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Abstract. Fragmentation is the leading explanation for the formation
of binary and multiple stars. However, nearly all three dimensional calcu-
lations of the collapse and fragmentation of dense molecular cloud cores
have ignored the effects of magnetic fields, whereas magnetic fields are
generally regarded to be a dominant force in molecular clouds. Three di-
mensional models of the collapse of clouds with frozen-in magnetic fields
have shown that such clouds cannot fragment for a range of initial con-
ditions. However, calculations that allow for magnetic field loss by am-
bipolar diffusion have shown that fragmentation is possible for initially
prolate or oblate, rotating, magnetically-supported cloud cores. The lat-
ter calculations rely on approximations that should be .verified by more
detailed, traditional magnetohydrodynamical codes. The most obvious
effect of magnetic fields is to delay the onset of the collapse phase, but
once collapse begins in earnest, fragmentation proceeds in much the same
manner as in nonmagnetic clouds, with initially prolate clouds tending to
form binary protostars, and with initially oblate clouds tending to form
multiple protostars.

1. Introduction

Several mechanisms have been proposed to account for binary star formation,
but fragmentation has been recognized as the leading mechanism for most of the
last decade (see reviews by Boss 1988, 1993; Pringle 1991; Bodenheimer et al.
1993; Bodenheimer 1995; Bodenheimer et al. 2000). Recent observational work
appears to have largely confirmed the assertion that fragmentation is the dom-
inant mechanism for binary star formation, and studies presented at this sym-
posium have only strengthened this conclusion. The discovery that the binary
frequency among pre-main-sequence stars (Ghez et al. 1993; Leinert et al. 1993;
Reipurth & Zinnecker 1993; Richichi et al. 1994; Simon et al. 1995; Brandner et
al. 1996; Petr et al. 1998; Duchene et al. 1999) is comparable to or greater than
that among nearby main-sequence stars (Duquennoy & Mayor 1991; Fischer &
Marcy 1992) requires that most binary stars be formed prior to the pre-main-
sequence phase, i.e., during the protostellar collapse phase. This observational
fact points directly at fragmentation as the most likely formation mechanism.
At the same time, detailed observations of pre-collapse molecular cloud cores
show that they have properties conducive to the occurrence of fragmentation
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during collapse (Myers et al. 1991; Goodman et al. 1993; Ward-Thompson et al.
1994; Andre et al. 1996; Ward-Thompson et al. 1999).

In spite of this rosy observational picture, relatively little theoretical effort
has been expended in understanding the role of magnetic fields in the three-
dimensional collapse and fragmentation process. A fair amount of theoretical
effort has gone into calculating the effects of magnetic fields on the contrac-
tion and early collapse phases of axisymmetric (two dimensional or 2D) clouds,
which flatten into pancakes as a result of the effects of an initially aligned, uni-
form magnetic field (e.g., Mouschovias 1987, 1991; Nakano & Umebayashi 1988;
Tomisaka et al. 1988, 1990; Lizano & Shu 1989; Ciolek & Mouschovias 1995).
The 2D studies serve as invaluable guides to what could be expected in a fully
three-dimensional (3D) calculation, but in the absence of 3D studies, it is hard
to predict whether magnetic effects will help or hinder the fragmentation mech-
anism. The purpose of this review is to summarize recent theoretical work that
attempts to include the effects of magnetic fields in at least a provisional manner
in 3D collapse calculations, in order to assess the impact of magnetic fields on
fragmentation.

2. Observations of Pre-Collapse Clouds

The standard theory of star formation (Shu et al. 1987) postulates that dense
cloud cores are magnetically supported, and contract because of ambipolar dif-
fusion toward the singular isothermal sphere, which then undergoes inside-out
collapse (Shu 1977) leading to the formation of a single protostar. This theory
has been remarkably successful in explaining many properties of young stars,
but the need for significant modification has arisen, not only from the point of
view of the question of the origin of binary stars, but also from studies of the
interstellar medium.

Recently Tafalla et al. (1998) and Williams et al. (1999) found evidence
for large-scale inward motion in the starless L1544 cloud, with velocities of 0.1
km/sec extending over a region of size 0.1 pc. They pointed out that such large-
scale infall in a pre-collapse cloud was formally inconsistent with the standard
theory of ambipolar diffusion followed by inside-out collapse. Similarly, Williams
& Myers (1999) found inward motions of 0.3 km/sec over an extended region of
a Serpens starless cloud. Nakano (1998) has argued that supersonic turbulence
and magnetic fields contribute equally to cloud core support, so that cloud cores
are magnetically supercritical, rather than sub critical as advanced by Shu et
al. (1987). Crutcher (1999) reviewed all of the Zeeman data on magnetic fields
in molecular clouds, and concluded that the supersonic motions are likely to
be Alfven waves, with the kinetic energy of the turbulence being roughly equal
to the magnetic energy, implying equal support. This turbulence is probably
driven largely by protostellar outflows. Once the turbulence decays in a given
cloud, contraction and collapse can then begin (Nakano 1998).

The need for another modification to the standard theory arises from the
density profiles inferred for pre-collapse clouds. Many dense cloud cores were
found to be strongly centrally concentrated, with inferred power-law density pro-
files similar to those of the singular isothermal sphere (p ex r-2 ) or of its inner
collapsing region (p ex r-3/ 2 ) . However, these cloud cores contained embedded
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young stars and so could not be pre-collapse clouds. Ward-Thompson et al.
(1994) found that starless cores were less centrally peaked than cores containing
embedded objects. In fact, Ward-Thompson et al. (1994) found that a Gaussian
density profile provided the best fit for starless cores. Subsequent observations
with higher spatial resolution confirm that pre-collapse clouds have flat density
profiles at their centers (Andre et al. 1996; Ward-Thompson et al. 1999), rather
than the power-law profiles expected in the standard theory. Initial Gaussian
density profiles were first employed in 3D fragmentation calculations by Boss
(1987), and were found to enhance greatly the prospects for fragmentation com-
pared to power-law initial density profiles.

Myers et al. (1991) studied the projected shapes of dense cloud cores, and
concluded that most cloud cores are likely to be prolate with axis ratios of 2:1,
while some are oblate. Goodman et al. (1993) estimated the amount of solid-
body rotation in dense cloud cores, and found that while few clouds showed
evidence for centrifugal forces strong enough to affect their pre-collapse struc-
ture, most clouds contain enough angular momentum to result in the formation
of a binary star system or a large protostellar disk. Ohashi et al. (1997) found a
break in the specific angular momentum (JIM) spectrum of cloud envelopes at
0.03 pc radius (about 1 M 0 ) , implying that smaller radius clouds collapse with
roughly conserved JIM. Taken together, these sorts of observations define the
initial conditions for protostellar collapse calculations.

3. Magnetic Cloud Collapse Calculations

While many workers have studied the contraction of magnetic clouds (e.g.,
Mouschovias 1987, 1991; Nakano & Umebayashi 1988; Tomisaka et al. 1988;
Lizano & Shu 1989; Nakamura & Hanawa 1997), only a handful of papers have
attempted "to include magnetic fields in fully 3D protostellar collapse calcula-
tions. Most of these have focused on frozen-in magnetic fields (Dorfi 1982; Benz
1984; Phillips & Monaghan 1985; Phillips 1986a, 1986b), and all agreed that
clouds with frozen-in magnetic fields show no tendency to fragment into binary
protostars. In particular, Phillips (1986a) examined the collapse of nonrotating
clouds with a wide range of initial thermal (ai = Etherm/lEgravl == 0.06 to 0.95)
and magnetic energies (,i = Emag/lEgravl == 0.006 to 0.6), and found no evi-
dence for fragmentation, even when the cloud started with a quite large density
perturbation. Dorfi (1982) found a similar result for a rotating, strongly mag-
netic cloud. These calculations suggested, therefore, that it was unlikely that
fragmentation could explain the formation of binary stars in magnetic molecular
cloud cores.

However, frozen-in magnetic fields are more of a theoretical simplification
than a realistic description of dense cloud cores. The standard theory of star for-
mation envisions that dense cloud cores contract over time periods on the order
of 10 Myr as a result of ambipolar diffusion (Shu et al. 1987), which eventually
leads to a dynamic collapse phase similar to that assumed in most nonmagnetic
collapse calculations, so it is important to reconsider whether fragmentation
could occur in a magnetic 3D cloud undergoing ambipolar diffusion.

Boss (1997, 1999) presented 3D collapse calculations using the magnetic
pressure approximation (see below) and a parameterized treatment of ambipolar
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diffusion based on detailed models by Ciolek & Mouschovias (1995). The initial
clouds were prolate, with 2:1 axis ratios (Myers et al. 1991), and had a Gaussian
density profile with a flat inner region (e.g., Andre et al. 1996). The clouds were
rotating initially with either solid body or differential rotation, with ratios of
rotational to gravitational energies ({3i) ranging from ~ 10-4 to 0.1, spanning
the observed range for cloud cores (Goodman et al. 1993). Basu & Mouschovias
(1994) showed that the central regions of magnetically-contracting clouds are
likely to be in differential rotation with angular velocity increasing as n ex p1/ 2 .

With an initial ratio of thermal to gravitational energy of ai = 0.39, these
clouds would have collapsed and fragmented in the absence of magnetic effects.
Radiative transfer in the Eddington approximation was included in the models.

Fig. 1. Equatorial density for a magnetic cloud core with {3i == 0.012 at t ==
10.344tff' Pmax == 1.6 X 10-12 g cm-3 , box radius == 6.7 x 1014 em. A binary
protostar forms. Contours denote factor of two changes.

Fig. 2. Equatorial density for a magnetic cloud core with {3i == 0.008 at t ==
10.255tff' Pmax == 1.6 X 10-12 g cm-3, box radius == 6.4 x 1014 cm. A bar-like
protostar forms, but binary fragmentation does not occur (cf. Fig. 1).
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Figures 1 and 2 demonstrate the most important outcome of these magnetic
cloud models - the dependence on the initial rotation rate. While varying the
timescale for ambipolar diffusion or the degree of differential rotation had little
effect, the results were quite dependent on f3i: clouds starting with f3i > 0.01
fragmented into binary protostars, while clouds with f3i < 0.01 seemed to form
only bars or single protostars (Boss 1999). These models showed that fragmen-
tation can still occur in magnetic clouds that evolve through loss of magnetic
field support by ambipolar diffusion, provided that the initial cloud rotation rate
is high enough. The main effect of the magnetic field was to delay the dynamic
collapse phase, and hence the fragmentation phase, until ambipolar diffusion
had reduced the magnetic support sufficiently.

4. Magnetic Field Approximations

The problem of fragmentation in a magnetic cloud subject to ambipolar diffu-
sion should be studied with a true magnetohydrodynamics (MHD) code, such
as the ZEUS code (Stone & Norman 1992; see also Hujeirat et al. 2000 and In-
debetouw & ZweibeI2000). In the meantime, considerable insight can be gained
by including the effects of magnetic fields through several reasonably good ap-
proximations (e.g., Boss 1997, 1999). The validity of these approximations can
be assessed as follows. We start with the full MHD momentum equation,

av 1 -* -*

p at + pv· "Vv = -p"V~ - "Vp+ ~(J x B),

where p = density, v = velocity, tl> = gravitational potential, p = gas pressure,
c = speed of light, J = current density, and B = magnetic field.

In the limit of high electrical conductivity, as is the case for molecular cloud
cores in spite of their low fractional ionization, Ampere's law holds, so that

1 -* 1 -*

~J = 41r ("V x B).

The magnetic effects term then becomes

1 -* ~ (B 2
) 1 -* ~

~(J x B) = -"V 81r + 41r (B . "V)B.

For a straight, single component magnetic field B = (0,0, Bz(x, y)), the magnetic
field tension term (B . "V)B vanishes, leaving

1 ~ ~ (B2
)-(J x B) = -V - .

C 81r

The full MHD momentum equation then becomes

av -* ~~ n (B2
)p-+pv·vv=-pvtl>-"V p+- .at 81r

We can thus approximate the effects of magnetic fields simply by adding
the effective magnetic pressure term (B 2/81r) in to the gas pressure. In fact, the
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magnetic pressure formalism is exact for high conductivities and straight field
lines, not just an approximation. Calculations of the 2D contraction of magnetic
clouds constrained to axisymmetry show that initially straight magnetic field
lines remain remarkably straight throughout the ambipolar diffusion phase, and
only begin bending once dynamic collapse begins near the center of the cloud
(e.g., Fiedler & Mouschovias 1993), suggesting that this approximation might
be quite accurate, at least for the early phases of contraction. Observations of
star-forming regions also support the existence of straight magnetic field lines
on relatively large scales.

In the models calculated by Boss (1997, 1999), the local magnetic field
strength is assumed to depend on the density p as

B{p, t) == Bo{t)(p/PoJ'\

where Bo and Po are the initial central values and fi, == 1/2, as is found in detailed
MHD calculations (e.g., Tomisaka et al. 1990; Ciolek & Mouschovias 1995).
Crutcher (1999) found that field strengths obtained from Zeeman observations of
molecular clouds varied with density as p", with fi, ~ 0.47, so this approximation
appears to be well-founded as well.

Ambipolar diffusion in Boss (1997, 1999) was treated by assuming that

where Boi is a constant, t is the model time, and the timescale for ambipolar
diffusion tAD is either 10 or 20 tff' consistent with previous estimates (e.g.,
Lizano & Shu 1989; Tomisaka et al. 1990; Mouschovias 1991). This simple
approximation led to a dependence of the central density on time that is quite
similar to that found in the detailed 2D models of Ciolek & Mouschovias (1995).

However, once the collapse phase is well underway, magnetic field lines can
bend significantly and exert a tension force that counteracts gravity. Magneti-
cally-controlled clouds tend to contract and flatten along the magnetic field lines
and form thin disks. For a thin disk with a constant mass-to-flux ratio /-1, the
magnetic acceleration am can be expressed as (Basu 1997, 1998; Shu & Li 1997;
Nakamura & Hanawa 1997)

where gr is the gravitational acceleration and or is the thermal acceleration.
The magnetic tension acceleration atension thus can be written as

Hence we can include the magnetic tension acceleration simply by modifying the
gravitational potential <P as follows
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For an isothermal gas and a magnetic field that varies with density as B ex p"',
with K, = 1/2, the gradient of the density occurs in both the numerator and
denominator and cancels out, leaving

B2

V 8x = Pmag(t) = f(t).
'lp p(t = 0)

Hence once a thin magnetic disk forms, magnetic tension forces can be approx-
imated by diluting the gravitational potential by a factor involving a function
only of time

1
<P -t <P x (1 - 2!(t)),

where f(t) decreases with time due to the effects of ambipolar diffusion. The
field tension approximation can be used in 3D models to provide a more accu-
rate approximation of magnetic effects than is obtained by including only the
magnetic pressure. Because magnetic tension dilutes the gravitational attrac-
tion which drives fragmentation in the first place, investigating the effects of the
magnetic tension approximation could be quite important for the fragmentation
mechanism.

5. 3D Magnetic Tension Models

Nakamura & Hanawa (1997) have used the thin disk approximation to study
the growth of asymmetry in an infinitely thin, rotating, magnetically-supported
disk. They found that such a disk can become quite bar-like, provided that an
initial asymmetry is present, and that it is therefore likely to fragment into two
or more protostars.

Figure 3 shows the result of a 3D model of magnetic cloud collapse identical
to that of Figure 2, except that the field tension approximation is employed as
well as the magnetic pressure approximation (and Tad is lOtf f instead of 20 t f f ) .
Comparing Figures 3 and 2, it is evident that adding field tension effects has led
to fragmentation in a cloud that otherwise did not fragment because of its low
initial rotation rate. Figure 4 shows that an initially oblate cloud with a very
low rotation rate stills fragments, in this case into a quadruple system, when
field tension is included. Apparently field tension effects encourage rather than
discourage fragmentation in these models, all of which obey the Jeans conditions
(Truelove et al. 1997) for a spherical coordinate grid (Boss 1998).

These models suggest that the typical outcome of the collapse of a magnetic
cloud is either a binary or multiple protostar. If verified, these results would
then imply that the formation of a single protostar is a relatively rare event, and
that most single stars must result from the decay of multiple protostar systems.
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Fig. 3. Equatorial density for an initially prolate, magnetic cloud core with
/3i == 0.008 at t == 5.146tff' Pmax == 4.0 X 10-12 g cm-3 , box radius == 8.2 x 1014

em. Magnetic tension effects are included. A binary protostar forms.

Fig. 4. Equatorial density for an initially oblate, magnetic cloud core with
/3i == 0.0001 at t == 2.615tf f, Pmax == 7.9 X 10-10 g cm-3 , box radius == 3.5 x 1013

em. Magnetic tension effects are included. A quadruple protostar forms.

6. Conclusions

Theoretical models of the 3D collapse of molecular clouds with magnetic field
support indicate that fragmentation is prohibited when the magnetic fields are
frozen-in, but is permissible when ambipolar diffusion is allowed to reduce the
magnetic contribution to the cloud's support prior to the onset of the collapse
phase. New 3D models employing the magnetic pressure and field tension ap-
proximations described here imply that dense clouds with a wide range of initial
rotation rates will fragment, contrary to the situation where field tension effects
are ignored, where only rapidly-rotating clouds seem to fragment. These models
thus suggest that magnetic fields can encourage fragmentation. Initially prolate
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clouds tend to fragment into binary protostars, while initially oblate clouds tend
to form multiple protostar systems, at least at this very early phase.

The subsequent evolution and possible survival of these binary and multiple
protostellar systems remain to be determined and is a significant challenge for
future work. In order to achieve the highest possible fidelity to the physical
conditions in dense molecular clouds, as determined by observations, future cal-
culations should include the combined effects of magnetic fields and turbulent
velocity fields. Inclusion of turbulent motions also seems to aid in the fragmen-
tation process (Klein et aI., this volume), lending credence to the hope that in
the ultimate physical description of the collapse of a dense molecular cloud core,
fragmentation will remain as the leading mechanism for explaining the formation
of the great majority of binary and multiple star systems.
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