# ASYMPTOTIC ERUIVALENCE OF ORDINARY AND <br> OPERATOR-DIFFERENTIAL EQUATIONS 

P.S. Simeonov and D.D. Bainov

The paper considers problems connected with the asymptotic equivalence of the system of ordinary differential equations

$$
\begin{equation*}
\frac{d x}{d t}=f(t, x) \tag{1}
\end{equation*}
$$

and the system of operator differential equations

$$
\begin{equation*}
\frac{d y}{d t}=f(t, y)+g(t, y, A, y) \tag{2}
\end{equation*}
$$

The generality of the operator $A_{t}$ guarantees a number of $i$ ts important implementations. By a specific choice of the operator $A_{t}$ the system (2) can be one of the concentrated delay, a system of distributed delay, a system with maxima, etcetera.

Received 6 June 1986.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/87 $\$ 22.00+0.00$.

## 1. Preliminary Notation

This paper considers the problem of asymptotic equivalence of two non-linear systems of differential equations, one of them being operatordefferential. The proof of the main results will employ some of the ideas presented in [1] and [2].

Let $\alpha$ be a real number, $D$ be a region of the real Euclidean space $R^{n}$ with norm $|\cdot|$, and $x$ and $y$ be $n$-dimensional vectorfunctions defined on $[\alpha, \infty)$.

Let $S$ denote the space of bounded, continuous $n$-dimensional vector-functions defined on $[\alpha, \infty)$ with norm $\| y| |=\sup _{t \geq \alpha}|y(t)|$.

For each $t \in[\alpha, \infty)$, let an operator $A_{t}: S \rightarrow D^{m}$ be defined.

We shall consider the following two equations:

$$
\begin{align*}
& \frac{d x}{d t}=f(t, x)  \tag{1}\\
& \frac{d y}{d t}=f(t, y)+g\left(t, y, A_{t} y\right)
\end{align*}
$$

DEFINITION 1. The systems (1) and (2) are said to be asymptotically equivalent if whenever one of these systems possesses a bounded solution on the half-line, the other possesses a solution which tends to that of the first as the independent variable $t$ tends to $\infty$.

We shall say that condition (A) holds if the following conditions are satisfied:

Al. in the domain $[\alpha, \infty) \times D$ the function $f$ is continuously differentiable, while $f_{x}(t, x)=\frac{\partial f(t, x)}{\partial x}$ is locally Lipschitzian in $X$;

A2. the function $g(t, y, z)$ is continuous in the domain $[\alpha, \infty) \times D \times D^{m}$.

We shall say that condition (B) holds if the following conditions are satisfied:

Bl. for $y \in S$ and fixed, the function $A_{t} y$ is continuous in $t \in[\alpha, \infty)$;

B2. for any $\epsilon>0$ and any $\tau>0$ there exists $\delta=\delta(\epsilon, \tau)>0$ such that, for $z_{1}, z_{2} \in S$ and $\left.11 z_{1}-z_{2}\right] 1<\delta$, the inequality $\left|A_{t} z_{1}-A_{t} z_{2}\right|<\epsilon$ holds for each $t \in[\alpha, \tau]$.

Under the assumption that conditions (A) and (B) hold, the equation (2) is an operator-differential one, which, by restrictions on the operator $A_{t}$, includes important classes of functional-differential equations, such as

$$
\begin{aligned}
\frac{d y}{d t} & =f(t, y)+g(t, y, y(\Delta(t))) \\
\frac{d y(t)}{d t} & =f(t, y(t))+g(t, y(t), y(t-a), y(t-b)), \\
\frac{d y}{d t} & =f(t, y)+g\left(t, y, \max _{s \in E(t)} y(s)\right), \\
\frac{d y}{d t} & =f(t, y)+g\left(t, y, \int_{0}^{t} G(t, s) y(s) d s\right)
\end{aligned}
$$

Let us denote by $x\left(t ; t_{0}, y_{0}\right)$ the solution of (1), which satisfies the initial condition $x\left(t_{0} ; t_{0}, x_{0}\right)=x_{0}$. By $\phi\left(t, t_{0}, x_{0}\right)$ we denote the fundamental matrix solution of the equation of variations with respect to the solution $x\left(t ; t_{0}, x_{0}\right)$ :

$$
\frac{d z}{d t}=f_{x}\left(t, x\left(t ; t_{0}, x_{0}\right)\right) z
$$

Recall that
(3)

$$
\begin{aligned}
& \phi\left(t_{0}, t_{0}, x_{0}\right)=I, \quad \text { (Unit matrix) } \\
& \frac{\partial x\left(t ; t_{0}, x_{0}\right)}{\partial x_{0}}=\phi\left(t, t_{0}, x_{0}\right) \\
& \frac{\partial x\left(t ; t_{0}, x_{0}\right)}{\partial t_{0}}=-\phi\left(t, t_{0}, x_{0}\right) f\left(t_{0}, x_{0}\right)
\end{aligned}
$$

Cl. the set $\Omega \subset D$ is bounded, open, convex and the closure $\bar{\Omega} \subset D$.

C2. for an arbitrary $t_{0} \geq \alpha$ and $x_{0} \in \Omega$ the solution $x\left(t ; t_{0}, x_{0}\right.$ ) of (1) exists for $t \in\left[\alpha, t_{0}\right]$ and has values in $D$ (this implies that the corresponding fundamental matrix $\phi\left(t_{,} t_{0}, x_{0}\right)$ exists in the same regionl .

## 2. Main results

THEOREM 1. Let conditions (A), (B) and (C) hold. Let $y(t)$ be a solution of (2) with values in $\Omega$ for $t \geq \infty \geq \alpha$ and suppose the integral

$$
\begin{equation*}
\int_{t}^{\infty} \phi(t, s, y(s)) g\left(s, y(s), A_{s} y\right) d s \tag{4}
\end{equation*}
$$

converges uniformy on each bounded subinterval of $[\beta, \infty)$. Then

$$
x(t)=y(t)+\int_{t}^{\infty} \phi(t, s, y(s)) g\left(s, y(s), A_{s} y\right) d s
$$

is a solution of (1) on $[\beta, \infty)$, and $|x(t)-y(t)| \rightarrow 0$ as $t \rightarrow \infty$ if and only if

$$
\left|\int_{t}^{\infty} \phi(t, s, y(s)) g\left(s, y(s), A_{s} y\right) d s\right| \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty
$$

Proof. Since $y(s) \in \Omega$ for $s \geq \beta$, it follows from $C 2$ that the integral $f_{t}^{T} \phi(t, s, y(s)) g\left(s, y(s), A_{s} y\right) d s$ is defined for $t \in[B, T]$. Also by using (3), we obtain, for $s \geq \beta$

$$
\begin{aligned}
\frac{d x(t ; s, y(s))}{d s} & =\phi(t, s, y(s))\left[-f(s, y(s))+\frac{d y(s)}{d s}\right] \\
& =\phi(t, s ; y(s)) g\left(s, y(s), A_{s} y\right)
\end{aligned}
$$

or

$$
x(t ; T, y(T))=y(t)+\int_{t}^{T} \phi(t, s, y(s)) g\left(s, y(s), A_{s} y\right) d s \quad \text { for } \quad \beta \leq t \leq T
$$

Since the improper integral (4) converges uniformly on each bounded subinterval of $[\beta, \infty)$, then the function

$$
\begin{equation*}
x(t) \equiv \lim _{T \rightarrow \infty} x(t ; T, y(T))=y(t)+\int_{t}^{\infty} \phi(t, s, y(s)) g\left(s, y(s), A_{s} y\right) d s \tag{5}
\end{equation*}
$$

as a uniform limit of solutions of (1), is also a solution of (1) on this subinterval and hence $x(t)$ is a solution of (1) on $[\infty, \alpha$ ). Moreover, (5) implies that $|x(t)-y(t)| \rightarrow 0$ as $t \rightarrow \infty$.

Theorem 1 solves the first part of the problem of asymptotic equivalence.

Now let $x(t)$ be a solution of (1) with values in $\Omega$ for $t \geq \alpha$ and without limit points on the boundary of $\Omega$, that is there exists a number $d>0$ such that for all $t \geq \alpha\{x:|x-x(t)| \leq d\} \subset \Omega$

Theorem 2 investigates the converse problem to that considered in Theorem 1. We shall obtain the result using the following condition (D) :
D. If $z(t)$ is a continuous function with values in $\Omega$ for $t \geq \alpha$ and if $\alpha \leq t \leq T$, then

$$
\int_{T}^{\infty}\left|\phi(t, s, z(s)) g\left(s, z(s), A_{s} z\right)\right| d s<H(T),
$$

where $H(T) \rightarrow 0$, as $T \rightarrow \infty$ (we assume, without loss of generality, that $H(T)$ is a continuous and non-increasing function).

THEOREM 2. Let conditions $(A),(B),(C)$ and ( $D$ ) hold and let $x(t)$ be a bounded solution of (1) with values in $\Omega$ for $t \geq \beta$ without limit points on the boundary of $\Omega$.

Then there is a $\beta \geq \alpha$ and a solution $y(t)$ of (2) for $t \geq \beta$, such that $|x(t)-y(t)| \rightarrow 0$ as $t \rightarrow \infty$.

Proof. We choose $\beta \geq \alpha$ so that $H(\beta) \leq d$. For any integer $n \geq \beta$ we define the set

$$
D_{n}=\{z \in S:|z(t)-x(t)| \leq d, \quad \beta \leq t \leq n
$$

and the operator $Q: D_{n} \rightarrow S$ as follows

$$
Q z(t)= \begin{cases}x(t)-\int_{t}^{n} \phi(t, s, z(s)) g\left(s, z(s), A_{s} z\right) d s & \text { for } \beta \leq t \leq n \\ x(t)-\int_{\beta}^{n} \phi(\beta, s, z(s)) g\left(s, z(s), A_{s} z\right) d s & \text { for } d \leq t \leq \beta \\ x(t) & \text { for } t \leq n\end{cases}
$$

It is easy to see that $D_{n}$ is a closed, convex, bounded subset of $S$. We shall show that the operator $Q$ has a fixed point $y_{n} \in D_{n}$. For this purpose we shall employ the Schauder Fixed Point Theorem, for whose application it is sufficient to show that: $\mathrm{I} . Q D_{n} \subset D_{n}$;
II. $Q$ is continuous; III. $\overline{Q D_{n}}$ is compact in $S$.
I. The choice of $\beta$ and condition (D) imply that for $t \geq \alpha$
(6) $|Q z(t)-x(t)| \leq \sup _{\beta \leq \tau \leq n} \int_{\tau}^{n}\left|\phi(\tau, s, z(s)) g\left(s, z(s), A_{s} z\right)\right| d s \leq H(\beta) \leq d$ that is $Q D_{n} \subset D_{n}$.
II. Let $z_{1}, z_{2} \in D_{n}$. Then for $t \geq \alpha$ we get the estimate

$$
\begin{gathered}
\left.\left|Q z_{1}(t)-Q z_{2}(t)\right| \leq \sup _{\beta \leq \tau \leq n} \frac{f}{\tau}_{n} \right\rvert\, \phi\left(\tau, s, z_{1}(s)\right) g\left(s, z_{1}(s), A_{s} z_{1}\right) \\
-\phi\left(\tau, s, z_{2}(s)\right) g\left(s, z_{2}(s), A_{s} z_{2}\right) \mid d s .
\end{gathered}
$$

Taking into account (A), (B) and (C) we conclude that $Q$ is continuous.
III. From (6) it follows that the set $Q D_{n}$ is bounded. Since $Q z(t)=x(t)$ for all $z \in D_{n}$ and $t \geq n$, it is sufficient to show that the set $Q D_{n}$ is equicontinuous on the interval $[\alpha, n]$.

Let $\varepsilon>0$ be given. Since $x(t)$ is uniformly continuous on $[\alpha, n]$, there exists $\delta_{1}>0$ such that $\alpha \leq t_{1} \leq t_{2} \leq n$ and $\left|t_{1}-t_{2}\right|<\delta_{1}$ imply that $\left|x\left(t_{1}\right)-x\left(t_{2}\right)\right|<\frac{\varepsilon}{4}$. Then, if $z \in D_{n}$, $\beta \leq t_{1} \leq t_{2} \leq n$ and $\left|t_{1}-t_{2}\right|<\delta_{1}$, we have
$\left|Q z\left(t_{1}\right)-Q z\left(t_{2}\right)\right| \leq\left|x\left(t_{1}\right)-x\left(t_{2}\right)\right|+\int_{t_{1}}^{t_{2}}\left|\phi\left(t_{1}, s, z(s)\right) g\left(s, z(s), A_{s} z\right)\right| d s$
(7)

$$
+\int_{t_{2}}^{n}\left|\phi\left(t_{1}, s, z(s)\right)-\phi\left(t_{2}, s, z(s)\right)\right|\left|g\left(s, z(s), A_{s} z\right)\right| d s
$$

Then the mean value theorem and the equality $\frac{\left.\partial \phi_{i}^{\prime} t, s, z(s)\right)}{\partial t}$
$=f_{x}\left(t, x(t ; s, z(s)) l \phi(t, s, z(s))\right.$ imply that $\phi\left(t_{2}, s, z(s)\right)-\phi\left(t_{1}, s, z(s)\right)$
$=f_{x}(\tau, x(\tau ; s, z(s))) \phi(\tau, s, z(s))\left(t_{2}-t_{1}\right)$, where $t_{1}<\tau=\tau(s)<t_{2}$. Therefore, the second integral in (7) does not exceed
(8) $\left|t_{2}-t_{1}\right| \int_{t_{2}}^{n}\left|f_{x}(\tau(s), x(\tau(s) ; s, z(s))) \| \phi(\tau(s), s, z(s))\right|\left|g\left(s, z(s), A_{s} z\right)\right| d s$.

Since the integrands in the first integral of the estimate (7) and in (8) are limited by a common constant, independent of $t_{1} \in[\beta, n]$, $t_{2} \in[B, n]$ and $z \in D_{n}$, then there exists a $\delta<\delta_{1}$, such that for $\beta \leq t_{1} \leq t_{2} \leq n, \quad\left|t_{1}=t_{2}\right|<\delta$ and $z \in D_{n}$ the two integrals in (7) are less than $\frac{\varepsilon}{4}$. Hence $\left|Q z\left(t_{1}\right)-Q z\left(t_{2}\right)\right| \leq \frac{\varepsilon}{4}+\frac{\varepsilon}{4}<\varepsilon$.

If $\alpha \leq t_{1} \leq \beta \leq t_{2} \leq n, \quad\left|t_{1}-t_{2}\right|<\delta$, then $\left|Q_{z}\left(t_{1}\right)-Q_{z}\left(t_{2}\right)\right|$
$\leq\left|Q z\left(t_{1}\right)-Q z(B)\right|+\left|Q z(B)-Q z\left(t_{2}\right)\right|=\left|x\left(t_{1}\right)-x(\beta)\right|+\left|Q z(B)-Q z\left(t_{2}\right)\right|$
$<\frac{\varepsilon}{4}+\frac{\varepsilon}{2}<\varepsilon$.

Finally, if $\alpha \leq t_{1} \leq t_{2} \leq \beta,\left|t_{1}-t_{2}\right|<\delta$, then $\left|Q z\left(t_{1}\right)-Q z\left(t_{2}\right)\right|$ $=\left|x\left(t_{1}\right)-x\left(t_{2}\right)\right|<\frac{\varepsilon}{4}<\varepsilon$.

Thus, the hypothesis of Schauder Fixed Point Theorem holds and there exists an $y_{n} \in D_{n}$ such that $y_{n}=Q y_{n}$, that is

$$
y_{n}(t)=x(t)-\int_{t}^{n} \phi\left(t, s, y_{n}(s)\right) g\left(s, y_{n}(s), A_{s} y_{n}\right) d s, \quad \text { for } \quad \beta \leq t \leq n
$$

or

$$
\begin{aligned}
y_{n}^{\prime}(t) & =f(t, x(t))+g\left(t, y_{n}(t), A_{t_{n}} y^{\prime}\right. \\
& -\int_{t}^{n} f_{x}\left(t, x\left(t ; s, y_{n}(s)\right)\right) \phi\left(t, s, y_{n}(s)\right) g\left(s, y_{n}(s), A_{s} y_{n}\right) d s
\end{aligned}
$$

Since

$$
\begin{aligned}
f\left(t, y_{n}(t)\right) & -f(t, x(t))=f\left(t, x\left(t ; t, y_{n}(t)\right)\right)-f(t, x(t)) \\
& =\int_{n}^{t} \frac{d}{d s} f\left(t, x\left(t ; s, y_{n}(s)\right)\right) d s \\
& =\int_{n}^{t} f_{x}\left(t, x\left(t ; s, y_{n}(s)\right)\right) \phi\left(t, s, y_{n}(s)\right)\left[y_{n}^{\prime}(s)-f\left(s, y_{n}(s)\right)\right] d s
\end{aligned}
$$

we have

$$
w(t)=-\int_{n}^{t} f_{x}\left(t, x\left(t ; s, y_{n}(s)\right)\right) \phi\left(t, s, y_{n}(s)\right) w(s) d s, \quad \text { for } \quad \beta \leq t \leq n
$$

where $w(t)=y_{n}^{\prime}(t)-f\left(t, y_{n}(t)\right)-g\left(t, y_{n}(t), A t_{n}\right)$. But this implies $w(t)=0$, thus $y_{n}(t)$ is a solution of (2) on $[\beta, n]$.

Let $N \geq B$ be an integer and consider the sequence $y_{n}$, $n=N, N+1, \ldots$ of fixed points. Clearly, $\left|y_{n}(t)\right| \leq \sup _{t \geq \beta}|x(t)|+d$ for $t \geq \beta$ and the sequence $\left\{y_{n}\right\}_{N}^{\infty}$ is equicontinuous on $[\beta, N]$.

By Ascoli's theorem there is a subsequence $\left\{y_{n 1}\right\}$ of the $y_{n}$ 's converging uniformly on $[\beta, N]$. Similarly, the functions $y_{n 1}$ are solutions of (2) on $[\beta, N+1]$ for $n 1 \geq N+1$ and the sequence $\left\{y_{n 1}\right\}$ is equicontinuous on $[\beta, N+1]$ so there is a subsequence $\left\{y_{n 2}\right\}$ of the $y_{n 1}$ 's converging uniformly on $[\beta, N+1]$. Clearly on the interval $[\beta, N]$ both subsequences converge to the same limit. Proceeding inductively we define a function $y(t)$ on $[\beta, \infty)$ and a chain of subsequences $\left\{y_{n k}\right\}$ such that $\left\{y_{n k}\right\}$ converges uniformly to $y$ on $[\beta, N+K]$. The sequence $\left\{\bar{y}_{n}\right\}_{1}^{\infty}, \bar{y}_{n}=y_{n n}$ then converges to $y$ uniformly on compact subintervals of $[\beta, \infty)$. Moreover, $y_{n}(t) \in \Omega$ and $y(t) \in \Omega$ for $t \geq \beta$.

Then, using condition (D), we obtain that

$$
\int_{t}^{\infty} \phi(t, s, y(s)) g\left(s, y(s), A s^{y}\right) d s
$$

exists for $t \geq \beta$. From the estimate

$$
\begin{aligned}
& \left|f_{t}^{\infty} \phi(t, s, y(s)) g\left(s, y(s), A_{s} y\right) d s-f_{t}^{n} \phi\left(t, s, \bar{y}_{n}(s)\right) g\left(s, \bar{y}_{n}(s), A_{s} \bar{y}_{n}\right) d s\right| \\
\leq & \int_{t}^{m}\left|\phi(t, s, y(s)) g\left(s, y(s), A_{s} y\right)-\phi\left(t, s, \bar{y}_{n}(s)\right) g\left(s, \bar{y}_{n}(s), A_{s} \bar{y}_{n}\right)\right| d s+2 H(m) \\
(m> & t) \quad \text { it follows that } \\
& \lim _{n \rightarrow \infty} f_{t}^{n} \phi\left(t, s, \bar{y}_{n}(s)\right) g\left(s, \bar{y}_{n}(s), A_{s} \bar{y}_{n}\right) d s=f_{t}^{\infty} \phi(t, s, y(s)) g\left(s, y(s), A_{s} y\right) d s
\end{aligned}
$$

uniformly on compact subintervals of $[\beta, \infty)$.
The functions $\bar{y}_{n}(t)$ are solutions of (2) on $[\beta, N+n]$; consequently $y(t)$ is also solution of (2) on $[\beta, \infty)$ and

$$
y(t)=x(t)-\int_{t}^{\infty} \phi(t, s, y(s)) g\left(s, y(s), A_{s} y\right) d s
$$

Hence, $|y(t)-x(t)| \rightarrow 0$, as $t \rightarrow \infty$.

The following theorem is a corollary of Theorem 1 and Theorem 2.
THEOREM 3. Let conditions ( $A$, , $(B),(C)$ and ( $D$ ) hold. Then if either of the equations (1) or (2) possesses a bounded solution on a half-line with values in $\Omega$ and without limit points on the boundary of $\Omega$, then the other also possesses such a solution which tends to the former as $t \rightarrow \infty$.

COROLLARY 1. Let us suppose that the differential equation (1) is Zinear, $f(t, x)=A(t) x$, where $\left.A(t)=a_{i j}(t)\right)_{1}^{n}$.

Let $g_{K}, K=1,2, \ldots, n$ be the components of the function $g$, that is $g_{K}:[\alpha, \infty) \times 0 \times D^{m} \rightarrow R^{1}$ and the functions $h_{K}:[\alpha, \infty) \rightarrow[0, \infty)$ be such that $\left|g_{K}(t, x, y)\right| \leq h_{K}(t)$ for $(t, x, y) \in[\alpha, \infty) X D X D^{m}$ and $K=1,2, \ldots, n$.

Suppose also that for $i, j$ and $K(i \neq j)$ we have

$$
f_{t}^{\infty} h_{K}(\tau)\left[\exp \int_{\tau}^{t} a_{K K}(s) d s\right] d \tau \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty
$$

and

$$
f_{t}^{\infty}\left|a_{i, j}(\tau)\right|\left[\exp \int_{\tau}^{t} a_{i i}(s) d s\right] d \tau \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty
$$

Then, if either of the equations (1) or (2) possesses a bounded solution on a half-line with values in $\Omega$ and without limit points on the boundary of $\Omega$, then the other also possesses such a solution which tends to the formex as $t \rightarrow \infty$.

The proof of Corollary 1 is carried out as in [2].

EXAMPLE 1. Consider the equations
(10)

$$
\begin{align*}
& \frac{d x}{d t}=-\frac{\sin 2 x}{2 t}  \tag{9}\\
& \frac{d y}{d t}=-\frac{\sin 2 y}{2 t}+g(t, y, A, y)
\end{align*}
$$

where $t \in[1, \infty) ; x, y \in \Omega=\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) ; A_{t} y=\max _{s \in[1, t]} y(s) ;$

$$
\left|g\left(t, y(t), A_{t} y\right)\right| \leq h(t) \quad \text { if } y(t) \in \Omega \quad \text { and } \quad \int^{\infty} h(t) t d t<\infty
$$

We have $x(t ; s, z)=\arctan \left(\frac{s}{t} \tan z\right)$ and $\phi(t, s, z)=\frac{\partial x}{\partial z}$
$=\frac{s t}{s^{2} \sin ^{2} z+t^{2} \cos ^{2} z}$. Then, if $z(s) \epsilon \Omega$ for $s \geq T \geq t \geq 1$
following estimate is valid

$$
f_{T}^{\infty}\left|\phi(t, s, z(s)) g\left(s, z(s), A_{s} z\right)\right| d s \leq \int_{T}^{\infty} \frac{h(s)_{s}}{t} d s \leq f_{T}^{\infty} h(s) s d s \equiv H(T)^{\bullet}
$$

Since $\lim _{T \rightarrow \infty} H(T)=0$, the conditions of Theorem 3 are fulfilled and equations (9) and (10) are asymptotically equivalent.

## References

[1] R.E. Fennell and T.G. Proctor, "On asymptotic behavior of perturbed nonlinear systems", Proc. Amer. Math. Soc. 31 (1972), 499-504.
[2] J.A. Marlin and R.A. Struble, "Asymptotic equivalence of nonlinear systems", J. Differential Equations 6 (1969), 578-596.

23, Oborishte Str.,
1504 Sofia,
Bulgaria.

