A convergent quasi-Hermite-Féjer

interpolation process

T.M. Mills

Abstract

D.L. Berman has proved several divergence theorems about "extended" Hermite-Fejér interpolation on the Chebyshev nodes of the first kind. These are surprising in light of the classical convergence theorem of L. Fejér concerning ordinary Hermite-Fejér interpolation on these nodes. However there is one case which has been neglected so far: the case of quasi-Hermite-Fejér interpolation on these nodes. In this paper it is proved that quasi-Hermite-Fejér interpolation polynomials on the Chebyshev nodes converge uniformly to the continuous function being interpolated. In addition, an estimate for the rate of convergence is established.

1. Introduction

The following result proved by Fejêr [3] is now classical:
THEOREM 1 (Fejér). Let $f(x)$ be continuous on the interval $[-1,1]$ and let $H_{n}(f, x)$ be the polynomial of degree $2 n-1$ uniquely determined by the conditions

$$
\begin{aligned}
& H_{n}\left(f, x_{k n}\right)=f\left(x_{k n}\right), k=1,2, \ldots, n, \\
& H_{n}^{\prime}\left(f, x_{k n}\right)=0 \quad, k=1,2, \ldots, n,
\end{aligned}
$$

where

$$
x_{k n}=\cos ((2 k-1) \pi / 2 n), k=1,2, \ldots, n,
$$

Received 5 December 1974.
and the dash in $H_{n}^{\prime}(f, x)$ denotes differentiation with respect to x. Then $H_{n}(f, x)$ converges to $f(x)$ uniformly on the interval $[-1,1]$ as n tends to infinity.

Throughout this paper $x_{k n}$ will be defined by (1) and denoted by x_{k} where there is no confusion.

In 1969, Berman [1], considered a related interpolation process. Let $F_{n}(f, x)$ be the polynomial of degree $2 n+3$ uniquely determined by the conditions

$$
\begin{aligned}
& F_{n}(f, 1)=f(1) ; \quad F_{n}(f,-1)=f(-1) ; \\
& F_{n}^{\prime}(f, 1)=0 \quad F_{n}^{\prime}(f,-1)=0 \\
& F_{n}\left(f, x_{k}\right)=f\left(x_{k}\right) ; \quad F_{n}^{\prime}\left(f, x_{k}\right)=0 \text { for } k=1,2, \ldots, n .
\end{aligned}
$$

One of his results is as follows:
THEOREM 2 (Berman). If $f(x)=x^{2}$, then the sequence $\left(F_{n}(f, x)\right)$ diverges for every x in the open interval (-1, 1).

In a later paper, Berman [2], considered the polynomial $A_{n}(f, x)$ of degree $2 n+2$ uniquely determined by the conditions

$$
\begin{aligned}
A_{n}(f, l) & =f(1) ; A_{n}(f,-1)=f(-1) ; \\
A_{n}^{\prime}(f, l) & =0 \\
A_{n}\left(f, x_{k}\right) & =f\left(x_{k}\right) ; A_{n}^{\prime}\left(f, x_{k}\right)=0 \text { for } k=1,2, \ldots, n .
\end{aligned}
$$

Concerning this process he proved another divergence theorem:
THEOREM 3 (Berman). If $f(x)=x^{2}$, then the sequence $\left(A_{n}(f, x)\right)$ diverges for every x in the open interval ($-1,1$).

In this paper we shall consider the polynomial $V_{n}(f, x)$ of degree $2 n+1$ uniquely determined by the conditions

$$
\begin{aligned}
V_{n}(f, l) & =f(1) \\
V_{n}(f,-1) & =f(-1)
\end{aligned}
$$

(2)

$$
\begin{aligned}
& V_{n}\left(f, x_{k}\right)=f\left(x_{k}\right), k=1,2, \ldots, n \\
& V_{n}^{\prime}\left(f, x_{k}\right)=0 \quad, k=1,2, \ldots, n
\end{aligned}
$$

Such processes were called quasi-Hermite-Fejér interpolation processes by Szász [5]. We shall prove the following estimate which shows that if f is continuous on $[-1,1]$ then $v_{n}(f, x)$ converges to f uniformly on the closed interval $[-1,1]$.

THEOREM 4. Let $f(x)$ be continwous on the interval $[-1,1]$ and let $w(f ; \delta)$ be the modulus of continuity of f. Then

$$
\left\|V_{n}(f, x)-f(x)\right\| \leq c_{1} \omega\left(f ; n^{-\frac{1}{2}}\right) .
$$

Here c_{1} (and later c_{2}, c_{3}, \ldots) is an absolute constant independent of f and n and $\|\cdot\|$ is the uniform norm on $[-1,1]$.

2. Proof of Theorem 4

We shall prove the theorem by using a series of lemmas which will be proved in the next section.

LEMMA 1. $\left(V_{n}\right)$ is a sequence of uniformly bounded linear operators.
LEMMA 2. Let $m=\left[n^{\frac{3}{2}}\right]$ and let $p_{m}(x)$ be the best approximating polynomial of degree m to $f(x)$ in $[-1,1]$. Then,

$$
\left\|V_{n}\left(p_{m}, x\right)-p_{m}(x)\right\| \leq c_{2} w\left(f ; n^{-\frac{1}{2}}\right) .
$$

The proof of the theorem is now quite straight forward. By the fundamental approximation theorem of Jackson,

$$
\left\|f(x)-p_{m}(x)\right\| \leq c_{3} w\left(f ; n^{-\frac{1}{2}}\right) .
$$

Hence,

$$
\begin{aligned}
\left\|V_{n}(f, x)-f(x)\right\| & \leq\left\|V_{n}(f, x)-V_{n}\left(p_{m}, x\right)\right\|+\left\|V_{n}\left(p_{m}, x\right)-p_{m}(x)\right\|+\left\|p_{m}(x)-f(x)\right\| \\
& \leq\left(\left\|V_{n}\right\| c_{3}+c_{2}+c_{3}\right) w\left(f ; n^{-\frac{1}{2}}\right) \\
& \leq c_{4} w\left(f ; n^{-\frac{1}{2}}\right)
\end{aligned}
$$

and the theorem follows.

3. Proofs of the lemmas

Proof of Lemma 1. From Szász' paper we know that
$V_{n}(f, x)=f(1) \frac{(1+x)}{2} T_{n}^{2}(x)+f(-1) \frac{(1-x)}{2} T_{n}^{2}(x)+$

$$
+\sum_{k=1}^{n} f\left(x_{k}\right) \frac{1-x^{2}}{1-x_{k}^{2}} v_{k}(x) \tau_{k}^{2}(x)
$$

where

$$
v_{k}(x)=1+\frac{x_{k}\left(x-x_{k}\right)}{1-x_{k}^{2}}, k=1,2, \ldots, n
$$

and

$$
\tau_{k}(x)=\frac{T_{n}(x)}{T_{n}^{\prime}\left(x_{k}\right)\left(x-x_{k}\right)}, \quad k=1,2, \ldots, n
$$

and

$$
T_{n}(x)=\cos (n(\arccos x))
$$

Let us set

$$
V_{n}(f, x)=\sum_{k=0}^{n+1} f\left(x_{k}\right) h_{k}(x)
$$

where $x_{0}=1$ and $x_{n+1}=-1$. Then

$$
\begin{aligned}
\left\|V_{n}\right\| & \leq \sup \sum_{k=0}^{n+1}\left|h_{k}(x)\right| \\
& \leq 2+\sup \sum_{k=1}^{n}\left|h_{k}(x)\right|,
\end{aligned}
$$

where the supremum is taken over all x in $[-1,1]$.
Now let $x \in(-1,1)$ and suppose that j is an integer satisfying $1 \leq j \leq n$ and

$$
\begin{equation*}
\left|x-x_{j}\right| \leq\left|x-x_{k}\right|, \quad k=1,2, \ldots, n . \tag{3}
\end{equation*}
$$

Naturally $j=j(n)$. Should there be two such integers then pick either one. Since $V_{n}\left(f, x_{j}\right)=f\left(x_{j}\right)$ we may assume that $x \neq x_{j}$.

To estimate $\left\|V_{n}\right\|$ consider the expression
(4)

$$
2+\sum_{k=1}^{j-1}\left|h_{k}(x)\right|+\left|h_{j}(x)\right|+\sum_{k=j+1}^{n} h_{k}(x)
$$

and estimate each part in turn. If $j=1$ or n then one of these parts will not occur.

Now

$$
h_{j}(x)=\frac{1-x^{2}}{1-x_{j}^{2}}\left(1+\frac{x_{j}\left(x-x_{j}\right)}{1-x_{j}^{2}}\right) z_{j}^{2}(x)
$$

Furthermore

$$
\frac{\left|x_{j}\left(x-x_{j}\right)\right|}{1-x_{j}^{2}} \leq \frac{\left|t-t_{j}\right|}{\sin t_{j}} \cdot \frac{\sin r_{j}}{\sin t_{j}} \leq c_{5}
$$

where $x=\cos t, x_{j}=\cos t_{j}$, and r_{j} is some number between t and t_{j}. Hience

$$
\left|h_{j}(x)\right| \leq c_{6} \frac{\left(1-x^{2}\right) \imath_{j}{ }^{2}(x)}{1-x_{j}{ }^{2}}
$$

But Varma has shown in [6] that

$$
\sum_{k=1}^{n} \frac{1-x^{2}}{1-x_{k}^{2}} \tau_{k}^{2}(x) \leq 8
$$

and so we have
(5)

$$
\left|h_{j}(x)\right| \leq c_{7}
$$

Now we estimate $\sum_{k=1}^{j-1}\left|h_{k}(x)\right|$. By decomposing $h_{k}(x)$ into partial fractions we get

$$
h_{k}(x)=\frac{\left(1-x^{2}\right) T_{n}^{2}(x)}{n^{2}\left(x-x_{k}\right)^{2}}+\frac{x T^{2}(x)}{n^{2}\left(x-x_{k}\right)}-\frac{(1+x) T_{n}^{2}(x)}{2 n^{2}\left(1-x_{k}\right)}-\frac{(1-x) T_{n}^{2}(x)}{2 n^{2}\left(1+x_{k}\right)}
$$

Thus

$$
\begin{align*}
\left|h_{k}(x)\right| & \leq \frac{\left(1-x^{2}\right) T_{n}^{2}(x)}{n^{2}\left(x-x_{k}\right)^{2}}+\frac{1}{n^{2}\left|x-x_{k}\right|}+\frac{1}{n^{2}\left(1-x_{k}\right)}+\frac{1}{n^{2}\left(1+x_{k}\right)} \tag{6}\\
& =A_{k}+B_{k}+C_{k}+D_{k}
\end{align*}
$$

It is known that

$$
\sum_{k=1}^{n} C_{k}=\sum_{k=1}^{n} D_{k}=1
$$

Hence

$$
\begin{equation*}
\sum_{k=1}^{j-1} c_{k} \leq 1 \tag{7}
\end{equation*}
$$

and
(8)

$$
\sum_{k=1}^{j-1} D_{k} \leq 1
$$

To estimate B_{k}, let $k=j-i$ where $i \geq 1$ and note that

$$
\begin{aligned}
\sin \left(\left(t+t_{k}\right) / 2\right) & =\sin t / 2 \cos t_{k} / 2+\cos t / 2 \sin t_{k} / 2 \\
& \geq\left|\sin t / 2 \cos t_{k} / 2-\cos t / 2 \sin t_{k} / 2\right| \\
& =\sin \left(\left|t-t_{k}\right| / 2\right) \\
& \geq\left|t-t_{k}\right| / \pi \\
& \geq c_{8} i / n .
\end{aligned}
$$

Hence

$$
\begin{aligned}
B_{k} & =\left[n^{2}\left|x-x_{k}\right|\right)^{-1} \\
& =\left(2 n^{2} \sin \left(\left(t+t_{k}\right) / 2\right) \sin \left(\left|t-t_{k}\right| / 2\right)\right)^{-1} \\
& \leq\left(2 n^{2} \sin ^{2}\left(\left|t-t_{k}\right| / 2\right)\right)^{-1} \\
& \leq c_{9} i^{-2}
\end{aligned}
$$

So we obtain
(9)

$$
\sum_{k=1}^{j-1} B_{k} \leq c_{9} \sum_{i=1}^{j-1} i^{-2} \leq c_{10}
$$

Finally let us consider A_{k} :

$$
\begin{aligned}
T_{n}^{2}(x) & =\cos ^{2} n t \\
& =\left(\cos n t-\cos n t_{k}\right)^{2} \\
& =4 \sin ^{2}\left(n\left(t+t_{k}\right) / 2\right) \sin ^{2}\left(n\left(t-t_{k}\right) / 2\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
A_{k} & =\frac{\left(1-x^{2}\right) T_{n}^{2}(x)}{n^{2}\left(x-x_{k}\right)^{2}} \\
& \leq \frac{\sin ^{2} t}{\sin ^{2}\left(\left(t+t_{k}\right) / 2\right)} \cdot \frac{1}{n^{2}} \cdot \frac{\sin ^{2}\left(n\left(t-t_{k}\right) / 2\right)}{\sin ^{2}\left(\left(t-t_{k}\right) / 2\right)}
\end{aligned}
$$

From the inequalities

$$
\begin{aligned}
\sin t & \leq \sin t+\sin t_{k} \\
& \leq \dot{2} \sin \left(\left(t+t_{k}\right) / 2\right)
\end{aligned}
$$

and

$$
n^{-2} \sum_{k=1}^{n} \frac{\sin ^{2}\left(n\left(t-t_{k}\right) / 2\right)}{\sin ^{2}\left(\left(t-t_{k}\right) / 2\right)} \leq c_{11}
$$

it follows that
(10)

$$
\sum_{k=1}^{j-1} A_{k} \leq c_{12}
$$

By (7), (8), (9), and (10) we now have
(11)

$$
\sup _{k=1}^{j-1}\left|h_{k}(x)\right| \leq c_{13}
$$

Similarly,
(12)

$$
\sup \sum_{k=1+j}^{n}\left|h_{k}(x)\right| \leq c_{14}
$$

From (4), (5), (11), and (12), Lemma 1 now follows.
Proof of Lemma 2. From Szász' work we know that since $p_{m}(x)$ is a polynomial of degree $m<2 n+1$,

$$
p_{m}(x)=V_{n}\left(p_{m}, x\right)+Q_{n}\left(p_{m}, x\right)
$$

where

$$
Q_{n}\left(p_{m}, x\right)=\sum_{k=1}^{n} p_{m}^{\prime}\left(x_{k}\right) \cdot \frac{\left(1-x^{2}\right) T_{n}^{2}(x)}{n^{2}\left(x-x_{k}\right)}
$$

Hence

$$
\left|V_{n}\left(p_{m}, x\right)-p_{m}(x)\right| \leq \sum_{k=1}^{n}\left|p_{m}^{\prime}\left(x_{k}\right)\right| \frac{\left(1-x^{2}\right) T_{n}^{2}(x)}{n^{2}\left|x-x_{k}\right|}
$$

Now a recent result of Szabados [4] states that

$$
\left|p_{m}^{\prime}(x)\right| \leq c_{15} \frac{m w\left(f ; m^{-1}\right)}{\left(1-x^{2}\right)^{\frac{3}{2}}}, \quad|x|<1
$$

Consequently

$$
\begin{equation*}
\left|V_{n}\left(p_{m}, x\right)-p_{m}(x)\right| \leq c_{16^{2}} w\left(f ; m^{-1}\right) \sum_{k=1}^{n} u_{k}(x) \tag{13}
\end{equation*}
$$

where

$$
u_{k}(x)=\frac{\left(1-x^{2}\right) T_{n}^{2}(x)}{n^{3 / 2}\left(1-x_{k}^{2}\right)^{\frac{3}{2}}\left|x-x_{k}\right|}
$$

Once again let j be defined by (3). Then

$$
\begin{equation*}
\sum_{k=1}^{n} u_{k}(x)=\sum_{k=1}^{j-1} u_{k}(x)+u_{j}(x)+\sum_{k=j+1}^{n} u_{k}(x) \tag{14}
\end{equation*}
$$

We begin by estimating $u_{j}(x)$:

$$
\begin{align*}
u_{j}(x) & \leq \frac{n}{n^{3 / 2}} \cdot \frac{1-x^{2}}{1-x_{j}{ }^{2}} \cdot \tau_{j}(x) \tag{15}\\
& \leq 4 n^{-\frac{1}{2}} .
\end{align*}
$$

Now we shall estimate $n^{3 / 2} \sum_{k=1}^{j-1} u_{k}(x)$. Writing

$$
1-x^{2}=1-x_{k}^{2}+\left(x-x_{k}\right)^{2}-2 x\left(x-x_{k}\right)
$$

we obtain

$$
\begin{align*}
n^{3 / 2} u_{k}(x) & \leq\left(1-x_{k}^{2}\right)^{\frac{3}{2}} \frac{T_{n}^{2}(x)}{x-x_{k}}+\left|x-x_{k}\right| \frac{T_{n}^{2}(x)}{\left(1-x_{k}^{2}\right)^{2 \frac{3}{2}}}+|x| \frac{T_{n}^{2}(x)}{\left(1-x_{k}^{2}\right)^{\frac{1}{2}}} \tag{16}\\
& \leq n\left|z_{k}(x)\right|+3 /\left(1-x_{k}^{2}\right)^{\frac{3}{2}}
\end{align*}
$$

Now it is known that

$$
\begin{equation*}
\sum_{k=1}^{n}\left(1-x_{k}^{2}\right)^{-\frac{3}{2}} \leq c_{17} n \ln n \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{n}\left|z_{k}(x)\right| \leq c_{18} \ln n \tag{18}
\end{equation*}
$$

Hence by (16), (17), and (18),

$$
\begin{equation*}
\sum_{k=1}^{j-1} u_{k}(x) \leq c_{19} \tag{19}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\sum_{k=j+1}^{n} u_{k}(x) \leq c_{20} \tag{20}
\end{equation*}
$$

By (15), (19), and (20),

$$
\sum_{k=1}^{n} u_{k}(x) \leq c_{21} .
$$

Thus, returning to (13) we have

$$
\left\|V_{n}\left(p_{m}, x\right)-p_{m}(x)\right\| \leq c_{21} w\left(f ; m^{-1}\right)
$$

which proves Lemma 2.

References

[1] D.L. Berman, "A study of the Hermite-Fejér interpolation process", Soviet Math. Dokl. 10 (1969), 813-816.
[2] D.L. Berman, "Extended Hermite-Fejêr interpolation processes diverging everywhere", Soviet Math. Dokl. 11 (1970), 830-833.
[3] Leopold Fejér, "Ueber Interpolation", Nachr. K. Ges. Wiss. Göttingen Math.-Phys. KL. 1916, 66-91.
[4] J. Szabados, "On the convergence of Hermite-Fejér interpolation based on the roots of the Legendre polynomials", Acta Sci. Math. 34 (1973), 367-370.
[5] Paul Szász, "On quasi-Hermite-Fejér interpolation", Acta Math. Acad. Sci. Hungar. 10 (1959), 413-439.
[6] A.K. Varma, "On a problem of P. Turán on lacunary interpolation", Canad. Math. Buzl. 10 (1967), 531-557.

Department of Mathematics,
Eastern Montana College,
Billings,
Montana,
USA.

