1). Overall, the greatest number of species was found within montane forest, and the lowest in scrub forest, although there were differences in this respect between the various groups (Table 1). We recorded four bird species (*Accipter gunlachii, Amazona leucocephala, Aratinga euops* and *Myadestes elisabeth*) and one mammal (*Solenodon cubanus*) that were listed as threatened in the 2000 IUCN Red List (Hilton-Taylor, 2000).

Of the vascular plant species recorded 86 (39%) are endemic, 130 (59%) are native species, and two are introduced taxa (1%) (Appendix 1). Differences between vegetation formations are structural as well as compositional, and plant communities above 600 m have poorly developed lower canopy and understorey.

Amongst the spiders (Appendix 2), two individuals of the family Hahniidae were discovered, which were new records for Cuba (Avila Calvo, 2000). In both cases only females were found, which made it impossible to identify the species. Amongst the molluscs (Appendix 3), *Coryda, Emoda* and *Veronicella* were the most common genera in montane forest, while *Subulina, Obeliscus, Coryda* and *Caracolus* were the most common genera in

Table 1 Number of species, endemic species (%), species in the three vegetation types, and species on the 2000 IUCN Red List (Hilton-Taylor, 2000) recorded in the seven taxonomic groups surveyed in the Sierra del Cristal, Cuba. For further details, see text and Appendices 1–6.

Taxonomic group	Appendix	1	No. endemic species (%)	No. species in each vegetation type			
				Evergreen forest	Montane forest	Scrub forest	No. Red List species
Vascular plants	1	220	86 (39)	65	134	20	0
Spiders	2	53	4 (8)	31	18	24	0
Molluscs	3	28	14 (50)	20	20	4	0
Amphibians	4	10	9 (90)	7	6	0	0
Reptiles	5	19	11 (58)	9	15	6	0
Birds	6	51	10 (20)	46	37	15	4
Mammals		3	1 (33)	2	3	2	1
Total		384	135 (35)	181	231	72	5

© 2002 FFI, Oryx, 36(4), 389-395

evergreen forest. Molluscs were scarce in scrub forest, where only the genera *Emoda*, *Caracolus* and *Coryda* were recorded. The endemic freshwater mollusc *Pachylus nigratus* was recorded in the Río Cabonico, and a new species of slug *Veronicella* sp. was discovered in montane forest.

Amongst the amphibians (Appendix 4), an unrecognized species of *Eleutherodactylus*, possibly a new species of the subgenus *Euhyas*, was discovered close to human habitation. No evidence was found of the introduced American bullfrog *Rana catesbeiana*, which is otherwise present throughout Cuba.

We recorded eight species of bird in addition to those reported from the only other bird study in Sierra del Cristal (Abreu et al., 1989). Three endemic genera (Teretistris, Priotelus and Xiphidiopicus) and 10 endemic species were recorded; i.e. 67% of all Cuban endemic bird species. The most abundant species (Appendix 6) were the Cuban emerald Chlorostilbon ricordii, Cuban bullfinch Melopyrrha nigra, Cuban solitaire Myadestes elisabeth (categorized as Lower Risk, near threatened on the IUCN Red List; Hilton-Taylor, 2000), Oriente warbler Teretistris fornsi, Cuban crow Corvus nasicus and Red-legged thrush Turdus plumbeus. The Cuban parrot Amazona leucocephala, categorized as Lower Risk, near threatened on the IUCN Red List (Hilton-Taylor, 2000), appeared to be common in the area, with flocks of up to 24 individuals observed regularly. The Cuban parakeet Aratinga euops, categorized as Vulnerable on the IUCN Red List (Hilton-Taylor, 2000), was less abundant, with only two flocks, of 17 and 11 individuals, recorded.

Three species of mammals were trapped in montane forest: one Cuban solenodon *Solenodon cubanus*, 15 black rats *Rattus rattus*, and one feral cat *Felis catus*. Rats were active during the daytime and were observed taking the bait from traps without springing them; the number trapped is therefore not representative of the numbers present. Black rats and feral cats were also observed in evergreen and scrub forest.

Discussion

Although there have been some studies of the wildlife of Sierra del Cristal (Abreu *et al.*, 1989) this is the first detailed biodiversity survey of the area. Our work has indicated that substantial areas of natural habitat still exist in the region, and that within the Eastern Highlands the forest of Sierra del Cristal is important because of both its extent and the relatively low level of human disturbance. The region has been protected for over 70 years and is not currently subject to major pressures of deforestation or wildlife extraction. Our results demonstrated the importance of the area as a reservoir for

© 2002 FFI, Oryx, 36(4), 389-395

species that are restricted to montane habitats in Cuba, and for endemic species, which made up 35% of the total recorded. Amongst the groups surveyed, endemism of molluscs, amphibians and reptiles was particularly high (Table 1).

Together with the Philippines, Cuba is an important global centre of molluscan evolution (de la Torre & Bartsch, 1938), with 1,405 species so far described, and Cuba has the highest species richness of reptiles in the Caribbean (Estrada & Ruibal, 1999). Eastern Cuba is a refuge for a number of important mammal species, especially the solenodon (Barbour, 1944; Abreu *et al.*, 1989; Woods & Eisenberg, 1989), and this species could be used as a flagship species (Entwistle, 2000; Bowen-Jones & Entwistle, 2002) for furthering conservation efforts in the region. The solenodons are a relict family of primitive insectivores, currently surviving only in Cuba and Hispaniola (MacFadden, 1980). Claims have been made that the species is declining (Varona, 1980) and its range contracting, but this is as yet unconfirmed.

As on many islands throughout the world, the black rat has become firmly established, and its interference was a major problem during trapping for mammals. Black rats have been linked to the extinction or decline of avian and reptile species through predation of eggs nestlings and juveniles, and the rats are potential competitors with ground mammals (Atkinson, 1985).

Local inhabitants confirmed the presence of feral dogs and feral pigs, but we found no direct evidence of either species in the areas that we surveyed. Despite reports that the small Indian mongoose *Herpestes javanicus* is widespread in Cuba, as on other Caribbean islands (Pimentel, 1955; Nellis & Everand, 1983), no evidence of its presence was found in Sierra del Cristal, and some residents claim that the species does not occur (Varona, 1983).

We did not survey the bats of the region, but Abreu *et al.* (1989) reported three bat species, *Artibeus jamaicensis*, *Macrotus waterhousei*, and *Molossus molossus* in the area. Studies of chiropteran diversity need to be undertaken. Abreu *et al.* (1989) also documented the presence of the hutias *Capromys pilorides*, *C. prehensilis*, *C. melanurus* and *C. arboricolous*. We found faecal deposits of *C. pilorides*, and one individual of *C. melanurus* was seen in the evergreen forest. Our lack of success in catching or observing hutias could be an indication of their low numbers. All hutia species in the area have been extensively hunted, especially in the lowland areas.

ENPFF is now carrying out further studies on vegetation ecology in the area, and more detailed research on the fauna. We recommend that further studies of the distribution, abundance and ecology of Red List species, such as the solenodon, are undertaken both within the study area and in other regions of eastern Cuba. A full assessment of the Red List status of all species is also required, especially for the endemic species. The potential impact of black rats on birds and the solenodon requires attention and further study. Successful conservation of the biota within the Sierra del Cristal area requires that the National Park guards be supported, and both national and visiting scientists be encouraged to train and mentor students. Information gathered during this study will form the basis for developing long-term management plans for habitats and resident species, in conjunction with the authorities responsible for environmental conservation.

Acknowledgements

The authors wish to thank the Cuban Ministry of Agriculture and the Ministry of Science, Technology and Environment for permission to work in Sierra del Cristal National Park. The Director of the Empresa Nacional para la Protección de la Flora y Fauna, Comandante de la Revolución Guillermo García, gave encouragement and support to our project. Mr. John Hartley, Director of International Programmes at the Durrell Wildlife Conservation Trust provided support and advice to the project. Mr. Mariano Samada, Head of the ENPFF regional headquarters at Mayarí, provided permits and logistical assistance. We are grateful to Nemecio Perdomo and Joaquin Aldana for help in the field.

References

- Abreu, R.M., de la Cruz, J., Rams, A. & Garcia, M.E. (1989) Vertebrados del complejo montañoso, *La Zoilita. Poeyana*, **370**, 1–16.
- Atkinson, I.A.E. (1985) The spread of commensal species of *Rattus* to oceanic islands and their effects on island avifaunas. In *Conservation of Island Birds: Case Studies for the Management of Threatened Island Species* (ed. P.J. Moors), pp. 35–81. ICBP Technical Publication No. 3, Cambridge, UK.
- Avila Calvo, A.F. (2000) Primer registro de la familia Hahniidae (Arachnidae: Aranae) para Cuba. Avicennia, 12/13, 135–136.
- Barbour, T. (1944) The solenodons of Cuba. Proceedings of the New England Zoological Club, 22, 1–8.
- Bibby, C.J., Burgess, N.D. & Hill, D.A. (1992) Bird Census Techniques. Academic Press, London, UK.
- Borhidi, A. (1996) *Phytogeography and Vegetation Ecology of Cuba*. Akadémiai Kiadó, Budapest, Hungary.
- Bowen-Jones, E. & Entwistle, A. (2002) Identifying appropriate flagship species: the importance of culture and local contexts. *Oryx*, **36**, 189–195.

- Capote, R.P., Berazain, R. & Leiva, A. (1989) Cuba. In *Floristic Inventory of Tropical Countries* (eds D.G. Campbell & H.D. Hammond), pp. 317–335. The New York Botanical Garden, New York, USA.
- CNAP (2000) Marco Legal, Sistema Nacional de Areas Protegidas, Cuba. MPH Graphics, Havana, Cuba.
- de la Torre, C. & Bartsch, P. (1938) The Cuban operculate land shells of the family Annulariidae, exclusive of the subfamily Chondropominae. *Proceedings of the United States National Museum*, **85**, 193–403.
- di Castri, F., Robertson Verbhes, J. & Younès, T. (1992) *Inventorying and Monitoring Biodiversity*. Biology International Special Issue no. 27, Oxford, UK.
- Eisenberg, J.F. & Gonzalez Gotera, N. (1985) Observations on the natural history of *Solenodon cubanus*. *Acta Zoologica Fennica*, **173**, 275–277.
- Entwistle, A. (2000) Flagships for the future? *Oryx*, **34**, 239–240.
- Estrada, A.R. & Ruibal, R. (1999) A review of Cuban herpetology. In *Caribbean Amphibians and Reptiles* (ed. B. Crother), pp. 31–62. Academic Press, New York, USA.
- Garrido, O.H. & Jaume, M.L. (1984) Catalogo descriptivo de los anfibios y reptiles de Cuba. *Doñana Acta Vertebrata*, **11**, 1–128.
- Heyer, W.R., Donnelly, M.A., McDiarmid, R.W., Hayek, L.C. & Foster, M.S. (eds) (1994) *Measuring and Monitoring Biological Diversity – Standard Methods for Amphibians*. Smithsonian Institution Press, Washington, DC, USA.
- Hilton-Taylor, C. (compiler) (2000) 2000 IUCN Red List of Threatened Species. IUCN Gland, Switzerland, and Cambridge, UK.
- IES/CENBIO (1998) Estudio sobre la Diversidad Biológica en la República de Cuba. Instituto de Ecología y Sistemática/Centro Nacional de Biodiversidad, Ministerio de Ciencia, Tecnología y Medio Ambiente, Havana, Cuba.
- Jones, K.B. (1986) Amphibians and reptiles. In *Inventory and Monitoring of Wildlife Habitat* (eds A.Y. Cooperrider, R.J. Boyd & H.R. Stuart), pp. 267–290. US Department of the Interior, Bureau of Land Management, US Government Printing Office, Washington, DC, USA.
- MacFadden, B.J. (1980) Rafting mammals or drifting islands? Biogeography of the Greater Antillean insectivores *Nesophontes* and *Solenodon*. *Journal of Biogeography*, 7, 11–22.
- MINAG (1991) Plan De Acción Forestal Para Cuba, Documento Base. Ministerio de la Agricultura, Havana, Cuba.
- Nellis, D.W. & Everand, C.O.R. (1983) *The Biology of the Mongoose in the Caribbean*. Studies of Fauna Curaçao and other Caribbean Islands, Curaçao, West Indies.
- Núñez Jiménez, J. (1972) *Geografía de Cuba*. Editorial Pueblo y Educación, Havana, Cuba.
- Pimentel, D. (1955) Biology of the Indian mongoose in Puerto Rico. *Journal of Mammalogy*, **36**, 62–68.
- Rodriguez Schettino, L. (1993) Areas faunísticas de Cuba según la distribución ecográfica actual y el endemismo de los reptiles. *Poeyana*, **6**, 1–17.
- Santana, E. (1991) Nature conservation and sustainable development in Cuba. Conservation Biology, 5, 13–16.
- Schwartz, A. & Hedges, S.B. (1991) An elevational transect of Lepidoptera on Pico Turquino, Cuba. *Caribbean Journal of Science*, 27, 130–138.

- Varona, L.S. (1980) *Mamiferos de Cuba*. Editorial Gente Nueva, Havana, Cuba.
- Varona, L.S. (1983) Remarks on the biology and zoogeography of *Solenodon (Atopogale) cubanus* Peers. 1861 (Mammalia, Insectivora). *Birdragen tot de Dierkunde*, **53**, 93–98.
- Woods, C. & Eisenberg, J.F. (1989) The land mammals of Madagascar and the Greater Antilles: comparison and analysis. In *Biogeography of the West Indies: Past, Present and Future* (ed. C.A. Woods), pp. 799–826. Sandhill Crane Press, Gainesville, USA.

Appendices 1–6

The appendices for this article are available online at http://journals.cambridge.org

Biographical sketches

Dr John E. Fa is Head of the International Training Centre at the Durrell Wildlife Conservation Trust, and is active in research on conservation biology in South and Central America, the Caribbean, Europe and Africa.

Juan Pedro has worked on endangered species and captive breeding programmes within Zoologico Nacional, Havana, for over 20 years. At present he is Head of the Fauna Group of the Empresa Nacional para la Protección de la Flora y la Fauna.

Dr Rene Capote is a member of the Cuban Academy of Sciences and the University of Havana. He is director of national research programmes, and a member of various research councils in Cuba.

© 2002 FFI, Oryx, 36(4), 389-395

Biodiversity of Sierra del Cristal, Cuba: first insights

J. E. Fa, J. P. Soy, R. Capote, M. Martínez, I. Fernández, A. Avila, D. Rodríguez, A. Rodríguez, F. Cejas and G. Brull

Appendix 1

Species of vascular plant recorded in Sierra del Cristal, Cuba.

Family	Species	Family	Species
Acanthaceae	<i>Oplonia</i> sp.	Blechnaceae	Blechnum fragile
Annonaceae	^E Annona cristalensis	Boraginaceae	Cordia sp.
	Guatteria blainii		Ehretia tinifolia
	<i>Guatteria</i> sp.	Bromeliaceae	Catopsis sp.
Apocynaceae	Asketanthera fischeri		^E Pitcairnia cubensis
	^E Forsteronia corymbosa		Tillandsia balbisiana
	^E Neobracea valenzuelana		Tillandsia bulbosa
	^E Plumeria filifolia		Tillandsia valenzuelana
	Plumeria obtuse		Vriesea sp.
	^E Rauvolfia salicifolia	Buxaceae	^E Buxus marginalis
Aquifoliaceae	Ilex macfadyenii	Caesalpiniaceae	^E Senna gundlachii gundlachii
-1	Ilex repanda	Campanulaceae	Lobelia sp.
Araceae	Philodendron lacerum	Celastraceae	Torralbasia cuneifolia
nuccuc	Philodendron sp.	Chloranthaceae	^E Hedyosmum grisebachii
Araliaceae	Dendropanax arboreus	Chrysobalanaceae	Hirtella triandra
hialiaceae	^E Dendropanax nervosus	Clusiaceae	^E Calophyllum utile
	Schefflera morototoni	Clusiaceae	^E Clusia callosa
Arecaceae	^E Bactris cubensis		^E Clusia grisebachiana
Arecaceae			Clusia minor
	<i>Calyptronoma</i> sp.		Clusia rosea
۸ ا	Coccothrinax sp.		
Asclepiadaceae	^E Matelea bayatensis		^E Gracinia moaensis
A .	^E Matelea bicolour	Combretaceae	Buchenavia tetraphylla
Asteraceae	^E Baccharis scoparioides		^E Terminalia orientensis
	^E Grisebachianthus lantanifolius		Terminalia sp.
	^E Koanophyllon polystictum	Convolvulaceae	Ipomoea carolina
	Koanophyllon villosum		Ipomoea sp.
	Mikania sp.	Cyatheaceae	Cnemidaria horrida
	^E Senecio pachylepis		Cyathea arborea
	Senecio plumbeus		Cyathea parvula
	^E Senecio rivalis	Cyperaceae	^E Machaerina cubensis
	^E Spaniopappus hygrophilus		Rhynchospora pruinosa pruinosa
	^E Vernonia aceratoides	Cyrillaceae	Cyrilla nipensis
	^E Vernonia cubensis		Cyrilla racemiflora
	^E Vernonia hieracioides		Purdiaea sp.
	^E Vernonia sagraeana	Dennstaedtiaceae	Odontosoria scandens
	^E Vernonia segregata		Odontosoria sp.
	Vernonia sp.	Dilleniaceae	Doliocarpus dentatus
Bignoniaceae	^E Jacaranda arborea	Dioscoreaceae	Dioscorea sp.
	Tabebuia caleticana	Dryopteridaceae	Polystichum echinatum
	^E Tabebuia dubia	Elaeocarpaceae	Sloanea amygdalina
	^E Tabebuia pachyphylla	Ericaceae	^E Lyonia glandulosa var revolutifolia
	^E Tabebuia shaferi		^E Lyonia myrsinefolia
	Tabebuia sp.		^E Vaccinium shaferi

© 2002 FFI, Oryx, 36(4)

1

Appendix 1 continued

Family	Species	Family	Species
Erythroxylaceae	^E Erythroxylum coriaceum	Myrsinaceae	Myrsine coriacea
	^E Erythroxylum longipes		Myrsine cubana
	Erythroxylum sp.	Myrtaceae	Calycolpus sp.
Euphobiaceae	Ditta myricoides		^E Eugenia scaphophylla
	Drypetes serrata	Nyctaginaceae	Guapira rufescens
	^E Euphorbia helenae helenae	Ochnaceae	^E Ouratea revolute
	<i>Gymnanthes albicans</i>	01	Ouratea striata
	^E Hyeronima ovata	Oleaceae	Chionanthus domingensis
	^E Leucocroton obovatus	Orchidaceae	Epidendrum jamaicense Oeceoclades maculata
	Mettenia acutifolia		
	^E Moacroton gynopetalus		Phaius tankervilliae ^E Pleurothallis bovilabia
	Moacroton trigonocarpus		
	Pera ovalifolia Pludlauduus inglandifolius		Polystachya concreta
	Phyllanthus juglandifolius		Vanilla dilloniana
	juglandifolius EDL-llanding mineralisteres	D	Vanilla wrightii
	^E Phyllanthus microdictyus	Passifloraceae	Passiflora rubra
	^E Platygyne hexandra		Passiflora sp.
	^E Sapium cubense		Passiflora suberosa
- 1	^E Savia cuneifolia	D	Passiflora tulae
Fabaceae	^E Brya subinermis	Piperaceae	Peperomia guadalupensis
	Desmodium incanum var		Peperomia hernandiifolia
	incanum		^E Piper wrightii
-1	Teramnus uncinatus	Poaceae	^E Arthrostylidium fimbriatum
Flacourtiaceae	^E Casearia sylvestris var myricoides		Pharus lappulaceus
	^E Lunania cubensis	Podocarpaceae	^E Podocarpus angustifolius
Gentianaceae	^E Macrocarpaea pauciflora		Podocarpus aristulatus
Gesneriaceae	^E Gesneria duchartreoides	Polygalaceae	Securidaca virgata
	Gesneria sp.	Polygonaceae	^E Coccoloba caesia
Gleicheniaceae	Dicranopteris flexuosa		Coccoloba costata
Hymenophyllacea	Hymenophyllum sp.		Coccoloba diversifolia
	Trichomanes scandens		^E Coccoloba retusa
Lauraceae	Ocotea foeniculacea		^E Coccoloba shaferi
	Ocotea leucoxylon		Coccoloba sp.
	Ocotea nemodaphne	Polypodiaceae	Pteridium aquilinum
Liqceae	<i>Cladonia</i> sp.		Thelypteris londiodes
	Usnea barbata	Rhammnaceae	^E Colubrina glandulosa nipensis
Lomariopsidaceae	Elaphoglossum wrightii		^E Rhamnidium nipense
.ycopodiaceae	Lycopodium sp.		^E Rhamnidium shaferi
Magnoliaceae	^E Talauma minor oblongifolia	Rosaceae	Prunus occidentalis
Malpighiaceae	^E Byrsonima biflora	Rubiaceae	^E Antirhea maestrensis
	Byrsonima coriacea		^E Antirhea scrobiculata
	^E Byrsonima orientensis		Chiococca alba
	<i>Byrsonima</i> sp.		^E Chiococca cubensis
	Stigmaphyllon sagraeanum		Coccocypselum herbaceum
	Triopteris rigida		^E Exostema rotundatum
/falvaceae	Pavonia fruticosa		Lasianthus lanceolatus
Aarattiaceae	Danaea elliptica		^E Machaonia microphylla
Marcgraviaceae	^E Marcgravia evenia		Psychotria berteroana
Aelastomataceae	Calycogonium sp.		Psychotria cuspidate
	Mecranium purpurascens		^E Psychotria ossaeana
	Mecranium sp.		Psychotria revolute
	^E Miconia baracoensis		<i>Psychotria</i> sp.
	Miconia dodecandra		Schradera cephalophora
	Miconia prasina		^E Suberanthus canellifolius
	<i>Ossaea</i> sp.	Rutaceae	^E Helietta glaucenscens
Aoraceae	Cecropia schreberiana		<i>Spathelia</i> sp.
	Ficus sp.		Zanthoxylum sp.

Family	Species	Family	Species
Sapindaceae	^E Allophylus cristalensis	Solanaceae	Cestrum laurifolium
•	Matayba domingensis		Solandra sp.
	Matayba oppositifolia		^E Solanum moense
	Serjania diversifolia	Theaceae	^E Laplacea cristalensis
Sapotaceae	Chrysophyllum sp.		^E Laplacea moaensis
•	^E Manilkara jaimiqui jaimiqui	Ulmaceae	Trema micrantha var mollis
	^E Micropholis polita	Verbenaceae	Callicarpa ferruginea
	^E Sideroxylon jubilla		^E Clerodendrum anafense
Schizaeaceae	Anemia coriacea	Zingiberaceae	Clerodendrum sp.
	Lygodium oligostachyum	0	^E Renealmia amoena
Smilacaceae	Smilax balbisiana		

Appendix 1 continued

Appendix 2

Species of spider recorded in Sierra del Cristal, Cuba, with their occurrence in evergreen, montane and scrub forest.

Family				
	Species	Evergreen forest	Montane forest	Scrub forest
Barychelidae	^E Trichopelma cubana	Х		
Dipluridae	^E Ischnothele longicauda	Х	Х	Х
Theraphosidae	Citharacanthus sp.		Х	
Anyphaenidae	Hibana velox		Х	Х
<i>J</i> 1	Wulfila longipes		Х	
Araneidae	Araneus pegnia		Х	Х
	Argiope argentata	Х		Х
	Cyclosa walckenaeri	Х	Х	
Araneidae	Cyrtophora nympha	Х	Х	
	Eriophora ravilla	Х	Х	
	^E Micrathena cubana		Х	
	Micrathena horrida		Х	
	Micrathena militaris	Х		
	Verrucosa arenata			Х
Clubionidae	Clubiona sp.			Х
Ctenidae	Ctenus vernalis	Х	Х	Х
Dinopidae	Dinopis lamia	X		
Gnaphosidae	Unidentified species			
Hahniidae	Hahnia ernesti?			Х
Heteropodidae	Heteropoda venatoria	Х		
Lycosidae	Lycosa fusca	X		Х
Linyphiidae	<i>Frontinella</i> sp.	X		
Ochyroceratidae	Theotima sp.	X		
Oonopidae	Heteronops sp.	X		
I	Oonops cubanus	X		
Oxyopidae	Peucetia viridans			Х
Pholcidae	Bryantina cubana	Х	Х	
1 Horeituue	Modisimos sp.	X	X	
	Physocyclus globosus	X		Х
Pisauridae	Dolomedes triton	X		
Salticidae	Corythalis aurata	X	Х	Х
ounicidade	Hentzia antillana			X
	Lyssomanes antillanus	Х		X
	Sarinda sp.	A		X
	Synemosina smithi			X
Scytodidae	Scytodes fusca			X
ocytochude	Scytodes longipes	Х		Л
	Scytodes sp.	X		

© 2002 FFI, Oryx, 36(4)

https://doi.org/10.1017/S0030605302000741 Published online by Cambridge University Press

Appendix 2 continued

	Species	Habitat type				
Family		Evergreen forest	Montane forest	Scrub forest		
Selenopidae	Selenops aequalis	Х		Х		
Tetragnathidae	Leucauge regny	Х	Х	Х		
Ŭ	Alcimosphenus licinus	Х		Х		
	Nephila clavipes		Х			
	Tetragnatha elongata	Х				
Theridiidae	Argyrodes elevatus		Х			
	Argyrodes mexicanus	Х				
	Latrodectus mactans			Х		
	Steatoda erigoniformis			Х		
	Theridion rufipes			Х		
Theridiosomatidae	Wemdilgarda clara		Х			
	Misumenops sp.			Х		
Thomisidae	^E Miagrammopes cubanus	Х				
Uloboridae	Philoponella semiplumosa	Х				
	Uloborus glomosus	Х				

^E Endemic species

Appendix 3

Species of terrestrial (with one exception, indicated) mollusc recorded in Sierra del Cristal, Cuba, with the number of localities in which each species was recorded, and their occurrence in evergreen, montane and scrub forest.

			Habitat type		
Family	Species	No. of localities	Evergreen forest	Montane forest	Scrub forest
Helicinidae	^E Helicina sp.	3		Х	
	^E Emoda caledoniensis	5		Х	Х
	Emoda submarginata	6	Х	Х	Х
	^E Lucidella granullum	5		Х	
	Alcadia minima	2		Х	
	^E Alcadia neebiana	1		Х	
	^E Ceratodiscus sp.	7	Х	Х	
Cyclophoridae	^E Crocidopoma sp.	3	Х		
Annulariidae	^E Chondropoma sp.	9		Х	
Veronicellidae	Veronicella cubensis	8	Х	Х	
	^E Veronicella sp.	3		Х	
Helminthoglyptidae	^E Coryda alauda	14	Х	Х	Х
0.71	Plagyopticha sp.	13	Х	Х	
	^E Cysticopsis sp.	9	Х	Х	
Sagdidae	Hojeda boothiana	11	Х	Х	
0	Unidentified species	10	Х	Х	
Zonitidae	Hawaiia sp.	1	Х		
	Guppya gundlachi	5	Х	Х	
Pleuroceriidae	Pachychilus nigratus	1	X (aquatic)		
Camaenidae	^E Zachrysia sp.	4		Х	
	^E Caracolus sagemon	9	Х	Х	Х
Succineidae	Succinea sp.	3	Х		
Subulinidae	Obeliscus sp.	15	Х	Х	
	^E Obeliscus sp.	4	Х		
	Subulina octona	4	Х		
	Opeas pumillum	1	Х		
Oleacinidae	Oleacina solidula	8	Х	Х	
	Oleacina straminea	1	Х		

^E Endemic species

Appendix 4

Species of amphibian collected in Sierra del Cristal, Cuba, with the number of individuals found of each species and whether or not vocalizations were recorded.

Family	Species	No. of individuals	Vocalizations recorded
Hylidae	Osteopillus septentrionalis	2	
Bufonidae	^E Bufo taladai	4	Х
Leptodactylidae	^E Eleutherodactylus atkinsi	16	Х
	^E Eleutherodactylus auriculatus	12	Х
	^E Eleutherodactylus dimidiatus	6	
	^E Eleutherodactylus ionthus	1	Х
	^E Eleutherodactylus cuneatus	16	Х
	^E Eleutherodactylus limbatus	2	
	^E Eleutherodactylus sp. nov.	10	Х
	^E Eleutherodactylus varleyi	4	Х

^E Endemic species

Appendix 5

Species of reptile collected in Sierra del Cristal, Cuba, with their occurrence in evergreen, montane and scrub forest.

Family		Habitat type			
	Species	Evergreen forest	Montane forest	Scrub forest	
Anguidae	^E Diploglossus delasagra		Х		
Gekkonidae	Sphaerodactylus celiccelicara	Х			
Polychrotidae	Anolis angusticeps		Х		
	^E Anolis allogus	Х	Х		
	^E Anolis alutaceus	Х	Х		
	^E Anolis argenteolus	Х	Х		
	Anolis homolechis			Х	
	^E Anolis isolepis		Х	Х	
	^E Anolis porcatus	Х	Х	Х	
	Anolis sagrei	Х	Х	Х	
	^E Anolis sp.nov. (c.f. alutaceus)		Х		
	Anolis smallwoodi?		Х		
Tropiduridae	^E Leiocephalus macropus		Х	Х	
*	^E Leiocephalus cubensis	Х			
Teiidae	Ameiva auberi		Х	Х	
Colubridae	Alsophis cantherigerus		Х		
	^E Antillophis andreai	Х	Х		
Tropidophidae	^E Tropidophis melanurus	Х			
Typhlopsidae	Typhlops lumbricalis		Х		

^E Endemic species

Appendix 6

Species of bird collected in Sierra del Cristal, Cuba, with their status, and occurrence in evergreen, montane and scrub forest.

			Habitat type		
Family	Species	Status	Evergreen forest	Montane forest	Scrub forest
Ardeidae	Bubulcus ibis	S	Х		
	Nyctanassa violacea	С	Х		
Cathartidae	Cathartes aura	С	Х	Х	Х
Accipitridae	Accipiter striatus	R		Х	
	^E Accipiter gundlachi	С	Х	Х	
	Buteo platypterus		Х	Х	
	Buteo jamaicensis	С	Х	Х	Х
Falconidae	Falco sparverius	R	Х		
Aramidae	Aramus guarauna	C	X		
Columbidae	Columba squamosa	S	X	Х	Х
continuitate	Zenaida asiatica	C	X	X	
	Geotrygon caniceps	R		Х	
	Geotrygon montana	S	Х	X	
Psittacidae	Amazona leucocephala	S	X	X	
rsittaciuae		S	X	X	
C	^E Aratinga euops				V
Cuculidae	Saurothera merlini	С	X	Х	Х
Strigidae	Crotophaga ani	С	Х		
	Tyto alba	S		Х	
	^E Otus lawrencii	S	Х	Х	
	^E Glaucidium siju	С	Х	Х	
	Asio stygius	R	Х	Х	
Apodidae	Cypseloides niger	R		Х	
Trochilidae	Chlorostilbon ricordii	С	Х	Х	Х
Trogonidae	^E Priotelus temnurus	С	Х	Х	Х
Todidae	^E Todus multicolour	С	Х	Х	Х
Alcedinidae	Ceryle alcyon	R	Х		
Picidae	Sphyrapicus varius	S		Х	
	^E Xiphidiopicus percussus	С	Х	Х	
	Colaptes auratus	С	Х	Х	
Tyrannidae	Contopus caribaea	С	Х	Х	Х
5	Myiarchus sagrae	S	х		
	Tyrannus caudifasciatus	C	Х	Х	Х
Corvidae	Corvus nasicus	C	X	X	
Muscicapidae	^E Myadestes elisabeth	C	X	X	
Widscicupidae	Turdus plumbeus	C	X	X	Х
Emberizidae	Parula americana	C	X	X	Х
Emberizidae	Dendroica tigrina	s	X	Х	
	Dendroica caerulescens	C	X	v	Х
	Dendroica dominica			Х	А
		S C	X X	X	
	Mniotilta varia			X	24
	Setophaga ruticilla	С	Х	Х	Х
	Seiurus aurocapillus	S	Х	Х	
	Seiurus motacilla	С	Х	Х	
	^E Teretistris fornsi	С	Х	Х	Х
	Cyanerpes cyaneus	R	Х		
	Spindalis zena	R	Х		
	Melopyrrha nigra	С	Х	Х	Х
	Tiaris olivacea	С	Х	Х	Х
Icteridae	^E Dives atroviolacea	С	Х		
	Quiscalus niger	С	Х	Х	
	Icterus dominicensis	С	Х		

^E Endemic species

Status: C common, S seasonal migrant, R rare.