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THE DECAY OF THE LOCAL ENERGY FOR

WAVE EQUATIONS WITH DISCONTINUOUS

COEFFICIENTS

HIDEO TAMURA

§ 0. Introduction

The exponential decay of the local energy for wave equations in
exterior domains of the odd dimensional space has been proved in [1]
~ [6] etc. under the Dirichlet boundary condition and in [5], [7] under
the Neumann condition and the other conditions. In this paper, we shall
consider this problem for the following equation:

(I) ^-u = -λ-F-p(x)Fu , in Rn x (0, oo)
at2 p{x)

with the initial data

u(x, 0) = f(x) and ut(x, 0) = g{x) ,

where n > 3 is the space dimension, f(x) and g(x) are of compact sup-
port, and p(x) is the discontinuous function defined as follows:

f= p > 1 , in 0
P(X)\=1 in * = « » - * .

It is convenient to regard the problem (I) as follows: Let v
= Û(o,oo) and w = w|,X(o,oo). Then, v and w satisfy the equations • v = 0
and • w = 0 in $ x (0, oo) and Θ X (0, oo), respectively, and the relation
between v and w

(0.1)

(0.2)

holds on dΘ = i.

dv
dn

?<?, where n = (nu

ι =

dw
Pdn

-,nn) (ienotes the unit normal on
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which points into £. (From now on, we use n = (n19 , nn) in this
sense in order to fix the notation.)

By a C2-solution u9 we mean that u belongs to C2ψ x [0, oo))
Π C\ϊ x [0, co)) and satisfies (0.1) and (0.2) on d£ and that u is real valued.

In fact, such a solution exists: We set A = — F-p(x)P. Then, the

operator A is a positive self-ad joint operator in L\p{x)dx) with weight
p(x) whose domain is given by

2{A) = {ueH\Rn)\w = u\φeH\Θ), v = u\,eH\£), w and v satisfy

(0.1) and (0.2) in HZf\d£) and Hι/\d£), respectively} ,

H\Θ) and H\δ), being the usual Sobolev spaces. Hence, this implies
that for given feH\Rn) and geL2(Rn) of problem (I), there exist a
unique weak solution u(x, t) such that u(x, t) e C\(0, T) L\Rn)) Π C((0, T)
H\Rn)) for any Γ > 0. Moreover, if di is smooth enough, the following
regularity theorem holds for A:

2{AN) d{ue Hι(Rn) I w e H2N(Θ), v e H2N{£)} .

Hence, if we choose the initial data / and g as / e @(AN) and g e £b(AN),
N being large enough, we can find a desired solution by the imbedding
theorem of Sobolev. We note that a weak solution is obtained as a limit
of such a solution in the energy norm.

As is easily seen, the total energy

f p(x)(\ut(t)\2 + \Vu{t)\2)dx

is conserved in ί. We denote this quantity by G0(u), so that

-GJLu) < f Qut(f)\2 + \Fu(t)\2)dx < G0(u) ,
p J Rn

since p > 1. We define E(u; h, T) as follows:

E(u h, T) = f (K(T)i2 + \Vu{T)f)dx .

Before stating the main theorem, we make the following assumption
on Θ:

Assumption (A), (i) O is a convex open bounded domain with smooth
boundary which contains the origin. For brevity,
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(0.3) & <Z {x\\x\ < i} .

(ii) There exists a C4-function %{x) such that

(a.l) χθ) = const > 0, on di

(a.2) Xn = J*- = ( χ r «,) > β > 0, X] = ft on dS
cm oXj

(a.3) (χ^ ), χ^ = d2χ/dXidXj, is a positive definite matrix at each point

of Rn;

(a.4) χ = (1 — r~δ)Xj/r, r = \x\, 0 < δ < 1, for r > r0 large enough.

If 0 is strictly convex, we can find such a function (see [5] p. 246).

MAIN THEOREM. Let n > 3. Assume that Assumption (A) is satis-

fied. Let u be the C2-solution of problem (I) with the initial data f and

g of compact support: support of f and g a \x\ < γ. Then, if n is odd

E(u;h,T) < k.e-^Goiu) ,

and if n is even,

E(u;h,T) < k2T'ιGlu) ,

where kί9k2 and θ are constants depending only on h and γ.

The above main theorem is proved by a modification or generaliza-

tion of methods used in Morawetz [4] and Strauss [6]. In § 1, we show

that E(u h, t) is integrable in t and in § 2, we prove that E(u h, t) de-

cays at the rate of t~\ In §3, we prove the exponential dacay.

Finally we note the following facts throughout this paper: (a) k,

k19 k2, are used to denote positive constants, which are not necessarily

the same, (b) Integration with no domain attached is taken over the

whole space, (c) we use the summation convention, (d) we write

simply χn, vn, instead of -Z-
an an

1. Integrability of the local energy

We state some preliminary lemmas.

LEMMA 1.1. Let χ{x) be a C4-function. Then, the identity

(1.1) (utt - UjjXxίUi + \luu) = Xt(u) + F Y(u) + Z(u)

holds, where
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X(u) = ut

Yj(u) = -UjixiUi + iχHu) + iχjQFu\2 - u2) + i

LEMMA 1.2. Assume that χ{x) is a CA-function satisfying (a.4).

Then, we have

(1.2)

(1.3)

y?or r — I^I > r o large enough.

By a direct calculation, we obtain Lemmas 1.1 and 1.2. (see Lemmas

1 and 2 of Strauss [6])

LEMMA 1.3. Let u be a C2-solution of problem (I). Suppose that

Assumption (A) is satisfied. Then, for any ε > 0 small enough,

Γ ί e~ut(\Vu\2 + (1 + r)-V)(l + r)-ι-*dxdt

< kfioiu) + k2 Γ ί e~2εtu2dxdt ,
Jθ J |^!<r0

where kx and k2 are constants independent of ε and T, and GQ(u) is the

total energy.

Proof. We set v = w|lX(OjΓ) and w = ^UCCD. We multiply the iden-

tity (1.1) with χ(x) satisfying (a.l) — (a.4) by e~2εt and integrate over

S X (0, T) and Θ x (0, T), separately. We have

Γ ί e~2εtZ(v)dxdt = - Γ ί e-^Z
JO J e Jo J ε

(1.4) + Γ f e-2U

JO J 3ε

Γ f β-2eίZ(i(;)ώ(iί = - Γ f e-2εtXt(w)dxdt
JO J Θ JO J Θ

(1.5) - Γ f e-^iYjW-n
J o J 3<f

= //, - //,
Integration by parts yields
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lλ = - f e-uτX(v,T)dx + ί X(v,0)dx - 2ε Γ f e'utX(v)dxdt

= 7 u + /„ + /is

Recalling the expression of Z(t ) in Lemma 1.1, we have

< fctyj + \Fv\2 + r~V)

for some k > 0, since χ t i = CKr"1) as r - * oo. Integrating X(y) over ^,

we have

ί X(v)dx <kUu2

t + \Fu\2 + r~2u2)dx .

Note that if n > 3, ϊr~2u2dx < k [\Fu\2dx. Then, it follows that

(1.6) /„, /12 < feGo(^) .

Moreover, we have

(1.7) /13 < kε Γ e-utdtG0(u) < kfioiu) .
Jo

Combining (1.6) and (1.7), we obtain

(1.8) I, < kGM .

Similarly we have

(1.9) Πλ < kG0(u) .

Next, we consider the terms I2 and 7/2. Making use of the fact that

XίVi — χnvn on dS by (a.l) and writing \Fv\2 = v2

n + | F t a n ^ | 2 on 3<f, we have

We obtain a similar expression also for (Y/w) % ) . In view of relations

(0.1) and (0.2), we see that

Since (1 - p2)χn < 0 by p > 1 and (a.2), it follows that on dS

{YjW nj) - (Y/w) wy) < few2 ,

for fc > 0. Furthermore we have for any η > 0 small enough,
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ί w2dσ < η [ \Vwf dx + kirj) [ w2dx .
J Zs J e Jo

Hence, we obtain

(1.10) I2 - II2 < η Γ ί e~2et \Fw\2 dx + k(v) Γ ί e~2εtw2dx
JO Jo Jo Jo

for any η > 0 small enough.

Now, by (1.2) and (1.3),

(1.11) Z(v) > δr~ι-δ ψvf + iδ(l + δ)r~3-δv2 , for \r\ > r0 .

And by (a.3),

(1.12) Z(v) > kλ ψvf - k2v
2 , in \x\ < τ0 Π δ ,

(1.13) Z(w) > fe3 \Fw\2 — k4w
2 , in 0 .

Taking η in (1.10) small enough and combining (1.8) — (1.12) with (1.13),

we finally obtain

Γ [e-2st(\Vu\2 + (1 + r)"V)( l + rYι~δdxdt

< kyG^u) + k2 Γ f e~2etu2dxdt .
Jo J [x\<.ro

LEMMA 1.4. Under the same assumption as in Lemma 1.3, the fol-

lowing estimate holds:

Γ e~2st(l + rYl->u\dxdt
Jo

+ k2 Γ ί e~2stu2dxdt .
Jθ J \x\<,r0

Proof. Let p(x) - (1 + r 2)" ( 1 + δ ) / 2. Then, \Δp\ < k(l + r)" 3 " 3 . As in

the proof of Lemma 1.3, we set v = ^|eX(0,r) and w — ^^(o^). We mul-

tiply the equation • v = 0 by e~26tp(x)v and integrate over £ x (0, Γ).

Then, we have

0 = f e~2etp(x)vtvdx\T + [ [ e~ut{\Vv\2 - vl)p(x)dxdt
Jg |0 J 0 J 8

+ 2ε Γ f e~2etp(x)vtvdxdt + [ [ e-2itp(x)vnvdσdt
Jo Jδ Jo Jd*

- λ Γ ί e-2stpnv
2dσdt - -1 Γ e~stΔpv2dxdt .

2 J o J a * 2 J o
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A similar identity for w is obtained by multiplying • w = 0 by pe~2etp(x)w

and integrating over 0 X (0, T). By the definition of p(x), we can prove

in the same way as in the proof of Lemma 1.3 that

(1.14) f e~2etp(x)vtvdx[T < kG0(u) ,

(1.15) 2ε Γ f e~utp{x)vtvdxdt < kG0(u) .

The same estimates as (1.14) and (1.15) are obtained for w(x) with do-

main of integration Θ. Thus, by taking account of relations (0.1) and

(0.2), and by adding up the two identities obtained for v and w, the

boundary integral is estimated by

k Γ f e~2εt(\Fw\2 + w2)dxdt ,
Jo JΦ

so that we have

Γ f a + rYl~*u\dxdt

< kfiM + k2 Γ f e-2tt{\Vu\2 + (1 + r)-V)(l + ry

Combining this estimate with Lemma 1.3, we obtain the conclusion.

LEMMA 1.5. Suppose that the same assumption as in Lemma 1.3 is

satisfied. Let R be a positive fixed number. Then, for any η > 0 small

enough, there exists a constant k = k(jj) independent of ε such that

Π e~2stu2dxdt < kG0(u) + η Γ f e~2st(l + rYι~*u\dxdt ,
\χ\<,τt Jo J

where we note that the constant k may depend on the support of the

initial data f and g.

This lemma will be proved in Appendix.

Combining Lemmas 1.3 and 1.4 with Lemma 1.5, and letting Γ-*oo

and ε -> 0, we immediately obtain the following result.

THEOREM 1. Let n > 3 and let u be a C2-solution of problem (I)

with initial data of compact support. Suppose that Assumption (A) is

satisfied. Then,
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Γ \(u2

t + \Fu\2)(l + r)-ι~δdxdt < kGQ(u)

for k > 0 depending only on δ and the support of the initial data. There-

fore, we have that

E(u;h,t) =[ iu\ + \Vuf)dx

is integrable in t.

§2. Uniform decay of the local energy

In this section, we shall prove the uniform decay of the local energy.

We introduce the following function: Let £{x) be a C4-function such

that

(2.1) S(x) = const > 0 , on di

(2.2) 4 = (£yn3) > β > 0 , on dδ

(2.3) £(x) = r2 for \x\ > r1 (rx large enough) .

We begin with the following identity (cf. Morawetz [4] and

Zachmanoglou [9]): Let A(x, t) be a C°°-function of x and ί.

(2.4) iutt - u3j)(Aut + UJUJ + in - l)tu) = Ft(u) + F G(u) + H(u) ,

where

F(u) = %A(u\ + \Fu\2) + UjUjUt + (n - l)tutu - \{n — T)u2

Gj(u) = -Uj(Aut + UJUJ + (n- l)tu) + ^U^Vuf — uΐ)

H(u) = \u%Uu - A t - 2{n - l)t) + utuj{Aj - £d)

2(w - ΐ)t \Fu\2 - UJJ \Vu\2 - At ψuf) .

LEMMA 2.1. Let u be a C2solution of problem (I) with initial data

of compact support and let w = u\exiOtT). Assume that £(x) satisfies

(2.1) - (2.3). Then,

—T2 [ (wt(T)2 + \Vw(T)\2)dx
2 J ΰ

< JcTGoiu) + Γ f a(t)dσdt
Jo J d*

for k > 0 independent of T, where

https://doi.org/10.1017/S0027763000017864 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000017864


WAVE EQUATIONS 43

a{t) = \Unw\ + \Un(w\ - |F tanw|2) + (n - ΐ)twnw + p(r2 + t2)wnwt ,

and \Vw\2 = w2

n + \FtΆnw\2 on d£.

Proof. We integrate (2.4) with A = p(r2 + t2) over Θ x (0, T) to ob-

tain

(2.5) 0 = ί F(w)dx\ + Γ ί (Gj(w)'nj)dσdt + Γ ί H(w)dxdt .
j e \o Jo J d* Jo J o

We note the following estimates:

(2.6) H(w) < kt(w\ + \Vw\2)

\wtw\dx<k(\ w\dx + w2d

^ } ίc c
< k\ u\dx + r - V

(2.8) ί w2dx < kGQ(u) .
Jo

Making use of these estimates, we see from (2.5) and the expression of

F(w) that

—T2 f (wt(T)2 + \Vw(T)\2)dx
(2.9) 2 U

< kTGQ(u) - Γ ί (Gj(w)-nj)dddt .
Jo J df

On the other hand, by (2.1), we have

(2.10) 2 2

+ p(r2 + t2)wnwt + (n — l)twnw .

Combining (2.10) with (2.9), we obtain the desired estimate.

LEMMA 2.2. Let u be a C2-solution of problem (I) with initial data

of compact support and let v = u\,xiOiT). Assume that £(x) satisfies (2.1)

— (2.3). Then, for fixed h > 0, there exists a constant k — k(h) inde-

pendent of T such that

r\ (vt(Ty + \Fv(T)\2)dx
8 J

< kTG0(u) + Γ f β(t)dσdt
JO J dt
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for any T > 0 large enough, where

β(t) = -h£nvl - λt£n(rt - |F t a n vf)

- (r2 + t2)vnvt - (n - ΐ)tvnv ,

and the constant k(h) may depend on the support of the initial data.

Proof. First, we rewrite F(v) and G(v). To do so, we consider the

following identity:

-i(n - I)(v2)t = -\{n - l)F (r-2((r2 + t2)v2)tx)

+ i(w - l)((r"2(r2 + t2)((Fv-x)v + ±(n - 2)v2))t) ,

x z=z (χ19 . . . , χn) being a position vector. By use of this identity, we

rewrite the last term of F(v), —l(n — ΐ)v2

9 so that we have

(2.11) (vtt - vj3){Avt + UJVJ + (n- l)tv) = Ft(v) + F-G(v) + H(v)

with A(x, t) = (r2 + ί2), where

Fiv) = \{χ2 + t2)(v\ + \Vv\2) + UjVjVt + (n- ΐ)tvtv

+ i(n - l)(r"2(r2 + t2)((Fv-x)v + \{n - 2)v2))

Gj(v) = -vj((r2 + t2)vt + UJVJ + (n- l)tv) + \U&Vvf - v])

- \{n - l)r"2((r2 + t2)v2)tXj .

H(v) = H(v) .

We integrate (2.11) over £ x (0, T) to obtain

(2.12) 0 = f F(v)dx[ - Γ [ (GjW nJdσdt + Γ f H(v)dxdt .

Now, by (2.3), we have in \x\ > rίf

so that

ίfOy) = 0 , in \x\ > ττ .

Hence, we have in <?

5(v) < ftί(l + r)-ι-\v\ + \Fv\2)

for fc > 0 independent of t, so that by Theorem 1,
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(2.13) Γ ί H(v)dxdt < kTG0(u)

with k > 0 independent of T. Clearly,

(2.14) f \F(v)\dx\ <kG0(u) ,
J<r |o

for k > 0 depending only on the support of the initial data, where we

have used that \r~2u2dx < k \\Fu\2 dx for n > 3. On the other hand,

F(v)\τ can be rewritten as follows:

where

Kx{v, T) = W2 + T2)(\Fv\2-vl)

+ \r~2m{{r + T)2((rmv)r + (rmv)t)
2

+ (r - T)\(rmv)r - (rmv)t)
2)

+ (i(w - l)(n - 2) - i(n - l)2)r"2(r2 + Γ2)i;2,

m = (n- l)/2 ,

K2(v, T) = (^^^ -

Note that for n > 3, i(w - l)(w - 2) - ^ - I)2 > 0 and that K&, T) > 0.

By (2.3),

JJ r , in |α?| > rx ,

so that

K2(v,T) = 0 , in | ^ | > n .

Hence, we have

(2.15) ί \K2(v, T)\dx< kTG0(u)

for k > 0 independent of T. Moreover, when |#| < h, h < \T,

- 3)r~2(r2 + T2)v2

v\ + J(w - l)F (r-Va )

- 3)r"2t;2) + ^<» - l)(n - 3)r"2(r2
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With the above estimates (2.13) ~ (2.16), we have from (2.12)

—T2 [ (\Fv\2 + v\ + —(n - l)F-(r-2v2x))dx
8 J\x\£hΓι* \ 2 /

< kTG0(u) + Γ f (Gjiv)-'.
Jo j de

(2.17)

Recalling the expression of Gj(v) and writing \Vvf — v\ + \FvtΆnv\2 on
we have by (2.1)

(GjW nj) = β(jb) - i(n - l)r~2((r2

where β(t) is the function defined in this lemma. Hence,

Π (Gj(v).nj)dσdt = Γ f j8(t)dσdt
S ^ JO J dί

- λ(n - 1) f r~2(r2 + V)v\vr
4 J3*

Since

ί (7 . ( r -2^2^^ __. r~ιv2dσ — r~2v2(Xj'n

|a?|£Λn* J|α?|-Λ ids

it follows from (2.17) that

—T2 f (|Fi;|2 + v])dx

< kTG0(u) + Γ ί β(t)dσdt + L(v) ,
JO J 3 ^

(2.18)

where

—

> 0 on dέ

L(v

n - 1)T

T n

ί ~2 H

) f r-\r

* because of the

)<k\ vXxrnj)

n,)do
T

•2 + t2)v2(xj

convexity

da
0

T β (

T

• Uj)dσ
0

of Θ,Since

This, together with (2.18), completes the proof.
Combining Lemmas 2.1 and 2.2, we have the following theorem.
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THEOREM 2. Suppose that Assumption (A) is satisfied. Let u be

the C2-solution of problem (I) with the initial data f and g such that

the support of f and g is contained in \x\ < γ. Then, there exists a

constant k = k(h, γ) independent of T such that

(2.19) Eiu ;h,T)< kT-'GM .

Remark. This result is valid for weak solutions, since a weak so-

lution is obtained as a limit of C2-solutions in the energy norm.

Proof. We add up the two inequalities obtained in Lemmas 2.1 and

2.2. Then, we have

x\<h
(\Fu(T)\> + ut(Tf)dx

< kTG0(u) + Γ f (α(ί) + β(t))dσdt ,
JO J dδ

ait) and β(t) being the functions defined in Lemmas 2.1 and 2.2, respec-

tively. Recall the relations (0.1) and (0.2). Then, we have

ait) + βit) = i ( l - p2)Unwl +(n- 1)(1 - p)twnw .

Since p > 1 and £n > β > 0 on dS by (2.2), it follows that

ait) + β(t) < ktw2 , on d£ ,

for k > 0 independent of t. Moreover, we have by Theorem 1,

Γ ί w2dσdt < k Γ ί i\Fw\2 + w2)dxdt < kGoiu) .
J o j a / Jo J Θ

This completes the proof.

§ 3 . Exponential decay of the local energy

In this section, we shall prove the exponential decay of the local

energy when n is odd, using Theorem 2 and following the procedure of

Morawetz [4].

We recall the definition of Eiu h,t):

E{u M ) = (Utity + \Fu(t)f)dx ,

and introduce the new notation:
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(3.1) G(u; M ) = f p(x)(ut(t)2 + \Vuit)f)dx .
J \x\<,h

Since p > 1, we have

(3.2) £7(w ; h , t ) < G ( u ; h , t ) < p E ( u ; h , t ) .

In this section, by a solution we mean a weak solution. As was

stated in Introduction, G(u; oo, ί)(= GQ(u)) is conserved in t for the so-

lution u of problem (I). For later use, we rewrite (2.19) as follows:

(3.3) E(u;h,T) < p{T, h9 γ)E(u oo, 0)

with p(T,h,γ) — pk(h,γ)T~\ k(h,γ) being the constant in Theorem 2. By

Remark after Theorem 2, (3.3) is valid for weak solutions.

LEMMA 3.1. Let u be the solution of problem (I) with the initial

data f and g such that f e Hι{Rn) and g e L2(Rn) and that the support

of f and g is contained in \x\<γ. (γ > \> Θ c \x\ < γ by (0.3)). Then,

the solution u may be written as

M = Ro + F o ,

where FQ is the free space solution with the same initial data as u.

Furthermore,

F o = 0 for r = \x\ < t - γ .

RQ has compact support of at most Sγ at t — 2γ, and is a solution of

problem (I) for t > 2γ. We have

E(RQ oo, s) < 4GQ(u) , s > 0 .

Proof. It is clear that Fo = 0 for r < t — γ by Huyghen's principle.

Hence, for t > 2γ, FQ = 0 in \x\ < γ, so that Fo is a solution of problem

(I) for t > 2γ. Since u is a solution of problem (I), Ro is also a solution

for t > 2γ. We easily see that Ro has compact support of at most 3f at

t = 2γ by the dependence of domain. Moreover, we have for s > 0,

oo, 8) = #(tt - F o oo, s) < 2{E{u oo, s) + E(F0 oo,«)) .

Using (3.2) and the fact that Fo is the free space solution with the same

initial data as u9 we conclude that

E(RQ; oo,s) < 2(G(u; oo,s) + E(F0; oo,0))

< 2(G0(u) + G(F0; oo,0)) = 4G0(^) .
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LEMMA 3.2 (Morawetz [4], Lemma 2). For T > 4γ, Ro = Rx + Fv

Here Fx is the free space solution with the same initial data as Ro at

t = T, and

F, = 0 forr<t-T-γ,

while Rx is a solution of problem (I) for t > T + 2γ and has compact

support of at most 2>γ at t == T + 2γ. Furthermore,

E(RX oo, T + 2γ) < kE(R0 5γ, T)

with k = 2{p + 1).

Proof. We continue Fι as Fx = Ro for t<T. Then, Π F1 = 0 in

the domain exterior to |a?| < γ X (0, Γ). We apply Huyghen's principle

to Fλ in this domain. Let (x, t) be a point with |# | < t — Γ — γ. Then,

the backward cone with vertex at (x, t) does not intersect \x\ = p x (0, Γ),

and intersect the plane ί = 2γ outside the sphere \x\ < Sγ where the sup-

port of Ro is contained in virtue of Lemma 3.1. Thus we conclude that

Fx = 0 for I a; I < t - T - γ. Consequently, when t > T + 2γ, Fγ is a solu-

tion of problem (I). By Lemma 3.1, Ro is a solution of problem (I) for

t > 2γ. Hence, Rx is also a solution for t > T + 2γ, and the fact that R1

has compact support of at most 3f at t = T + 2γ is easily obtained by

the dependence of domain, since • Rι = 0 in \x\ > γ x (Γ, oo) and Rι = 0

at ί = Γ. Therefore, we have

, oo, Γ + 2γ) = ^ ( β , 3 r , Γ + 2 r)

< 2(ί7(β0 3 r , Γ + 2 r) + £7(ί\ 3 r , Γ + 2γ))

< 2(G(R0 ;Sγ,T + 2γ) + E{Fλ 3 r , T + 2r)) .

On the other hand, making use of the fact that Ro and Fx are solutions

of problem (I) and of the free space wave equation with the same ini-

tial data as Ro at t = T, respectively, we can obtain by the standard

method of energy estimate that

G(R0 ;3γ,T + 2γ) < G(R0 5 r , T) ,

Thus we conclude that

E(RX ;oo,T + 2r)<2(p + 1)E(RO 5γ T) .
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This completes the proof.

THEOREM 3. Suppose that Assumption (A) is satisfied. Let u be

the solution of problem (I) with the initial data f and g such that

f e Hι(Rn) and g e L\Rn) and that the support of f and g is contained

in \x\<γ. Let γo>γ. Then, there exist constants k — kiγ^γ) and θ

= θ{γ0, γ) such that

Proof. In Lemma 3.2, we decomposed RQ into Ro = Rx + Fx. We

apply the same procedure to Rλ. We define F2 as follows: F2 — Rλ for

T <t <2T and F2 is continued for t > 2T as the solution of the free

space wave equation with the initial data F2{2T) = RX(2T) and F2t(2T)

= Rlt(2T). Exactly in the same way as in the proof of Lemma 3.2, we

see that

F2 = 0 , for \x\ < t - 2Ύ - γ .

We set R2 = RX- F2. Then, it follows from the above fact that R2 is

a solution of problem (I) for t > 2T + 2γ. Furthermore, R2 has compact

support of at most Sγ at t = 2Ύ + 2γ, and

E(R2; ™,2T + 2γ) <

with k = 2(ρ + 1). We repeat this procedure. Then, for t > nT,

n

n = ΣFj + Rn,

where

(3.4) Fj = 0 for \x\ < t - jT - γ ,

and

(3.5) Rn is a solution of problem (I) for t> nT + 2γ .

Let γ0 > γ and let t > nT + γ + γQ> nT + 2γ. Then, in view of (3.4),

u = Rn in |α| < γ0, so that by (3.5) and (3.2),

E(u r o, t) = E(Rn r o , t) < G(Rn r o, t) < G(Rn oo, t)

- G(Bn oo, ̂ Γ + 2 r) < pί?(Bn oo, nT + 2r) .

Moreover, by Lemma 3.2, it follows that
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E(u γ0, t) < pE(Rn oo, nT + 2γ) < pkE(Rn_x 5γ, nT)

for k = 2(p + 1). Note that /2n_! is a solution of problem (I) for
t > (n — 1)Γ + 2γ and that J2W_! has compact support of at most Sγ at
t = (n - ΐ)T + 2 .̂ Hence, we can apply (3.3) to E(Rn_x 5f, nΓ) to obtain

E{Rn_λ 5 r, nT) < pkp(T, γ)E(Rn_1 oo, (n - 1)Γ + 2r)

with p(T,γ) = pk(5γ,3γ)(T — 2γ)~K Repeating this procedure and using
Lemma 3.1, we conclude that

E(u ?Ό, t) < p exp {n log kp(T, γ)}E(R0 oo, 2γ)

< 4p exp {̂  log kp(T, γ)}G0(u) .

Here, we take T so large that

\ogkp(T,γ) = -ΘT

with θ > 0. This is possible since p(T,γ) -> 0 as Γ -* oo. Therefore,

E(u;γQ,t)< Ape-θnTGlu) .

Thus, if for given t > 0 large enough, we choose the maximal integer n
such that £ > nT + γ + γ0, then n > (t — γ — γ^T'1 — 1. Hence, we ob-
tain

E(u;γo,t) < kfi- 'GJLu)

with kx = 4̂o exp θ(γ + γQ + T). This completes the proof.
Finally we note the following fact: The method presented here can

be applied to a slightly more general problem of the following form:

d\ ^ = 0,
dt2 a(x)

where

(p > 1 in 0 Ά f λ (a
p(x) = I . a n d a(x) =

[1 m δ \\
(p> 1 in 0 (a in Θ

1 in δ

and ί? satisfies Assumption (A). Then, if a<p, we can obtain the same
result as Main Theorem.

Appendix

We shall prove Lemma 1.5.
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Let s(t) be a C°°-function such that s(t) = 0 for 0 < t < t0 — 1 and

and s(t) = 1 for £ > ίo> U > 1. We put &(#, £) = s(£)%(#, ί). Then, u(x, t)

satisfies the following equation:

n,t —
p(x)

= p(x,t)

with the initial condition

u(x, 0) = 0 and ύt(x, 0) = 0 ,

where p(x, t) = 2stut + sttu. Using the conservation of energy for u and

the fact that the support of u is bounded for 0 < t < ί0, we see that

(4.1) Γ {u2dxdt < ktlG0(u) = ΊcfiJiu) .

Hence, in order to prove Lemma 1.5, it is sufficient to show that

(4.2) Γ f e-2au2dxdt < k(η)GQ(u) + η Γ f e~2εt(l + r)'ι-δu2

tdxdt ,
J 0 J |a?|£Λ JO J

where Go(^) is the total energy.

Now, we put v = #|/x(0foo) and iD = w|tfX(ofoo) and define [/(ίc, α>), V(x, ω)

and ΐ^(^, ω) for ω = μ + i/c, K > 0, as follows:

(4.3)

Then, V(x,ω) and Wix,

(4.4)

(4.5)

(4.6)

where

U(x,ω) = (
Jo

V(x,ω) — (
Jo

W(χ,ω) = Γ (
\ Jo

ώ) satisfy the

-ΔV - ωΨ =

v = vίr

vn = Λ ,

s (A/\yj, v)\Λ/\J

iiωtw(x, t)dt .

following equation:

P , in <? ,

P , in Θ ,

on d<ί

on 3<? ,

P(a;, ω) = Γ eί(Otp(x, t)dt .
Jo

https://doi.org/10.1017/S0027763000017864 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000017864


WAVE EQUATIONS 53

Note that p{x, t) = 0 for t > t0 and that p(x, t) is of compact support in

x for 0 < t < ί0, so that P(x, ω) is also of compact support uniformly in

ω. We can prove that if Imα> > 0 and PeL2(Rn), problem (4.4) ~ (4.6)

has a unique solution U such that U eHι(Rn), V = E7|, 6 ίF(<ί) and W

= C7U eiϊ2(<ί?) and that (4.5) and (4.6) are satisfied in Hzl\di) and Hιl\d£),

respectively.

Before proving (4.2), we introduce the functional space H2((9,R):

Let BR = {α||B| < #}.

#2(tf, B) = {U e ffCB^) I U\β e i ϊ 2 W, t7Ua n / e H\BR Π ^) .

The norm in H\Θ,R) is given by

+ \\W\lΦ + ||7

where TF = U\β,V = U\BR^ and || ||I.Λ, ll lk , and IMk^n/ are the norms
in the Sobolev spaces H\BB), H\Θ) and H\BB Π <ί), respectively.

With the above notation, we state the following lemma from which

(4.2) follows.

LEMMA A.I. Let Imω > 0, ω = μ + iκ9 and let G(x) be a function

with compact support. Let U(x,ω) be the solution of problem (4.4) ~ (4.6)

with P = G. Then, we have the following statement:

(i) n; odd. Let \μ\ < A and 0 < K < 1. Then, there exists a constant

k = &(Λ, β) ŝ cfe that

\\\U\\\2,R<k\\G\\0.

(ii) n; even. Let μx > 0. Lβί μx < \μ\ < A and 0 < λ < 1. Γfoew,

α constant kγ — kx{A,μιyR) such that

Here || ||0 is ίfee norm m L\Rn) and the constants k and kx may depend

on the support of G.

The proof of this lemma is rather long and is done in the same

way as in the proof of Lemma 4.6, Wilcox [8], pp. 65, and so we omit

it.

We shall proceed to the proof of Lemma 1.5.

Proof of Lemma 1.5. As is stated above, it is sufficient to prove

(4.2). Using the Schwarz inequality and the fact that p(x, t) = 0 for
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t > tQf we have

ί \P(x, ω)f dx < ί0 Γ° ί \p(x, t)f dxdt .

Moreover, since \p\2 < k(u2

t + u2), it follows from (4.1) that

(4.7) [\P{x,ω)fdx< kG0(u)

for k = k(tQ) independent of ω. First suppose that n is odd. Let U(x, ω)

be the function defined by (4.3). Then, we have by Lemma A.I and

(4.7),

Γ ί e~2st \u(x, t)|2 dxdt = Γ ί |U(x, μ + ύ)|2 dxdμ
JO J \x\<R J - o o J la I ^ Λ

< Γ f \U(x,μ + iε)\2dxdμ
J -ΛJ \x\<R

+ A-1 Γ ί \μU(x, μ + ίe)\2 dxdμ
J -oo J \χ\£R

< k(A)G0(u)

+ k(R)Λ~2 Γ J e~2εt(l + r)-ι-δu\dxdt .

Hence, if we take A sufficiently large, we obtain the desired result.

Next, we consider the even-dimensional case which is more compli-

cated. Let δ < δ' < f and let σ = 1 + δ'. We choose 6, 1 < b < 2, so that

q(b) = (62 — &)(—152 + δ + J)" 1 — o . In fact, such a 5 exists since g(l)

= 0 and q(2) = 4. We set Co = b\-\b2 + b + | ) for 6 defined above

and introduce the following function:

(4.8)

By the definition of b and Co, we see that φ(r) is a (^-function and piece-

wise C2-function and that Δψif) < 0.

Now, let U(x,ω), V(x, ω) and W(x,ω) be the functions defined by (4.3).

We multiply the equation —ΔV — ω2V = P by ^(r)F, integrate over <?

and take the real parts. Then, using the fact that φ = 1 and pΛ = 0

on 9# by (0.3), we have

1
—

r-.
+ r + \

for

for

for

0
1

r

<
<

>

r

r

b

<
<

,r

1

b

—
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Re ί VnΫdσ + f φ(χ) \VV\2 dx - - ί Δφ \Vf dx

= Reω2 ί φ(r) \V\2 dx + Re ί PφΫdx .

Similarly multiplying the equation —ΔW — ω2W — P by pΐl̂ , we obtain

- Re ί pWnifrdσ + f p \FW\2 dx
J dδ Jo

= Re a)2 f p |ΐ7 | 2 da; + Re f

Taking account of relations (4.5) and (4.6), and adding up these two
equalities, we have

(4.9)
k ί ( l + r)-σ\FU\2dx< Reω2(f φ(r)\V\2dx + ί p\W\2dx\

+ Re ί Pφfdx + Re ί pPWdx ,

where we have used that Δφ < 0 and that ^(r) > k(l + r)~σ. We claim
that if n > 4 and 1 < σ < f,

(4.10) f(l + r)-2-σ\U\2dx < k ί (1 + rYσ\VU\2dx .

This assertion will be proved later. The third and fourth terms on the
right side of (4.9) are estimated as

η I (1 + r ) - 2 - \U\2 dx + k{η) J \P\2
dx

for any η > 0 small enough, where we have used the fact that P is of
compact support uniformly in ω. Hence, in view of (4.9) and (4.10), it
follows that there exist constants kλ and k2 such that

ί ( l + r)-2-σ\U\2dx < kιμ

2\{l + r)~*\U\2 dx + kΛ\P\2dx ,

since Re ω2 = μ2 — κ2 < μ2, ω — μ + i/c, and φ < k(l + r)~σ. We rewrite

hμ2 ί (1 + r)~σ \U\2dx as follows:

kλμ
2 [(1 + r ) - \U\2 dx = kλμ

2 [ (1 + r)-2"<(l + r)2\U\2 dx
J J \x\£M

ί (1 + rr'-'d + r)-»' \Uf dx ,
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where σ = 1 + δ' and rf = δ' — δ > 0. For 27 > 0 small enough, we first

choose M = Mfy) so large that hx(X + r)" 7 ' < 37 for \x\ > M, and next

μQ = μjjj) so small that kψ2(l + r)2 < η for |# | < M and |μ| < μo0?). Thus,

we conclude that for any η > 0 small enough, there exist constants k(η)

and μo(r/) such that

L + r)-2-" \U\2 dx < ημ2 ί (1 + r)-1-3 \U\2 dx + kirj) f \Pf dx

for \μ\ < μo(η). Hence, for each fixed R > 0 and any η > 0 small enough,

we have

(4.11) f \U\2dx < ημ2 f (1 + r)~ι-δ\U\2dx + k(v,R) [\P\2 dx
J \x\£R J J

for \μ\< μo(η,R).

Now, we shall prove (4.2). As in the proof of the odd dimensional

case, we have

Γ ί e-utu2dxdt = Γ f \U(x,μ + iε\2 dxdμ
J θ J \x\£R J -oo J \χ\£R

— dxdμ + J dxdμ + dxdμ

^,72 and 73 are estimated as follows:

U < V JTO J (1 + r)-ι'δ \μϋ(x, μ + iε)\2 dxdμ + kx{η)GM

by (4.11) and (4.7), if we take μo(η) sufficiently small for any η > 0.

by (ii) of Lemma A.I and (4.7).

h < M~2 Γ f (1 + r)-ι~δ \μU(x, μ + iε)\2 dxdμ .

Here the constants k19 k2 and k3 may depend on i?. Thus, for any η > 0

small enough, we can choose A so large that

Γ f e~2εtu2dxdt < k(τ])GQ(u) + rj Γ f <r2eί(l + τ)~ι-δu2dxdt .
JO J \x\<R JO J
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This proves (4.2). It remains to prove (4.10). We start with the follow-

ing identity:

(r2-n | p ( ( 1 + r)-,/2 rcn-2)/2w) |2 dX= {(1 + r)-° \VU\2 dX

+ r)-2~σ\u\2dx

+ 2 C 2 ί ( l + r)~1-Ύ-1\u\2dx

- C3 f (1 + r)-°r-2 \u\2dx

for u e H\Rn), where

Cx = \{σ2 + 2σ) , C2 = iσ(w - 1), and C3 - i(w - 2)2 .

Furthermore, we have by the Schwarz inequality,

2C2 J (1 + r)- 1 " 'r- 1 N 2 dx < cA (1 + r)-2~° \u\2 dx

+ Cs f(l + rYσr-2 \u\2 dx

with C4 = σ\n - l)\2n - 4)~2. Hence, if σ < | < 2(w - 2)2(2n - 3)"1, then

Ci — C4 > 0. This completes the proof.
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