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Abstract Let R be a commutative ring with unity and let G be a group. The group ring RG has a
natural involution that maps each element g ∈ G to its inverse. We denote by RG− the set of skew
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1. Introduction

Let RG denote the group ring of a group G over a commutative ring R. This ring has a
natural involution ∗ given by (

∑
γgg)∗ =

∑
γgg

−1. Let

RG− = {γ ∈ RG | γ∗ = −γ}

be the set of skew symmetric elements of RG.
The problem of deciding when the symmetric elements of RG commute or, equivalently,

when they form a subring of RG was studied in [1]. In this paper, we consider the
problem of deciding when RG− is commutative. The Lie product [γ, δ] = γδ−δγ induces
a structure of Lie algebra in RG−. The Lie nilpotency of this algebra was studied in [2,3].
The problem under consideration is to decide when the Lie product in RG− is the trivial
one, i.e. when [γ, δ] = 0, for all γ, δ ∈ RG−.

In what follows, we shall assume that char(R) �= 2 since if char(R) = 2, then RG− coin-
cides with the set of symmetric elements. In § 3 we give a general answer to our question,
except for the case char(R) = 4, which needs to be studied separately.

2. Preliminary considerations

Assume that R is a commutative ring with unity and that char(R) �= 2. Note that if g is
any element in G, then g − g−1 ∈ RG is skew symmetric. Actually, RG− is generated,
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as an R-module, by the set
{g − g−1 | g ∈ G}.

Thus, to study the commutativity of RG− it will suffice to analyse the commutativity of
elements of the form g − g−1 among themselves.

Lemma 2.1. Let g and h be elements of the group G, such that g2 �= 1 �= h2 and
[g − g−1, h − h−1] = 0. Then, one of the following holds:

(i) gh = hg;

(ii) (gαhβ)2 = 1, for all α, β ∈ {1, −1};

(iii) char(R) = 4 and 〈g, h〉 ∼= Q8, the quaternion group of order 8.

Proof. Suppose that gh �= hg. Since

0 = [g − g−1, h − h−1] = gh − gh−1 − g−1h + g−1h−1 − hg + hg−1 + h−1g − h−1g−1,

one of the following conditions holds:

(a) gh = gh−1;

(b) gh = g−1h;

(c) gh = h−1g−1;

(d) gh is equal to at least two terms of the set {g−1h−1, hg−1, h−1g}, since char(R) �= 2.

Note that cases (a) and (b) imply that h2 = 1 and g2 = 1, respectively, so they cannot
occur. On the other hand, in case (c), g−1h−1 = hg holds and thus

0 = [g − g−1, h − h−1] = −gh−1 − g−1h + hg−1 + h−1g.

So it follows that either gh−1 = hg−1 or gh−1 = h−1g. But gh−1 �= h−1g, because gh �=
hg. Thus, gh−1 = hg−1, and g−1h = h−1g. Hence, (gαhβ)2 = 1, for all α, β ∈ {±1}, and
(ii) holds.

Finally, in case (d), we have gh = g−1h−1 = hg−1 = h−1g. In fact, if gh = g−1h−1 =
hg−1, then, as g−1h−1 = hg−1, it follows that gh = h−1g. The other two possibilities in
case (d) follow in a similar way. Hence, char(R) = 4 and

〈g, h〉 = 〈g, h | gh = g−1h−1 = hg−1 = h−1g〉
= 〈g, h | g4 = 1, h2 = g2, gh = hg−1〉
∼= Q8,

and (iii) holds. �

The lemma above gives some information that will be necessary to study the case when
char(R) �= 4. For the special case when char(R) = 4, we shall need the following.
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Lemma 2.2. Assume that RG− is commutative and let g and h be elements of G,
such that g2 �= 1 �= h2. Then, one of the following holds:

(i) 〈g, h〉 is abelian;

(ii) 〈g, h〉 = 〈g, h | g4 = h4 = (gh)2 = (gh−1)2 = 1〉;

(iii) char(R) = 4 and 〈g, h〉 ∼= 〈g, h | g8 = 1, h2 = g4, gh = h−1g−1〉;

(iv) char(R) = 4 and 〈g, h〉 ∼= Q8.

Proof. We notice that, by Lemma 2.1, it is sufficient to assume that (gαhβ)2 = 1, for
all α, β ∈ {1, −1}, and we have to show that (ii) and (iii) hold.

By applying Lemma 2.1 to the elements g−1hg and h, we see that g−1hgh = hg−1hg,
or (g−1hgh)2 = 1, or char(R) = 4 and 〈g−1hg, h〉 ∼= Q8.

Now we consider the case when g−1hgh = hg−1hg. As hg = g−1h−1, the left-hand side
of the equation is equal to g−2 and as g−1h = h−1g the right-hand side is equal to g2.
Hence, we have g−2 = g2, and o(g) = 4. On the other hand, if (g−1hgh)2 = 1, in a similar
way, we obtain g−4 = 1 and again o(g) = 4.

Finally, if char(R) = 4 and 〈g−1hg, h〉 ∼= Q8, then o(h) = 4 and h−1(g−1hg)h =
(g−1hg)−1. Thus, h−1g−2 = hg2 and g4 = h−2 = h2.

Hence, either o(g) = 4 or char(R) = 4, o(h) = 4 and g4 = h2. Similarly, by applying
Lemma 2.1 to the elements h−1gh and g, we find that either o(h) = 4 or char(R) =
4, o(g) = 4 and h4 = g2. Thus, one of the following holds:

(a) o(g) = 4 = o(h);

(b) char(R) = 4 and either o(g) = 4 and h4 = g2, or o(h) = 4 and g4 = h2.

In the first case, (ii) holds. In the second case, (iii) holds, but one should note that we
cannot claim equality in the statement of (iii), since the roles of g and h may have been
interchanged. Thus, the lemma is proved. �

3. Skew symmetric elements when char(R) �= 4

Notice that, when char(R) �= 2, 4 or when char(R) = 4 and G does not contain a copy
of Q8, Lemma 2.1 leaves us only two options. We shall see that if condition (i) does not
hold for some pair of elements x, y ∈ G with x2 �= 1 �= y2, then condition (ii) holds for
all pairs of elements of G with non-trivial squares.

Lemma 3.1. Assume that RG− is commutative and that there exist elements g, h ∈ G,
such that g2 �= 1 �= h2 and gh �= hg. If char(R) �= 2, 4 or if char(R) = 4 and G contains
no subgroup isomorphic to Q8, then, for all x, y ∈ G such that x2 �= 1 �= y2, we have
(xαyβ)2 = 1, with α, β ∈ {1, −1}.

Proof. Note that, by Lemma 2.1, we have (gαhβ)2 = 1, for α, β ∈ {1, −1}. Now, let
x ∈ G be such that x2 �= 1; we will show that (gx)2 = 1.
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Suppose that (gx)2 �= 1. Thus, by Lemma 2.1, applied to x and g, we have xg = gx.
On the other hand, also by Lemma 2.1, we have that either xh = hx or (xh)2 = 1.
Again applying Lemma 2.1, to the elements gx and h, we have two possibilities: either
gxh = hgx or (gxh)2 = 1.

Assume that the first case holds. If xh = hx, then ghx = gxh = hgx, and thus gh = hg.
On the other hand, if (xh)2 = 1 then, as (gh−1)2 = 1, we have that hg−1 = gh−1 and thus
that hg−1x−1 = gh−1x−1 = gxh = hgx, where g−1x−1 = gx. So, as g−1x−1 = x−1g−1,
it follows that (gx)2 = 1. Hence, if hgx = gxh, then either gh = hg or (gx)2 = 1: a
contradiction.

Now, suppose that the other case holds; i.e. that gxh = h−1x−1g−1. Then, as x−1g−1 =
g−1x−1 and gh = h−1g−1, we have

gxh = h−1x−1g−1 = h−1g−1x−1 = ghx−1,

and xh = hx−1. Thus, since we also have that either xh = hx or xh = h−1x−1, it follows
that either hx = xh = hx−1 or h−1x−1 = xh = hx−1. So, either x2 = 1 or h2 = 1: another
contradiction.

Hence, (gx)2 = 1 and, equivalently, (g−1x−1)2 = 1. Similarly, taking x−1, instead of x,
it follows that (gx−1)2 = 1. Hence, (gαxβ)2 = 1, for all α, β ∈ {±1}.

Now, let y ∈ G be such that y2 �= 1. As (xαgβ)2 = 1, for all α, β ∈ {±1}, in order
to show that (xy)2 = 1, it is sufficient to work as above applying Lemma 2.1 to the
elements xy and g. Similarly, taking y−1, instead of y, it follows that (xy−1)2 = 1. �

Lemma 3.2. Let R be a commutative ring with unity with char(R) �= 2 and let G be
any group. If one of the following conditions holds, then RG− is commutative:

(i) G is abelian;

(ii) A = 〈g ∈ G | o(g) �= 2〉 is a normal abelian subgroup of G;

(iii) G contains an elementary abelian 2-subgroup of index 2.

Proof. If (i) holds, the statement is trivially true. On the other hand, if (ii) holds then
RG− = RA−, since (G \ A)2 = 1. So, as A is abelian, it follows that RG− is commutative.

Suppose now that (iii) holds, i.e. there exists a normal elementary abelian 2-subgroup B

of index 2 in G. In order to show that RG− is commutative, it is sufficient to prove that
[g − g−1, h − h−1] = 0, for all g, h ∈ G \ B, since B2 = 1. As [G : B] = 2, we have g = xa

and h = xb, with a, b ∈ B and x ∈ G \ B. Thus, since a = a−1 and b = b−1, we get

[g − g−1, h − h−1] = [xa − ax−1, xb − bx−1]

= xaxb − xabx−1 − ab + ax−1bx−1

− xbxa + xbax−1 + ba − bx−1ax−1

= xaxb + ax−1bx−1 − xbxa − bx−1ax−1.

Now, as B is normal, we can write ax = xa1 and bx = xb1, for some a1, b1 ∈ B. Thus,
as x2 ∈ B and B is an elementary abelian 2-subgroup, we have x4 = 1 and so x2 = x−2.
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Hence,
[g − g−1, h − h−1] = x2a1b + ab1x

−2 − x2b1a − ba1x
−2 = 0,

and we are done. �

Now, we can give a complete characterization of the groups G such that RG− is
commutative, when char(R) �= 4.

Theorem 3.3. Let R be a commutative ring with unity with char(R) �= 2, 4 and let
G be any group. Then RG− is commutative if and only if one of the following conditions
holds:

(i) G is abelian;

(ii) A = 〈g ∈ G | o(g) �= 2〉 is a normal abelian subgroup of G;

(iii) G contains an elementary abelian 2-subgroup of index 2.

Proof. Suppose that G is non-abelian. If the elements of order not equal to 2 commute,
then (ii) holds. Thus, we may assume that there exists one pair of elements of order not
equal to 2 that do not commute and show that, in this case, (iii) holds.

First we consider the subgroup B = 〈xy | x, y ∈ G, x2 �= 1 �= y2〉 generated by all
the products of two elements of G each of order not equal to 2. We claim that B is an
elementary abelian 2-subgroup of G.

In fact, let x, y ∈ G be such that x2 �= 1 �= y2. Since, by Lemma 3.1, (xy)2 = 1, in order
to establish the claim it is sufficient to show that any pair of generators of B commute.
Let xi, yi ∈ G be such that x2

i �= 1 �= y2
i , i = 1, 2. Note that since Lemma 3.1 implies the

equalities

y1x2 = x−1
2 y−1

1 , x1x
−1
2 = x2x

−1
1 , y−1

1 y2 = y−1
2 y1, x−1

1 y−1
2 = y2x1,

we have
(x1y1)(x2y2) = x1x

−1
2 y−1

1 y2 = x2x
−1
1 y−1

2 y1 = (x2y2)(x1y1)

and the claim is established.
Now, let B1 be a maximal elementary abelian 2-subgroup of G containing B. We shall

show that B1 has index 2 in G. Let xB1 be a left coset of B1 distinct from B1. We claim
that we may assume that x2 �= 1. In fact, suppose that x2 = 1. If xb = bx, for all b ∈ B1,
then 〈B1, x〉 is an elementary abelian 2-subgroup of G properly containing B1. But this
contradicts the maximality of B1. Thus, there exists b ∈ B1 such that xb �= bx. As
x2 = b2 = 1, if (xb)2 = 1, then we would get xb = bx: a contradiction. Hence, (xb)2 �= 1
and x′ = xb is also a coset representative of xB1.

Now let xB1 and yB1 be two cosets of B1 and suppose, as we may by the above,
that x2 �= 1 �= y2. Then, by definition of B, we have that x−1y ∈ B ⊂ B1, and this says
that xB1 = yB1. Hence, B1 is an elementary abelian 2-subgroup of index 2 in G and
(iii) holds.

The converse is a particular case of the previous lemma. �
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4. Skew symmetric elements when char(R) = 4

Note that the proof of Theorem 3.3 depends on Lemmas 3.1 and 3.2, so it also holds
when char(R) = 4, provided that G does not contain subgroups isomorphic to Q8. Hence,
from now on, we shall assume that G contains at least one such subgroup. We shall see
that the commutativity of the skew elements implies a quite restrictive condition on the
group. To do so, we begin with some examples.

First, we note that a simple calculation shows that the group

〈g, h〉 = 〈g, h | g4 = h4 = (gh)2 = (gh−1)2 = 1〉,

of Lemma 2.2 (ii), contains the following elementary abelian 2-subgroup:

A = {1, g2, h2, g2h2, gh, g3h, gh3, g3h3}.

Thus, in this case, 〈g, h〉 is one of the groups described in Lemma 3.2.
We now proceed to show that the groups described in (iii) and (iv) of that lemma

also give group algebras with commuting skew elements when char(R) = 4. To this end,
we recall that it is sufficient to show that elements of the form g − g−1, with g ∈ G,
commute among themselves.

Example 4.1. Let Q8 = 〈a, b | a4 = 1, b2 = a2, b−1ab = a−1〉 be the quaternion
group of order 8.

As b−1ab = a−1 and b2 = a2 = a−2 we have

ba−1 = ab = a−1b−1 = b−1a

and

ab−1 = b−1a−1 = ba = a−1b.

Hence, if char(R) = 4, we obtain

[a − a−1, b − b−1] = ab − ab−1 − a−1b + a−1b−1 − ba + ba−1 + b−1a − b−1a−1

= 4(ab − ba)

= 0.

Since this holds for every pair of elements of Q8 with non-trivial squares, we find that
RQ−

8 is commutative.

Example 4.2. Let

G = 〈a, b | a8 = 1, b2 = a4, ba = a−1b−1〉
= {1, a, a2, a3, a4, a5, a6, a7, b, ab, a2b, a3b, a4b, a5b, a6b, a7b}.

As the elements a4, ab, a3b, a5b and a7b have order 2, in order to study the commuta-
tivity of RG− it is sufficient to consider the elements a − a7 = a − a−1, a2 − a6, a3 − a5,
b − a4b = b − b−1 and a2b − a6b = a2b − a2b−1.
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Clearly, the elements that depend only on a commute among themselves. Also, as

b−1a = b3a = b2ba = b2a−1b−1 = a−1b2b−1 = a−1b,

we have

[a − a−1, b − b−1] = ab − ab−1 − a−1b + a−1b−1 − ba + ba−1 + b−1a − b−1a−1

= ab − ab−1 − a−1b + a−1b−1 − a−1b−1 + ab−1 + a−1b − ab

= 0

and

[a − a−1, a2b − a2b−1] = a3b − a3b−1 − ab + ab−1 − a2ba + a2ba−1 + a2b−1a − a2b−1a−1

= a3b − a3b−1 − ab + ab−1 − ab−1 + a3b−1 + ab − a3b

= 0.

Similarly, a3 − a5 commutes with b − b−1 and with a2b − a2b−1.
Finally, since

〈a2, b〉 = {1, a2, a4, a6, b, a2b, a4b, a6b}
= 〈a2, b | (a2)4 = 1, b2 = (a2)2, b−1a2b = b−2a2 = a−2〉
∼= Q8,

by the example above it follows that the remaining pairs of elements commute provided
that char(R) = 4.

Lemma 4.3. Let G be a group with a subgroup isomorphic to Q8 and suppose
that RG− is commutative. Then G is a 2-group and its exponent is bounded by 8.

Proof. Let Q8 ∼= 〈x, y〉 ⊂ G and suppose that there exists g ∈ G with g8 �= 1. Then,
by Lemma 2.2, it follows immediately that g commutes with all h ∈ G, such that h2 �= 1.
We claim that (gx)2 �= 1. If not, then 1 = (gx)2 = g2x2, and we would get g4 = 1, a
contradiction. Similarly, (gy)2 �= 1.

Now, by again applying Lemma 2.2 to gx and gy, we either have that gx and gy

commute or we obtain (gx)8 = 1. In the case in which gx and gy commute, g2xy =
gxgy = gygx = g2yx, and we obtain xy = yx: a contradiction. On the other hand, if
(gx)8 = 1, then 1 = g8x8 = g8: a contradiction. In conclusion, we have proved that g8 = 1,
for all g ∈ G. �

Lemma 4.4. Let G be a group with an abelian subgroup A of exponent 8 and of
index 2. Suppose that there exists b ∈ G of order 4, such that b−1ab = a3, for all a ∈ A,
and such that ao(a)/2 = b2, for all a ∈ A, a2 �= 1. Then

G ∼= 〈g, h | g8 = 1, h2 = g4, gh = h−1g−1〉 × E,

where E is an elementary abelian group.
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Proof. First, recall that every abelian group of finite exponent is a product of cyclic
groups of prime power order (see, for example, [4, (5.1.2), p. 92]). Hence, as the exponent
of A is equal to 8, we find that A has a cyclic subgroup 〈a〉 of order 8, as a direct factor.

We next show that A is the direct product of 〈a〉 and an elementary abelian group.
To this end, suppose that A has another direct factor of order not equal to 2. So, there
exists an element c of A such that c2 �= 1 and 〈c〉 ∩ 〈a〉 = {1}. Then, as co(c)/2 = b2 = a4,
we have 1 �= b2 ∈ 〈c〉 ∩ 〈a〉: a contradiction. Thus, A = 〈a〉 × E, with E2 = 1.

Now we show that G is the direct product of 〈a, b〉 and E. First note that b ∈ G \ A.
In fact, if b ∈ A, then b = b−1bb = b3 and b2 = 1, a contradiction since o(b) = 4. Thus,
as A has index 2 in G, it follows that G = A ∪ Ab. So, as A is abelian and for all e ∈ E,
b−1eb = e3 = e holds, we find that E is central in G and, consequently, E is normal in G.
Hence, for all g ∈ G we have that g = aiejbk = aibkej and G = 〈a, b〉E follows. Moreover,

g−1〈a, b〉g = b−ke−ja−i〈a, b〉aiejbk = b−ka−i〈a, b〉aibk ∈ 〈a, b〉,

and 〈a, b〉 is normal in G. Finally, as 〈a〉 ∩ E = {1} and Ab = G \ A, it follows that
〈a, b〉 ∩ E = {1}.

It only remains to show that

〈a, b〉 = 〈a, b | a8 = 1, b2 = a4, ab = b−1a−1〉.

But, as b−1ab = a3, a4 = b2 and o(b) = 4, we have ab = ba3 = ba4a−1 = b3a−1 = b−1a−1,
and the result follows. �

With the results above at hand, a characterization of these groups can now be given.

Theorem 4.5. Let G be a group of exponent 8, containing a copy of Q8 and let R

be a ring of characteristic 4. Then RG− is commutative if and only if G is isomorphic to
the direct product of the group 〈g, h | g8 = 1, h2 = g4, gh = h−1g−1〉 and an elementary
abelian group.

Proof. Note that in order to show that the condition is necessary it is sufficient to
check that the hypothesis of Lemma 4.4 holds. Let A = 〈g ∈ G | o(g) = 8〉. Then,
by Lemma 2.2, we have that A is a normal abelian subgroup and, by hypothesis A is
non-trivial.

Clearly, A �= G, as G is not abelian. We next show that A is of index 2 in G. To this
end, we first show that if a is an element of order 8 and b ∈ G \ A, then b−1ab = a−1 or
a3. Note that ab �= ba. In fact, if ab = ba, then (ab)4 = a4b4 = a4 �= 1, and thus ab ∈ A:
a contradiction. Also note that, as b4 = 1, it is sufficient to study the cases o(b) = 4 and
o(b) = 2. If o(b) = 4, then Lemma 2.2 (iii) holds for a and b, and

〈a, b〉 = 〈a, b | a8 = 1, b2 = a4, ab = b−1a−1〉.

Thus, b−1ab = b−2a−1 = a−5 = a3.
Now, suppose that o(b) = 2. If (ab)2 = 1, then ab = ba−1, and b−1ab = a−1. On the

other hand, if (ab)2 �= 1, then Lemma 2.2 (iii) holds for a and ab, since ab �= ba. Hence,

b−1ab = bab = a−1(ab)2 = a−1a4 = a3,

and b−1ab = a−1 or a3.
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Finally, let g, h ∈ G \ A and a ∈ A, such that o(a) = 8. Suppose that gh ∈ G \ A.
Then, (gh−1)−1a(gh−1) is equal to either a−1 or a3. On the other hand, we also have
that (gh−1)−1a(gh−1) = h(g−1ag)h−1 is equal to either ha−1h−1 or ha3h−1, and thus
(gh−1)−1a(gh−1) is equal to either a or a−3. So, a2 = 1: a contradiction. Hence, gh−1 ∈ A,
and gA = hA. It follows that the index of A in G is equal to 2.

Now, let b be an element of G\A of order 4. This element exists since G contains a copy
of Q8. We have already shown that if a ∈ A is an element of order 8, then b−1ab = a3.
Thus, as A is abelian and A is generated by the elements of order 8, we have b−1ab = a3,
for all a ∈ A. Also, we have shown that if a is an element of order 8, then b2 = a4 = ao(a)/2.
It remains to prove that b2 = a2, for all a ∈ A with o(a) = 4. In fact, by Lemma 2.1,
ab = ba, ab = b−1a−1, or 〈a, b〉 ∼= Q8 follows. If 〈a, b〉 ∼= Q8, we are clearly done. Hence
suppose that either the first or the second possibility occurs. As b−1ab = a3 = a−1, we
have that ab = ba−1, and thus either ba = ab = ba−1 or b−1a−1 = ab = ba−1. Hence,
a2 = 1 or b2 = 1: a contradiction. The necessity now follows from Lemma 4.4.

We next prove the sufficiency. Suppose that

H = 〈g, h | g8 = 1, h2 = g4, gh = h−1g−1〉

and G = H×E, where E2 = 1. We first show that the commutativity of RH− implies the
commutativity of RG−. In fact, RG− is commutative if the elements of the form g − g−1,
where g ∈ G, g2 �= 1, commute among themselves. But g − g−1 = he − h−1e−1, where
h ∈ H, h2 �= 1, and e ∈ E. Hence, as E2 = 1, it follows that g − g−1 = (h − h−1)e. So,
as E is central in G, we find that if the terms of the form h − h−1, with h ∈ H, h2 �= 1,
commute among themselves, then the terms of the form g − g−1, with g ∈ G, g2 �= 1,
also commute among themselves. Hence, the commutativity of RG− follows from the
commutativity of RH−.

To complete the proof it is sufficient to note that the commutativity of RH− has been
proved in Example 4.2. �

Theorem 4.6. Let G be a group of exponent 4 and let R be a ring of characteristic 4.
Then RG− is commutative if and only if, for every pair of elements g and h in G such
that g2 �= 1 �= h2, one of the following holds:

(i) 〈g, h〉 is abelian;

(ii) 〈g, h〉 = 〈g, h | g4 = h4 = (gh)2 = (gh−1)2 = 1〉;

(iii) 〈g, h〉 = 〈g, h | g4 = 1, h2 = g2, gh = hg−1〉 ∼= Q8.

Proof. The necessity of the condition follows immediately from Lemma 2.2. To prove
sufficiency, as RG− is generated, as an R-module, by the elements of the form g − g−1, it
is sufficient to prove that [g − g−1, h − h−1] = 0, for all g, h ∈ G such that g2 �= 1 �= h2.

Let g and h be such elements of G and suppose that (i), (ii) or (iii) holds. If case (i)
holds, the result is immediate.
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Suppose that (ii) holds. Then

[g − g−1, h − h−1] = gh − gh−1 − g−1h + g−1h−1 − hg + hg−1 + h−1g − h−1g−1

= h−1g−1 − hg−1 − h−1g + hg − hg + hg−1 + h−1g − h−1g−1

= 0.

Now, if (iii) holds, then commutativity follows from Example 4.1. �

In order to have a better understanding of the groups obtained above, we shall describe
all their subgroups generated by two elements.

Proposition 4.7. Let G be a group of exponent 4 such that RG− is commutative.
Let g and h be elements of G, such that g2 �= 1 = h2. Then, one of the following holds:

(i) 〈g, h〉 is abelian;

(ii) 〈g, h〉 is isomorphic to the group described in Lemma 2.2 (ii);

(iii) 〈g, h〉 ∼= 〈a, b | a4 = b2 = 1, bab = a−1〉, the dihedral group of order 8.

Proof. We suppose that gh �= hg and we prove that either (ii) or (iii) holds. If
(gh)2 �= 1, then we can apply Lemma 2.2 to g and gh, and one of the following three
possibilities occurs: ggh = ghg, where gh = hg, or 〈g, gh〉 = 〈g, h〉 is isomorphic to
〈g, h | g4 = h4 = (gh)2 = (gh−1)2 = 1〉, or 〈g, h〉 is isomorphic to Q8. But the first and
the last possibility cannot occur, since gh �= hg and Q8 cannot be generated by an
element of order 4 and an element of order 2. Thus, (ii) holds.

Now, if (gh)2 = 1, then gh = h−1g−1 = hg−1, and

〈g, h〉 = 〈g, h | g4 = h2 = 1, gh = hg−1〉
∼= D4.

So, (iii) holds and the result follows. �

Proposition 4.8. Let G be a group of exponent 4 such that RG− is commutative.
Let g and h be elements of G of order 2. Then 〈g, h〉 is either abelian or isomorphic to
the dihedral group of order 8.

Proof. Assume that gh �= hg. Then (gh)2 �= 1. In fact, if (gh)2 = 1, then
gh = h−1g−1 = hg. Now, applying Lemma 4.7 to the elements gh and g, we have the
following three possibilities for the group 〈gh, g〉 = 〈g, h〉: 〈g, h〉 is abelian or is isomor-
phic to the group (ii) of Lemma 2.2 or is isomorphic to D4. But, by hypothesis, 〈g, h〉
is non-abelian. Finally, as in the proof of Lemma 4.7, it follows that 〈g, h〉 ∼= D4, since
(ghg)2 = ghgghg = 1. �

As an illustration, we list the groups G of order 2n, containing a subgroup isomorphic
to Q8, with n � 5, such that RG− is commutative, for a ring R of characteristic 4. We
use the notation of [5] to identify the groups given below.
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(i) n = 3 Q8 = 8/5.

(ii) n = 4

(a) 16/7 = Q8 × C2, where C2 denotes the cyclic group of order 2.

(b) 16/8 = 〈a, b, c | a2 = b2 = c2 = 1, abc = bca = cab〉.

(ii) n = 5

(a) 32/9 = (16/7) × C2.

(b) 32/10 = (16/8) × C2.

(c) 32/39 = 〈a, b, c | a4 = b4 = c2 = 1, ab = ba, ac = ca−1, bc = ca2b−1〉.
(d) 32/42 = 〈a, b, c, d | a4 = 1, a2 = b2 = c2 = d2, ab = ba−1, cd = dc−1, (a, c) =

(a, d) = (b, c) = (b, d) = 1〉.
(e) 32/43 = 〈a, b, c, d | a2 = b4 = c2 = 1, b2 = d2, ac = cb2a, bc = cb−1, ad =

db2a, (a, b) = (b, d) = (c, d) = 1〉.
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