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Abstract

Congruences on regular semigroups have been characterized in terms of normal equivalences on sets
of idempotents and kernels of congruences. A revised characterization is presented here with
considerably simplified expressions for the least and greatest congruences associated with normal
equivalences and with a new description of kernels. The results are then applied to characterize
congruences on completely regular semigroups.

1980 Mathematics subject classification (Amer. Math. Soc): 20 M 10.

A description of the congruences on an inverse semigroup in terms of normal
equivalences of the subsemigroup of idempotents and kernels of homomorphisms
has been given by H. E. Scheiblich (1974). In 1978 M. Petrich produced an
elegant version of the description and used it to determine some properties
associated with special congruences. In her doctoral dissertation, R. Feigenbaum
(1975) extended the description to cover regular semigroups; she has published a
detailed account (1976) for orthodox semigroups and a summary (1979) of the
results for regular semigroups. In the regular case the description and proofs can
be simplified, especially if use is made of sandwich sets as formulated by K. S. S.
Nambooripad (1974). A characterization in terms of sandwich sets of normal
equivalences on the set of idempotents and of the greatest congruence associated
with a normal equivalence has been given by the author (1978).

The least and greatest congruences associated with normal equivalences on the
set of idempotents of a regular semigroup play a crucial role in the description,
via kernels, of congruences on the semigroup. As pointed out by A. H. Clifford
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[21 Congruences on semigroups 389

(1979) in a brief survey of the normal equivalence—kernel method, the known
expressions for the least and greatest congruences are quite complicated and
simpler expressions would be welcome.

Let IT be a normal equivalence on the set of idempotents £ of a regular
semigroup S and let p be a congruence on S whose restriction to £ is -n. Preimages
/?(ps)"' and L(p*y] of respective %• and £-classes R and L of S/p can be readily
specified in terms of w (not p). Use is made of these classes and of sandwich sets
in section 2 to obtain simplifications of Feigenbaum's results. New and less
complex descriptions of the greatest and least congruences and kernels associated
with w are obtained.

In Section 3 the results are applied to completely regular semigroups.

Congruences on regular semigroups

Throughout the paper S denotes a regular semigroup with a set of idempotents
E. For a G S, V(a) denotes the set of inverses of a. For undefined terminology
see Clifford and Preston (1961) or Howie (1976).

An equivalence relation TT on £ is called normal if and only if there is a
congruence p on S so that IT = p C\ (E X E). We then say -n is the normal
equivalence associated with p. For a congruence p on S define

kerp = {a G S; ap = ep, e G £}

to be the kernel of p. The congruence p is uniquely determined by ker p and' the
associated normal equivalence on E (Feigenbaum (1979)).

For e, f G E the sandwich set of e, / i s

S(e,f) = {h GE;he = h=fh,ehf=ef}.

Nambooripad (1974) has shown that 0 ^ S(e, f) C V(ef) and S(a'a, bb') =
S(a*a, bb*) for any a, b G 5, a', a* G V{a) and b', b* G V(b). Hence define
S(a, b) = S(a'a, bb'). Furthermore b'S(a, b)a' C V(ab).

THEOREM 2.1 (Trotter (1978)). An equivalence relation IT on E is normal if and
only if for each e, f G E, c G 5 and c' G V{c) then

(i) (ew)(/w) DEC g-n for all g G S(ef, ef) and
(ii) c(e-!r)c' PI £ C g-n for all g G S(cec', cec').

Let m be a normal equivalence on E. Define relations on S by

<&„ = {(a, b) G S X 5; (aa'n){bb'ir) D bb'm ¥= 0, {bb')-rr{aa'-n) n aa'v

^ 0 for some (any) a' G V(a), V G V(b)}
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390 P. G. Trotter 13]

and

e^ = {(a, b) E SX S; (a'an)(b'bir) D a'air ¥= 0 , (b'bir)(a'air) C\ b'btr

=t 0 for some (any) a' E V(a), b' G V{b)}.

Let %n — %v D tn. Note that if p is a congruence on S associated with IT then
a%wb if and only if ap%bp where % is ft, 6 or % (the author (1978)). a . (and
dually fcv) can be defined in terms of "31 and IT, or sandwich sets and IT. For
aa'<&,J>b' if and only if there exists e, f E E so that eiraa', firbb' and <?<3l/(T. E.
Hall (1972) Theorem 5) if and only if S(aa', bb') C aaV and S(W>\ aa') C bb'-n
(the author (1978) Lemma 1.3). Hence, given IT, %V can be readily calculated.

In the remainder of the paper IT will denote a normal equivalence on E, while an

and nn will denote respectively the least and greatest congruences on S associated
with IT.

For e E E define Hem = {a E S; a%ne}. Let A: be a subset of S and A"e = K D
/ / e i r Define AT to be a it-kernel if and only if for each e G E, c G S and c' G F(c)
then

(2) Ke is a left unitary subsemigroup of Hem, and
(3) whenever cec' G ker av then c ^ c ' C AT.
Note that if IT is the identity equivalence then ker an = E; (2) becomes, Ke is a

subgroup of the DOclass He. Define

pK = {(a, b)E%w; for some (any) a' E V(a), b' G V(b) then aft', a'ft G A"}.

THEOREM 2.2. Let IT be a normal equivalence and K be a ir-kernel. Then pK is a
congruence on S with kernel K and is associated with IT. Conversely if p is a
congruence on S associated with m then kerp is a ir-kernel and p = pk e r p .

PROOF. By Feigenbaum (Theorem 4.1 (1979)), K is the kernel of a congruence
associated with w if and only if (i) K satisfies (1), (ii) Ke = {a E Hev; xa E Ke for
some x G Ke], (iii) for a, b E K and a G Sb or a EbS then ab or ba E K
respectively, and (iv) for a E Sc or cS then cac' or c'ac E K respectively. Clearly
K satisfies (i) and (ii). Suppose a, b E K. We next check that K satisfies (iv). Say
a G 5c, then a'a = a'ac'c for some a' E V(a), c' E V(c). Since a E ker/tff then
by Lemma 1.2 of the author (1978) ann = ppv for any p E S(a, a) and a G Kp.
We have p = pa'a = pc'c so cpc' G E. By (3), since a G Kp, then cac' e K.
Similarly a E cS implies c'ac E K. To see that K satisfies (iii) assume a - xb,
xES. Since b E K C ker/i , , then (b, b2) G \in and (xb, xb2) E / i # so a%vab.

Let a ' G V(a), b' E V(b), (ab)' E V(ab) and select idempotents e, f so that

e%na and f%wb. Then (« iV)o£ £ F(oa*), (e(ab)'e)<j* E V(aba*), (fb'f)o* E
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[4] Congruences on semigroups 391

V(bo*), ea'e%va%ve(ab)'e and fb'fX^b. Since a = xb, then aa^ = (afb'fb)a^ =
(af)av. So (aa 'K = (a/a 'K and by (3), aba' G K. By (3), since aba'%naa' and
eaw = (eaa'e)aw then eaba'e G AT. Since eaba'e, a, e(ab)'eab G T̂£ then by (2)
eaba'eae(ab)'eab G X^ But

(eaba'eae(ab)'e)av = (eab(ea'ea)e(ab)'e)av = (eab(e(ab)'e))aw = eam

so eaba'eae(ab)'e G Ke by (1), and by (2) ab G # e . By a similar type of argument
a £ bS implies ba G K. Hence K is the kernel of a congruence associated with m.

By Feigenbaum (Theorem 4.1 (1979)) pK is a congruence associated with w
having kernel K. The word "any" can be added to her description since for
(a, b) G pK then {ab', bb') G pK and (a'fc, a'a) G p^ for any a' G F(a) and
Z>' G V(b). It is easy to see that kerp is a 7r-kernel. The remainder of the theorem
is from Feigenbaum's result.

In order to complete the description of the normal equivalence-kernel method,
a description of keraw and ker/iw is required. The following lemma is used in
obtaining a characterization of these kernels.

LEMMA 2.3. Let p be a congruence on S and e, f G E.
(i) S(/p» ep*) C {(S(f, g))p*; g G E).
(ii) (ef)p = ep if and only if there exists s E. ep C\ E so that sf — s — es.
(iii) ep* «£ /p* // and only if there exists t G ep D E so that t < / .

PROOF. There exists/> G £ so that/»p* G 5(/p*, ep*). Then (/>/)p = pp = (ep)p
and by the author (Lemma 1.2 (1978)), S(pf, pf)C pp. Let q G S(/>/, /?/) and
hES(p,f), then hGV(pf), hp = h = fh and S(pf, pf) = S(hpf, pfh) =
S(hf,ph) so qhf = q; in particular qf — q. Likewise for rES(ep,ep) then
rp = />p and er = r. For 5 G S(q, r), since #p = rp we have s E pp by the author
(Lemma 1.3 (1978)). Then sq = s = rs and since qf — q, er = r then sf = s = es.
Now put g = se. Then s E S(f, g) and sp = /»p, so (i) is proved.

Suppose (e/)p* = ep* then ep* G S(fp*, ep*). By the proof of (i) with p = e,
we get i as required in (ii). If furthermore ep* < /p* let t = fs. Since (fs)p = (fe)p
= ep and / «£ / then Ms as required in (iii). The converses of (ii) and (iii) are
immediate.

THEOREM 2.4. /*„ = {(a, b) E %„; for some (any) a' E V(a), b' E V(b) and
each idempotent t =£ aa' then S(a'ab'tb, a'ab'tb) C (a'ta)^} = {(a, b) E %„; for
some (any) a' E V(a),b' E V(b) and each idempotent t ^ aa' then a'ta%na'ab'tb}.

PROOF. By Theorem 2.3 of the author (1978) and its proof, apj) if and only if
a%nb and for some (any) a' G V(a), b' G V(b) and for each idempotent e,
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eaf < (aa')o* then (S(a'ea, a'ea))ir = (S(a'ab'aa'eb, a'ab'aa'eb))ir; since a%vb,
(a'ea)af and (a'ab'aa'eb)o* are idempotents. It can be easily seen, for an
idempotent xa*, that (S(x, x))a* C S(xo*, xa*) = {xaf}. Thus, if aa' ^ / £ eir,
(S(a'ea, a'ea))ir = (a'ea)ov D E - (a'ta)av n E = (S(a'ta, a'ta))ir - (a'ta)ir.
Likewise (S(a'ab'aa'eb, a'ab'aa'eb))tr = (S(a'ab'tb, a'ab'tb))ir. The first equality
of the theorem now follows by Lemma 2.3(iii). The second equality follows since
as an idempotent (a'ta)o* — (a'ab'tb)o*.

It should be noted that this theorem allows simplifications of the descriptions
of /xw by Reilly and Scheiblich (1967) and Feigenbaum (1976) for inverse and
orthodox semigroups respectively. In the inverse case, using Theorem 2.1 and our
notation, these give

juw = {(a, b) G S X S; a'xeamb'^eb for each*? £ E).

We now have for S an inverse semigroup

/*„= {(a,b) G 5 X S; aa~xmbb-\ a-xamb~xb anda~xtamb-xtb

for each idempotent t < aa'x}.

We get a'xta-nb'xtb since {a~xab~xtb)a^ = {b~xtb)o^ so the idempotent b~xtb is
3Cw-related to a'xab~xtb. The simplification in the orthodox case is more extensive.

COROLLARY 2.5. kerjuw = {b e 5; /or some (any) ft' £ K(Z>) and idempotent
f%1Tb and for each idempotent / < / */ie« S(fb'tb, fb'tb) C t-n (equivalently

t%wfb'tb)}.

The following definitions are required for our description of aw. If U is a subset
of 5 let ( [ / ) denote the subsemigroup of S generated by U. For e G E define

Nev = ( U {.x(g7r)>>; x, y £ S1, g, xgy £ E and xgys — s for some 5 £ en})

and

Ee7T = ( U {fir; f £ E and5/ = 5 for somes E eir}).

THEOREM 2.6. om — {(a, b) £ %„; for some (any) a' £ V(a) there exists u £
Eaa.v and v £ Naa.v so that ba'u = v).

PROOF. We will need to select elements of V(xgzz') for g £ E, x, z £ S\
x' £ V(x) and z' £ V(z) (x' = 1 if x = 1 and likewise for z). This can be done
as follows. Let h £ S(g, zz') C V(gzz'), so hg = h = zz'h and g/?zz' = gzz'. Let
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k G S(x, gzz') = S(x'x, gzz'h) - S(x'x, gh), then kx'x - k - ghk, xkgz =
x(x'xkgh)zz'z = xx'xghzz'z — xgz and hkx' G V(xgzz'). Note that if xgz(xgz)'
G eir for some (xgz)' G V(xgz) then x(gir)hkx' G Nev; this follows since xghkx'
— xkx' G E and xkx'xgz(xgz)' = x/cgz(;tgz)' = xgz(xgz)'.

Now suppose (a, b) G aw and a' G F(a). Clearly (a, b) G 3CW. Let e = aa',
then (e, ba') G aw and (by Clifford and Preston (1967) Lemma 10.3) there exists
xi,yl G Sl and (e,, /•) G t , 1 < ( < n, so that

e = xxexyx, x]jJyj• = x>+1e/.+ 1^-+1, xjnyn = ba' f o r l < y < « .

We proceed by induction on « to find the required M and u. Say « = 1 and put
JC = xx, z — yxe and g — ex,soe — xgz, xfxz = ba'e. Select h and /c as in the last

paragraph, so hkx' G V(ez'). Note that ez'tzz' since xgzz' = ez' and zez' = zz',
so zz' — zz'(hkx')ez' = hkx'ez'. Since ez'z = xgzz'z = e then z = hkx'ez'z =
hkx'e. We now have (xfxhkx')e = xfxz = ba'e. Put u — e and v — (xfxhkx')e.
Clearly w G Ee7r and since gG/,7r then by the note of the last paragraph
xfxhkx' G Nev, so u G Ne^. Thus ba'u = « as required.

Continuing by induction assume xn_1/n_1j 'n_1r = w for some r = er G £evr

and w = we G. Ne^. Then we have

ww' = xnen(ynrw'), x
nfrXynrw') ~ ba'rw' for w' G K(w).

This is of the form for n = 1 with the relabelling x = xn, z = jnrw', en = g and
and e and ba' replaced by ww' and ba'rw' respectively. So for h and k as in the
first paragraph we get as for n = 1 that xfnhkx'ww' — ba'rw' where xfnhkx' G
Nww.r. Hence fta'w = v where u = nv'w and v = xfnhkx'w. Since w = we (= Nevr

then from the definition of A^ we easily see that (w, e) G aw. Thus (ww'e)a7r =
eaT — (ew'w)am. By the note of the first paragraph xghkx' = xkx' G E where
(g, /„) G vr and xkx'ww' = ww'. So (jcA:x'e)aw = (xkx'ww'e)a^ — (ww'e)o7r =
e<V So by the dual of Lemma 2.3(ii), xfnhkx' G Ne7r. Thus v G A^T. Since
r = er G i s^ then (r, e) G aw and (rw'w)om = (ew'vv)^ = eaw so by Lemma
2.3(ii) w'w and M G EeT. Therefore by induction, if (a, b) G a^ then there exists u
and u as required.

Conversely suppose a and b are as described in the statement of the theorem.
Then by the definitions of EeiT and Nev we readily see that (aa'u)a^ — (aa')av —
(vaa')a^. Since a%^b then (b'ba'a)av = (b'b)a^ so ba^ = (ba'a)am —
(ba'aa'ua)av = (ba'ua)an — (va)av = (vaa'a)a^ = aaT.

COROLLARY 2.7. Ker a, = {i £ 5; for some (any) idempotent e%^ b there exists
u G Eev and v G Ne7r so that beu = v).
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Theorem 2.6 is a considerable refinement of the previous characterization of am.
Let U be the subsemigroup of S generated by conjugates of products of idempo-
tents and for e £ E let We = ean D U. The characterization of on by Feigenbaum
((1979) Theorem 3.3) makes use of the sets We. These sets are hard to determine;
the suggested method is via chains of elementary (IT U t)-transitions. In Theorem
2.6 we make use of the explicitly described semigroups Nev, Eew C We. It should
be noted that the previous characterization also included duals of conditions of
the type used in Theorem 2.6. By the Theorem, or directly, these dual conditions
are superfluous. The same statement about dual conditions applies to the descrip-
tion of a^ for orthodox semigroups (Feigenbaum (1976), Theorem 4.1).

The major complication in our description of the normal equivalence-kernel
method for regular semigroups, from a computational point of view, now seems
to be in the determination of m.

Completely regular semigroups

In this section the normal equivalence-kernel method is applied to completely
regular semigroups. Some special cases are considered for which the method
simplifies. We determine as applications some special congruences on completely
regular semigroups.

A semigroup S is completely regular if and only if the O^classes of S are all
groups.

Throughout this section S will denote a completely regular semigroup. For
a E S let a* denote the identity of the %-class containing a, and cr1 G V(a)
denote the unique inverse of a so that aa~x = a* — a'xa. It is well known
(Clifford and Preston (1961) Theorem 4.6) that S = U {Sa; a G / } where Sa is a
completely simple $-class of S, J is a semilattice and SaSp C Sa/8 for all a, /? G / .

For a G 5, then S(a, a) = 5(a*, a*) = a* so we get from Theorem 2.1,

THEOREM 3.1. An equivalence relation IT on E is normal if and only if for each
e,f<EE,cESandc'G V(c) then

(i) emfm D E C(ef)*tr and
(ii) c(eir)c' n E C (cec')*n.

It can be easily checked that a homomorphic image of S is completely regular.
In fact if S is also orthodox or is a band of groups then its homomorphic images
are respectively orthodox or bands of groups. Hence, for a normal equivalence IT
and a E S, Haw D E = a*n, where Haw is the ^-class containing a. Clearly
Ham = U {Hg; g G a*n}, where Hg is the OGclass containing g. We have a%^b if
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and only if a*ir = b*n if and only if a~l%vb~l. Note that Hait is itself a
completely regular semigroup.

COROLLARY 3.2. Conditions (i) and (ii) 0/ Theorem 3.1 are equivalent to the
conditions

eirftr = (ef)*Tr andceire' = (cec')*w if S is orthodox,

eirf-n C U {//g; g G (e/)*7rj if S is a band ofgroups,

e-irfnr = (ef)*ir if S is an orthodox band of groups.

PROOF. The result is immediate in the orthodox case. Suppose 5 is a band of
groups. From the preceding discussion (i) and (ii) imply the condition. Con-
versely, suppose eirf-n C U {Hg; g G (e/)*7r). Condition (i) follows. Since
(c*e)*%(ce)* then

c*eir{c')* C U {Hg;g€z{ce)*7r}{c')*

= U {Hh;h G (ce)*m(c')*} C U {Hk; k G (cec')*^}.

Since cec'3Cc*e(c')* then condition (ii) follows. Hence the result for bands of
groups. The result for orthodox bands of groups is a consequence of the other two
results.

With a w-kernel K as defined in Section 2, we may redefine pK in Theorem 2.2
by

pK= {(a,b) G S X S; a*ir = b*v and ab~l, a~]b G K).

THEOREM 3.3. fiw - {(a, b) G S X S; a*n = b*<n and {a~xea)iT - (b-'eb)^ for
all e G E so that a*e — e = eb*}.

PROOF. Suppose t G E and / < a*. Since a*m — b*-n then fa* < b*o$, so by
Lemma 2.3(iii) there exists s G tm so that s < fo*. Choose e G S(s, t) then
e7r — tir (the author (1978) Lemma 1.3) and a*e — a*te = te — e = es = esb* —
eb*. We now have a~]ea, b']eb G E, and since (a*6"')aw = ^ " ' ^ then
a*b~leb%^b~leb. Proceeding as in the proof of Theorem 2.4 we get the result.

If S is orthodox the restriction a*e — e = eb* of Theorem 3.3 may be replaced by
e < a*. This is an immediate consequence of Theorem 2.4 since b~xeb is an
idempotent 3CT-related to a*b~leb.

If a G ker/xw then ap^a* hence

COROLLARY 3.4. kerju^ = {a G S; a~xea G em for all idempotents e < a*}.
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EXAMPLE 3.5. Let S = 91L(G, / , A, P) be a regular Rees matrix semigroup over
the group G, with A X / sandwich matrix P — (pXi) and elements (a, i, X) G G
X / X A. There are various descriptions of the congruences on 5 in the literature.
The following is easily derived from (Howie (1976) III.4). Let m be an equivalence
relation on the set of idempotents of 5 and let lm be the equivalence relation on /
induced by tr, so

h= {U>j) G /X/ ; {pi),i,K)ir{p-),j, ft) for some X,/x E AJ.

Likewise let Aw be the equivalence relation on A induced by IT. Then w is a
normal equivalence if and only if

» = {{(Pxn'. M. (/£,'. h M)); (», v) e /„, (X, ;*) e A . ) .
Let M be the least normal subgroup of G so that PxiP^P^Pl) G M for each
z, 7 G / and X, jn e A so that (/', j) G /^ or (X, \x) G Aw. A subset K of 5 is a
77-kemel if and only if K — {(pl]n,'» )̂'» ('> X) G / X A and n G N} where
M Q N and Â  is a normal subgroup of G. Since the congruence pK with kernel K,
associated with m, is uniquely determined by m and N (see Theorem 2.2) we write
p(w, JV) = pK. It follows that /xw = p{ir, G) and aw = p(w, M).

Recall that S = U (5a; a E / } where 5a is a completely-simple subsemigroup
for all a in the semilattice J. Since IT denotes a normal equivalence on E then
clearly ma = w D (5 a X Sa) is a normal equivalence on the idempotents of Sa.

For a G / suppose Sa = 91t(Ga, Ia, Aa, Po), a regular Rees matrix semi-
group. For any e G E n S^ where )3 5= a define e/yX(1 G Ga by {eijXli, i, ft) =
(/>x!> '> ^)e(Ppj> h M)- NOW define JVa to be the least normal subgroup of Ga

that contains {e , 7 V / - ;^ ; (e, / ) G w n (5^ X Sy) where ySy > « and i, j & /„, X,
/i G Aa}. It can be readily checked that Na contains Ma (as defined in Example
3.5).

THEOREM 3.6. av = {(a, b) G 5 X S; a*ir = b*m and there exists an idempotent
f G a*n so that fbf p(na, Na) faf where / G S J .

PROOF. Suppose (e, f) E ir n (S^ X 5y) where /?y ^ a. Then for any /, j G Ia,
X, ft E Aa we have (e,VX/1, i, ̂ )ov(fijXli, i, M)- Hence by Howie ((1976) Lemma III,
4.20), or by a direct calculation using Theorem 2.2 and Example 3.5, we see that
p(ira, Na) C ov. With a, b, f and a as in the statement of the Theorem, then

, ( f f ) , {ff)w w
Conversely suppose a, b G an. As in the proof of Theorem 2.6 there exists x,,

y, E S1 and (e,, /•) £ i r , U K n , s o that
xjfJy]• = xJ+leJ+]yJ+l and xjnyn = b, \<j<n.
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The terms of these equations all lie in one aT-class so a*ir — b*m. Let a G./ be
least so that a or xpfpyp G Sa for some/?, 1 < p < n. Then there exists/ G a* it n
5a (the 9Cw-class for a meets Sa). Put u,-=fx,, v,=y,f, h, = (/x,)*e, (></)* and
k, — (fXjYfjiyif)* for each i. Since (e,, ft) G w we get (for example using Howie
((1976) Lemma HI, 4.19)) that (/i,, kt) G p(iro, JVJ. Furthermore, since

faf=uxh^x, uJkJvJ = uj+ihj+lvj+] and unknvn=fbf, Kj<n,

in Sa then fafp(va,Na) fbf.

Notice that if S is an orthodox union of groups then | Na \ = 1. So if S is an
orthodox union of groups then the condition fbf p(na, Na) faf can be replaced by fbf

COROLLARY 3.7. kera^ = {b G 5; there exists an idempotent f E. b*m so that
fbf G kerp(77a, Na) where f G Sa}.

EXAMPLES 3.8. The finest group congruence on S is aw where m = E X E. The
finest semilattice of groups congruence on 5 is an where IT = {(e, / ) G {E n Sa)
X ( £ n S J ; a £ J ) (for an alternative description of these congruences see T. L.
Pirnot(1973)).

The finest orthodox union of groups congruence on a completely regular
semigroup has a complex description by these methods. Restricting ourselves to
bands of groups, we can obtain a neat expression. Let the semigroup S be a band
of groups and as above suppose Sa — 91l(Ga, /„, Aa, Pa). It can be readily
checked that the least orthodox congruence on Sa is p(t, Na) where t is the
identity normal equivalence and Na is the least normal subgroup of Ga that
contains {p^PxjP^jP^,', i, j £ /„, A, \x G Aa}. Let p be the least orthodox con-
gruence on S. Then p is the least congruence on S so that (ef,(ef)*) G p for any
e,f<EE. Notice that for/> G S(e, f) and ef G Sa then ef^eptp^pf; ep, pf E E
and (ep)(pf) = ef; so ef is a product of idempotents in Sa. Using this and the
fact that p C % it can be checked by a proof similar to that of Theorem 3.6 that

p = {(a, b) G S X 5; a* = fc* and a p(i, Na) b where a <E Sa).

Hence p = U {p(i, JVO); a G / } .
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