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1. Introduction. Given a ring R and an injective ring endomorphism a:R^>R, not
necessarily surjective, it is possible to define a minimal overring A(R, a) of R to which a
extends as an automorphism. The ring A(R, a) was first studied by D. A. Jordan in his
paper [5], where he also introduces the central objects of this paper—the closed left ideals
of R. As can be seen from Theorem 4.7 of [5], the left ideal structure of A(R, a) depends
very strongly on the closed left ideals of R, and our aim here is to show that each maximal
left ideal of a left Artinian ring is closed.

It is known [5, Lemma 4.2] that any annihilator left ideal is closed, but it should be
noted that maximal left ideals of left Artinian rings need not be annihilator left ideals.

[Q Ql [Q Q~\
Indeed, consider the maximal left ideal M = I I of the ring I _ . Then

LO 0 J LO UJ
r(M) = 0, so that lr(M) =t M, and M cannot be a left annihilator.

The method employed to prove the main result involves three steps: first, the result is
proved for completely primary rings, then this is extended to primary rings, and finally to
left Artinian rings.

The final section of the paper obtains conditions under which the Jacobson radical
J(R) of a ring R satisfies a~1(J(R))=J(R), where a:R—>R is a monomorphism. Once
this is done, the main theorem can be applied to show that the result obtained is a
generalization of Lemma 1.1 of [4], in which Jategaonkar proves the result for the case
where R is left Artinian.

2. Preliminaries. In this section, we present the relevant results concerning primary
and completely primary rings, together with the important definitions from [5].

All rings will be assumed to have unity, and all monomorphisms a.R—*R are
assumed to satisfy a(l) = 1. The term "ideal" will refer to a two-sided ideal.

The first definition deals with closed left ideals, and is due to Jordan.

DEFINITION 2.1 [5]. Let a:R^>R be a ring monomorphism. Then a left ideal /of R is
said to be closed if

We now turn immediately to primary and completely primary rings.

DEFINITION 2.2. A left Artinian ring R will be called completely primary if R/J(R) is
a division ring. R will be called primary if R/J(R) is simple Artinian.
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The following result is standard.

THEOREM 2.3. A primary ring is isomorphic to a full matrix ring over a completely
primary ring.

Proof. See [3, p. 55].

DEFINITION 2.4. A subset {e,y | /,/ = 1, ..., n} of a ring R is called a set of matrix units
n

in R if E eu = 1 and e,7ew = eudjk, where djk is the Kronecker delta.
i=i

DEFINITION 2.5. An idempotent element of a ring R is said to be primitive if it cannot
be written as the sum of two non-zero orthogonal idempotents. An idempotent element
of a semi-simple Artinian ring is called semiprimitive if it generates a minimal ideal.

LEMMA 2.6. Let R be a ring with two sets of primitive orthogonal idempotents
s 1

{e,: | i = 1 , . . . , s) and {f\\ i = 1, . . ., t) such that £ e, = 1 = £ fi, and the rings e,7?e, and
1 = 1 y = l

fjRf, are completely primary, for each 1 =s i«; s, 1 =s / ^ t. Then s = t and if the ft are suitably
ordered, then there exists a unit u of R such that u~1eiu =ffor all i = 1, . . . , s.

Proof. See [3, Theorem 2, p. 59].

THEOREM 2.7. Let R be a left Artinian ring with Jacobson radical J(R). If
(f>:R—*R/J(R) denotes the naturalsurjection, and e eR is an idempotent, then:

(i) if e is primitive then eRe is completely primary;
(ii) J(eRe) = eJ(R)e =J(R) n eRe;
(iii) if 4>(e) is a semiprimitive idempotent of R/J(R), then eRe is primary.

3. The primary case. In this section we show that maximal left ideals of primary
rings are closed. As stated above, it is necessary to deal with the completely primary case
first: note that if R is completely primary then J(R) is the unique maximal left ideal of R.

PROPOSITION 3.1. If R is a completely primary ring with maximal left ideal M, then M
is closed.

Proof. Since M = J(R) and R is left Artinian, M is nilpotent. Therefore a"(M) is a
nil subring for any n 3s 0, and so a"{M) c M. Thus Ra"(M) c M and, since a~"(M) is a
nilpotent left ideal, a~"(Ra"(M)) c M and M is closed.

At this point, it is useful to introduce some terminology concerning the maximal left
ideals of the ring Mn(S), where neN and 5 is completely primary. The left ideal of Mn(S)
formed by insisting that the entries of the ith column (1 ̂  i ̂  n) are elements of J(S) is a
maximal left ideal, and will be called the i-th standard maximal left ideal of Mn(S).

LEMMA 3.2. Let S be a completely primary ring, and let M be a maximal left ideal of
Mn{S). Then there exists a unit u of Mn(S) such that M = Ku, where K is the first standard
maximal left ideal of Mn(S).
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Proof. Let R = Mn(S). Since R/J(R) is simple Artinian, all irreducible left R/J(R)-
modules are isomorphic. In particular, R/M and R/K are isomorphic as R/J(R)-modu\es,
and hence as R-modules. Let \p : R/M—> R/K be an R-isomorphism, and let s e R be such
that ip(l + M) = s + K. It can be shown that there exists a unit v of R such that
s + K = v + K, so that i//(l + M) = v + K. Thus, for any r e R, \p(r + M) = rv + K, and
consequently M = Ku where u = v~x.

LEMMA 3.3. Let ueR be a unit, M any subset of R, and assume that 1 € Ra"(M) for
some n^\. Then 1 eR(uoa)"(M), where u:R-^R is defined by u{r) = u~xru.

Proof. We proceed by induction on n. The case where n = 1 is immediate.
Now assume the conclusion to be true for n - 1 and assume that 1 e Ran{M). Then

1 = E r,arn(m,) for r, e R, m, e M, and so an-\u) = £ r,a"(m,)a'"~1(M). Therefore
i i

1 = 2 a-"-1(M)-1r,a'n-1(M)a-n-1(M-1)ar"(m,)a-n-1(")

e «o-n-1(M0

By the induction hypothesis,

1 e R{uoa)n-\uoa(M)) = R(uoa)n(M).

We are now in a position to prove the major theorem of this section.

THEOREM 3.4. Every maximal left ideal of a primary ring is closed.

Proof. Let R and 5 be isomorphic rings, xp:R—>S an isomorphism. If M is a
maximal left ideal of R which is not closed under the monomorphism a.R^R, then
ip(M) is not closed under the endomorphism ^oa-oi/'"1 of 5. Thus, by Theorem 2.3, it is
sufficient to prove the result for rings of the form Mn(S), where S is completely primary.

Now, if M is a maximal left ideal of Mn{S) then, by Lemma 3.2, M = Ku, where K is
the first maximal left ideal of Mn{S) and u is a unit. If M is not closed, then for some
k^\, leMn(S)ak(M) (since M is maximal and a(l) = l), or 1 eMn{S)ak{Ku). Thus,
1 e Mn(S)ak(K) and AT is not closed either. It is therefore sufficient to prove the result for
the first standard maximal left ideal of Mn(S).

Let {e,7 | i,j = 1, . . . , n) be the standard set of matrix units for Mn{S), i.e. e,7 is the
matrix whose (i, ;')-entry is 1, but all other entries zero. Since {a(eu) \ i, j = 1, . . . , n) is
another set of matrix units for Mn(S), it can be shown that there exists a unit u of Mn(S)
such that e,j = woa(e,;) for each i, j = 1, . . . , n. (See, for instance, [1, Lemma 2.2].)

Define a map ip:S^>S by setting ip(s) = (uoa(seu))u, where sen is the matrix with s
in the (1, Imposition and zero elsewhere, and (m)n denotes the (1, l)-entry of the matrix
m. Then, using the fact that e,7 = Moff(e,7) for each i,j, it can be seen that \p is an injective
ring endomorphism of 5.
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Now let M be the first standard maximal left ideal of Mn(S), and assume that
uoa(M) £ M. Then for some m e M, uoa(m) has a unit of 5 appearing in the first
column—say (uoa(m))pi is a unit. But eXpm e M and uoa(eXpm) = eipuoa(m), which has a
a unit appearing in its (1, Imposition. Therefore, in order to show that uoa(M) c M, it is
sufficient to show that, for any meM, (uoa(m))n cannot be a unit of 5.

Now, for any meM,

(uoa(m))u = (euuoa(m)en)u

= tl)(mn).

But V is an injective endomorphism of the completely primary ring 5, and mu eJ(S).
The proof of Proposition 3.1 shows that ip(mn) eJ(S), so that (uoa(m))n cannot be a
unit. Consequently uoa(M)cM, and for any A: 3=0, 1 $ Mn(S)(uoa)k(M). Lemma 3.3
completes the proof.

4. The Artinian case. We now turn our attention to the left Artinian case. One
lemma is required before going on to prove the main result.

LEMMA 4.1. Let R be a semisimple Artinian ring, M a maximal left ideal of R, and
e eR an idempotent. Then either eMe = eRe, or eMe is a maximal left ideal of eRe.

Proof. Assume that eMe ^ eRe. Since R is semisimple Artinian, there exists a left
ideal K of R such that R = M © K, so that

eRe = eMe + eKe. (1)

It is claimed that eKe is a minimal left ideal of eRe. Indeed, let A' be a non-zero left ideal
of eRe with X c eKe. Then RX is a left ideal of R and 0 ¥= RX c. Ke. Since K is a minimal
left ideal, the map %p: K^> Ke given by ij)(k;) = ke has kernel either K or 0. If ker i/; = K
then Ke-0, which, from (1), implies that eRe = eMe. Thus, keri/> = 0, and Ke is a
minimal left ideal of R. Therefore RX = Ke, and X = eKe, so that eKe is a minimal left
ideal.

This means that either eKe Pi eMe = 0 or eKe D eMe = eKe. The second alternative
would imply, from (1), that eRe = eMe. Thus eKe n eMe = 0, and the sum at (1) is direct.
Therefore, eMe is a maximal left ideal of eRe.

THEOREM 4.2. Every maximal left ideal of a left Artinian ring is closed.

Proof. Let R be a left Artinian ring, let M be a maximal left ideal of R, and let
{fii | i = 1 , . . . , n) be the semiprimitive idempotents of R/J(R). Each / may be written as
the sum of mutually orthogonal primitive idempotents, and these may be arranged so
that, for 0 = k0 < kx < • • • < kn = m,

fi= t i, (1)
j=ki-, + l

m

where each e, is a primitive idempotent, and E et = 1.
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By [3, Proposition 5, p. 54], there exist orthogonal, primitive idempotents
{et, | i = 1, . . . , m) of R such that #(«,•) = e, for each i = \,...,m, where tf>:fl ->• /?//(/?)

m

is the natural surjection, and E e, = 1.
/=i

*.-

Putting / = E ej for / = 1, . . . , n gives a set {/• | i = 1, . . . , n} of orthogonal
/=fc,-i+i

n _
idempotents of R such that E /;• = 1 and 0(/-) = / for i = 1 , . . . , n. It is now claimed that,

i
for some i, 1 «s i «s n, /M/j is a maximal left ideal of the subring fiRfi of 7?. Indeed, there
exists i, 1 =£ i =s n, such that /M£ is a maximal left ideal of fiRfi, otherwise by Lemma 4.1,
fjMfj =fiRfi, and jj efiMfi for all y = 1, . . . , n. Since each jj is central, this means fieM
for each 1 =£/ =s n, and therefore that f e M.

Since the natural surjection <j>:R—>R/J(R), when restricted to fiRfi, has image fiRfi
and kernel f,Rftn J{R), Theorem 2.7(ii) gives fiRfi/JifiRfi) ^fM. Theorem 2.7(ii) also
shows that J(ftRfi) cfiMfi, and the image of fiMfiUifiRfi) is the maximal left ideal ̂ M/, of
/•/?/•. Therefore, / M / is a maximal left ideal of fiRfi, and the claim is proved.

Now, it is clear that {a{et) \ i = I, . . . , m} is a set of mutually orthogonal
m

idempotents of R, with E <*(«,) = 1, and each ar(e,) primitive. Thus, by Lemma 2.6 and
i=i

Theorem 2.7(i), there exists a unit u of R and a permutation n on {1,. . . , m} such that
uoa(ej) = en(/) for each i = l,. . . ,m.lfp denotes the period of K, then (uoay(e,) = e, for
each i = 1, . . . , m.

Now assume M is not closed, so that for some kszO, 1 eRak(M). By Lemma 3.3,
this means that

leR(uoa)k(M). (2)

If q is the smallest integer such that pq s= &, then applying {uoaYq~k to both sides of
(2) gives

1 e R{aQay"{M). (3)

The monomorphism (uoay will be denoted by /3. Multiplying both sides of (3) on the
right by fi gives

since j8(/) =fi. Therefore,

where ry e i?, my e M. Multiplying on the left by fi gives
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Since/ is central in R/J(R),

= 2 (firifi)P
9(flmjfl)

i i
where ajeJ(R). Since j3(/) =fh the second summand becomes

But, by Theorem 2.7(ii), fiJ{R)fi = J{fiRfl), so that

is a unit oi f,Rfi. Thus, the maximal left ideal /A// of fiRfi is not closed.
By Theorem 2.7(iii), fiRfi is a primary ring, so this contradicts Theorem 3.4, and M

must be closed.

5. Conclusion. In Lemma 1.1 of his paper [4], Jategaonkar proves that if R is a left
Artinian ring with Jacobson radical J(R) and a:R-*R is a monomorphism, then
a-1(J(R))=J(R).

Theorem 4.2 may be used to show that the following is a generalization of
Jategaonkar's original result.

THEOREM 5.1. Let R be a ring and a:R^>R a monomorphism such that
(i) each maximal left ideal of R is closed under a;
(ii) the ring A{R, a) is left Noetherian.

Thena-\J(R))=J(R).

Proof. The following is an indication of the method of proof only. For a full proof,
refer to Theorem 3.34 of [6].

Let / denote the Jacobson radical of the ring A(R, a), as constructed in [5], and for
each integer i>0, let Jt = {r eR\x~'rx' eJ}. It can be shown [6, Theorem 3.23] that
condition (ii) ensures that /, = f] M, where B denotes the set of all maximal closed left

MeB

ideals of R. But B consists precisely of the maximal left ideals of R, and therefore
Jj=J(R) for all *'3=0. It is now only necessary to note that a~1(Ji+1)=Ji for all i > 0 to
obtain the result.

To see that Theorem 5.1 is indeed a generalization of Lemma 1.1 of [4], note that if
R is left Artinian then (i) is satisfied by Theorem 4.2, and (ii) is satisfied by Corollary 5.3
of [5].

However, there exist rings R and monomorphisms a:R^>R which satisfy (i) and (ii)
without R being left Artinian. Such a pair (R, a) is provided in Example 3.36 of [6],
where R is constructed as follows.
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Let AT be a field, o:K^> K a monomorphism which is not surjective, 5 = K[y], where
v is indeterminate, and define a.S—*S by aiUfiy') = E o{ft)y

l. Let P denote the prime

ideal of 5 generated by y. Then a extends to a monomorphism a:R—>R, where R is the
localization of 5 at P. It can be shown that R satisfies condition (ii) of Theorem 5.1, and
that the unique maximal ideal PR of R is closed. However, R is clearly not Artinian.
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