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Abstract. The accuracy of frequency determination by a least squares technique for an autoregressive 
spectral estimator is studied and compared with the Fourier method. Using numerical tests the probability 
distribution function of the peak location is calculated. The autoregressive filter order is optimized in the 
sense of minimum variance of the peak location. Simple sinusoidal signals with additive Gaussian noise are 
considered and the effect of other components is only indicated. Generally, a filter order between 1/3 and 
1 /2 of the total data number and a not very dense data sampling, gives the most stable spectrum. The results 
are numerical. 

1. Introduction 

Since the introduction of the maximum entropy method (MEM) of spectral analysis, 
it has become widely used and studied in various fields dealing with problems of data 
processing. Though Burg's recursive scheme (Burg, 1975) has proved to be far superior 
to conventional methods, especially for short data records, there are two limitations in 
practice: 

(1) Splitting and shifting of spectral peaks (Chen and Stegen, 1974; Fougere, 1977). 
(2) Difficulty in obtaining general analytical expressions for its statistical appearance 

since MEM is a nonlinear spectral estimator. 
The anomalies listed first do not occur in the nonlinear method as proposed by 

Fougere (1977) nor in the least squares (LS) spectral estimate suggested by Ulrych and 
Clayton (1976). The advantage of the LS estimate over that of Burg has been 
demonstrated by Ulrych and Clayton (1976) and Swingler (1979). Therefore, we limit 
our considerations here to the LS method. 

In the case of large filter order and data number the statistical properties of the MEM 
spectral estimator have been determined and compared with those of the Fourier 
method by Kromer (1970) and Berk (1974). Confidence limits for a MEM spectral 
estimator using a one-way (predicting in one direction only) autoregressive (AR) model 
have been described by Reid (1979). 

No work is available relating to the statistical properties of the general two-way LS 
spectral estimator. Because the frequency structure of the light variation of a variable 
star is the most important quantity for comparison with theory, our considerations are 
focused only on the accuracy of the frequency determination when the LS spectral 
estimator as proposed by Ulrych and Clayton (1976) is used. 

* Proceedings of the 66th IAU Colloquium: Problems in Solar and Stellar Oscillations, held at the Crimean 
Astrophysical Observatory, U.S.S.R., 1-5 September, 1981. 
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2. Tests by Artificial Data 

First the role of sampling time in the stabilization of the spectrum is studied. Using a 
test signal of the form 

x, = X Ak sm(PAtfk(j - 1)) + Bk cos(PAtfk(j - 1)), 
k= 1 

Ax = \, J?, = 0, A2 = 0.S, B2=-0.5, A3 = 0.2, B3 = 0.1, 

P = 6.283 185, 

/ , = 0 . 0 7 H z , f2 = 0.09 Hz, f3 = 0.12 Hz, j = 1,2 45, 

At = 0.5 s, 

LS spectra were calculated with different sampling rates. Once the filter order (M) 
and an integer number (L) of At is chosen, L spectra were calculated using data 
corresponding to the sequences: j = 1, L + 1, 2L + 1 , . . . ; j = 2, L + 2, 2L + 2,...; 
j = L, 2L, 3 L , . . . . Taking the average of these spectra the plot shown in Figure 1 was 
obtained. Numbers on the curves denote the various M, L combinations. The spectra 
were normalized to unity at the highest peak in each case. It is clearly seen that a denser 
data sampling makes the spectra unstable and it is possible to choose a proper M, L 
combination to deduce the exact frequencies. 

A fairly crucial point in estimating MEM spectra is the determination of the order 
of the AR process. Several objective criteria may be used for the proper choice of the 
optimal value of filter order. For harmonic processes with noise, these criteria under­
estimate the AR order and an empirical rule can be adopted. Percy (1977) has found 
that the best values of M are such that MAt is of the same order of magnitude as the 
period present. Ulrych and Ooe (1979) have adopted the rule which constrains M to 
N/3 <M< N/2 (N is the number of data points). 

FREQUENCY [Hz] 
Fig. 1. LS AR spectra of a test signal with three sinusoidal components of different frequencies. The 

various filter order and averaging numbers are indicated near each curve (for details, see text). 
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As regards the stability of the frequencies obtained by MEM, a natural criterion for 
the optimal filter order is that choice of M at which the variance of the peak location 
is minimal. Because it is almost impossible to follow this problem analytically, numerical 
tests are required. 

The logarithm of the normalized standard deviation of peak location as a function 
of M/N is plotted in Figure 2. Each curve has been shifted vertically somewhat, but the 
scale is the same, as indicated and the zero points correspond to the first points of the 
curves. The same hundred realizations of signals in the form deterministic signal + 
Gaussian component were used to calculate the variance of the peak location. The results 
did not change significantly on using more realizations. For the curve at the bottom, the 
deterministic component consisted of two sinusoids of the form 

sin(/»(;- l)zk0.07) + 0.5 sin(/>(./- 1)^0.09), P = 6.283 185 , 

and for the other curves one sinusoid only, i.e. 

sin(PC/-l)/l«0.07), />= 6.283 185. 

The location of the peak at ~ 0.07 Hz was used to calculate the variance in the two 
sinusoids case. Numbers near the curves indicate the data number, the sampling time 
{At) and the standard deviation of the noise. Vertical arrows show the minima of each 
curve. It is seen that in the case of a signal with a single sinusoidal component the best 
result is expected when \ < M/N < \. The shift of the optimal M above half of the data 
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Fig. 2. Dependence of the standard deviation of peak location on the relative filter length (M/N) for 
different signals (for details, see text). 
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Fig. 3. Empirical probability distribution functions of the frequency shift when using the Fourier method 
(continuous line) and the LS AR spectral estimator (other symbols). H(x) means the probability that the 

value of sJNNAt \Af\ A/a exceeds the value of x (for details see text). 

number in the two sinusoids case is obvious. We conclude that Ulrych and Ooe's (1979) 
empirical rule adopted for optimal M generally holds and there is no hope of improving 
it. 

As a further step in studying the statistical properties of peak location, we have 
calculated the empirical distribution function of peak location and compared it with that 
of the Fourier method. Denoting the frequency shift by Af, the signal amplitude by A, 
and the standard deviation of noise by <x, the probality H(x) that the value of 
yjNNAt 14/1 A/a is greater than x is plotted in Figure 3 for the Fourier method 
(continuous line) for the optimal filter order in the one sinusoid case (dots) and for two 
different filter orders in the two sinusoids case (crosses). (In the Fourier method the 
distribution functions were not sensitive to the number of sinusoidal components, 
therefore only the curve related to the one sinusoid case is plotted.) The test signals were 
the same as used for the calculation of the curves in Figure 2. Because the probability 
distribution of peak location in the Fourier method depends only on the signal parameters 
in the combination mentioned above (Kovacs, 1981), the same combination was used 
here too, though the validity of this statement is not proved in the case of MEM. 
Nevertheless, if we adopt the combination of parameters mentioned above, it makes it 
easier to compare the probability distribution functions of peak location of signals with 
various parameters. 

For a given set of parameters one hundred realizations of a random series were used 
to calculate the empirical distribution function of peak location. The calculation was 
repeated ten times in the one sinusoid and five times in the two sinusoids case with 
different realizations and the distribution functions were averaged and plotted. For the 
one sinusoid case the following parameters were used: N = 20, 30,40; a = 0.005, 0.1, 
0.2, 0.4, 0.8 and M = optimal M, A = 1, At = 1 s. It can be seen that the stability of the 
MEM against noise is weaker than that of the Fourier method. The situation becomes 
even more unfavourable for the MEM when a test signal with two sinusoidal components 
is used (parameters: N = 30, a = 0.02, At = 1 s, A = 1, M = 12, 16). However, it is 
important to remark that whereas MEM was able to give the correct average frequency 
tested (i.e. 0.07009 Hz for M = 12 and 0.06999 Hz for M = 16), the Fourier method 
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Fig. 4. LS AR spectrum of SX Phe (data from Stock et al., 1972). 

suffered a serious frequency shift (i.e. the average frequency was 0.07500 Hz). As a 
conclusion we may say that numerical tests only are unable to give confidence intervals 
in a general case for the frequency stability of the two-way LS spectrum. 

3. Tests by Real Astronomical Data 

Finally, we show the efficiency of the two-way LS frequency spectrum estimator by 
using real astronomical data. 

The LS frequency spectrum of SX Phe is shown in Figure 4. The data published by 
Stock etal. (1972) were used with M = 24, L = 4 (the data were made equidistant by 
quadratic interpolation and the data number was left unchanged). The power was 
normalized to unity at the highest peak. The primary (0.05491 day) and the secondary 
(0.04202 day) periods show very good agreement with their previously known values 
(0.0549648 and 0.042773 day, respectively). For comparison, Percy (1977) obtained 
the values 0.0557 and 0.0423 day respectively using Burg's technique. The nonlinear 
interaction frequencies are also clearly seen and are very close to their predicted values. 

As a second example a part of the photoelectric data of & Tuc published by Stobie 
and Shobbrook (1976) was analysed. The data were made equidistant in the same way 
as for SX Phe. The frequency spectra of the individual nights of observation are shown 
in Figure 5, where each spectrum has been normalized to unity at its highest peak. The 
letters a, b,c,d stand for JD 2441000+ 597, 611, 612, 634, respectively. M = 14, L = 3 
in each case except in case d, where M = 14, L = 5. Except for d (where it is indicated 
only), the spectra show (similarly to Percy's (1977) result) a more or less stable double 
peak structure in the vicinity of 17 and 20.4 cycle/day (however, by using M = 30, L = 2 
in case d, the peak at 19.8 cycle/day splits into peaks at 17.5 and 19.8 cycle/day, 
respectively). This result is consistent with the Fourier method based frequency spectra 
obtained by Kurtz (1980) and Pelt (1980) and the small instability in our spectra may 
partly be accounted for by the frequencies grouped around 20, 18, and 16 cycle/day as 
was claimed by those studies. 
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FREQUENCY [C/D] 
Fig. 5. LS AR spectra of the individual nights of observation of 0 Tuc (data from Stobie and Shobbrook, 

1976). The letters a, b, c, d stand for JD 2441000+ 597,611, 612,634, respectively. 
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