ON A DISCRETE ANALOGUE OF INEQUALITIES OF OPIAL AND YANG

Cheng-Ming Lee

(received August 29, 1967)

In a recent paper [2], Wong proved the following
THEOREM 1. Let $\left\{U_{i}\right\}_{1}^{\infty}$ be a non-decreasing sequence of non-negative numbers, and let $U_{o}=0$. Then we have
(1) $\sum_{i=1}^{n}\left(U_{i}-U_{i-1}\right) U_{i}^{p} \leq(n+1)^{p}(p+1)^{-1} \sum_{i=1}^{n}\left(U_{i}-U_{i-1}\right)^{p+1}$ for $p \geq 1$.

Yang [3] proved the following integral inequality:
THEOREM 2. If $y(x)$ is absolutely continuous on $a \leq x \leq X$, with $\mathrm{y}(\mathrm{a})=0$, then

$$
\begin{equation*}
\int_{a}^{X}\left|y^{p} y^{\prime} q\right| d x \leq q(p+q)^{-1}(X-a)^{p} \int_{a}^{X}\left|y^{\prime}(x)\right|^{p+q_{d x}} \tag{2}
\end{equation*}
$$

for $p \geq 1$ and $q \geq 1$.
The purpose of this note is to obtain a discrete analogue of (2) which includes the inequality (1) as a special case. In fact, we are going to prove

THEOREM 3. Let $\left\{U_{i}\right\}_{1}^{\infty}$ be a non-decreasing sequence of non-negative numbers, and let $\mathrm{U}_{\mathrm{o}}=0$. If

$$
\mathrm{p}>0, \mathrm{q}>0, \mathrm{p}+\mathrm{q} \geq 1 \text { or } \mathrm{p}<0, \mathrm{q}<0,
$$

Canad. Math. Bull. vol. 11, no. 1. 1968
then

$$
\begin{equation*}
\sum_{1}^{n}\left(U_{i}-U_{i-1}\right)^{q} U_{i}^{p} \leq K_{n} \sum_{i=1}^{n}\left(U_{i}-U_{i-1}\right)^{p+q} \tag{3a}
\end{equation*}
$$

where $K_{o}=q(p+q)^{-1}$ and for $n=1,2,3, \ldots$,

$$
K_{n}=\max \left\{K_{n-1}+\mathrm{pn}^{\mathrm{p}-1}(\mathrm{p}+\mathrm{q})^{-1}, \quad q(\mathrm{n}+1)^{\mathrm{p}}(\mathrm{p}+\mathrm{q})^{-1}\right\}
$$

If

$$
\mathrm{p}>0, \mathrm{q}<0, \mathrm{p}+\mathrm{q} \leq 1, \mathrm{p}+\mathrm{q} \neq 0 \text { or } \mathrm{p}<0, \mathrm{q}>0, \mathrm{p}+\mathrm{q} \geq 1
$$

then

$$
\begin{equation*}
\sum_{1}^{n}\left(U_{i}-U_{i-1}\right)^{q} U_{i}^{p} \geq C_{n} \sum_{1}^{n}\left(U_{i}-U_{i-1}\right)^{p+q} \tag{3b}
\end{equation*}
$$

where

$$
\begin{aligned}
& C_{o}=q(p+q)^{-1} \text { and for } n=1,2,3, \ldots \\
& C_{n}=\min \left\{C_{n-1}+p n^{p-1}(p+q)^{-1}, q(n+1)^{p}(p+q)^{-1}\right\}
\end{aligned}
$$

In particular, we have
(4) $\quad \sum_{1}^{n}\left(U_{i}-U_{i-1}\right)^{q} U_{i}^{p} \leq q(n+1)^{p}(p+q)^{-1} \sum_{1}^{n}\left(U_{i}-U_{i-1}\right)^{p+q}$
for $p \geq 1, q \geq 1$;

$$
\begin{equation*}
\sum_{1}^{n}\left(U_{i}-U_{i-1}\right)^{q} U_{i}^{p} \leq K_{n}^{\prime \prime} \sum_{1}^{n}\left(U_{i}-U_{i-1}\right)^{p+q} \tag{5a}
\end{equation*}
$$

for $\mathrm{p} \leq 0, \mathrm{q}<0$;
(5b)

$$
\sum_{1}^{n}\left(U_{i}-U_{i-1}\right)^{q_{U}}{ }_{i}^{p} \geq K_{n}{ }^{\prime \prime} \sum_{1}^{n}\left(U_{i}-U_{i-1}\right)^{p+q}
$$

for $p \geq 0, p+q<0$, where $K_{1}^{\prime \prime}=1$ and for $n=2,3,4, \ldots$, $K_{n}^{\prime \prime}=1+p(p+q)^{-1} \sum_{i=2}^{n} i^{p-1}$.

Proof. Let $X_{i}=\left(U_{i}-U_{i-1}\right)^{p+q}$ for $i=1,2,3, \ldots$, $p+q \neq 0$, so that $\left(U_{i}-U_{i-1}\right)^{q}=X_{i}^{q k}$, where $k=(p+q)^{-1}$. Since $U_{i}=\sum_{j=1}^{i}\left(U_{j}-U_{j-1}\right)$, by Hölder's inequality we have

$$
U_{i} \leq i^{1-k}\left(\sum_{j=1}^{i} X_{j}\right)^{k} \equiv D_{i} \quad \text { if } p+q \geq 1
$$

and

$$
\mathrm{U}_{\mathrm{i}} \geq \mathrm{D}_{\mathrm{i}} \text { if } \mathrm{p}+\mathrm{q}<0 \text { or } 0<\mathrm{p}+\mathrm{q} \leq 1
$$

Therefore, $U_{i}^{p} \leq D_{i}^{p}$ and hence

$$
\left.\sum_{1}^{n}\left(U_{i}-U_{i-1}\right)\right)_{i} U_{i}^{p} \leq \sum_{1}^{n} x_{i}^{q k} D_{i}^{p}
$$

if $\mathrm{p} \geq 0, \mathrm{p}+\mathrm{q} \geq 1$ or $\mathrm{p} \leq 0$ and either $\mathrm{p}+\mathrm{q}<0$ or $0<\mathrm{p}+\mathrm{q} \leq 1$; while $U_{i}^{p} \geq D_{i}^{p}$ and hence

$$
\sum_{i=1}^{n}\left(U_{i}-U_{i-1}\right)^{q} U_{i}^{p} \geq \sum_{i=1}^{n} x_{i}^{q k} D_{i}^{p}
$$

if $\mathrm{p} \leq 0, \mathrm{p}+\mathrm{q} \geq 1$ or $\mathrm{p} \geq 0$ and either $\mathrm{p}+\mathrm{q}<0$ or $0<\mathrm{p}+\mathrm{q} \leq 1$. Thus, (3a), (3b) will follow if we can prove

$$
\begin{equation*}
\sum_{i=1}^{n} X^{q k} D_{i}^{p} \leq K_{n} \sum_{i=1}^{n} X_{i} \quad \text { for } p q>0 \tag{6a}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{1}^{n} X^{q k} D^{p} \geq C_{n} \sum_{i=1}^{n} X_{i} \quad \text { for } \quad p q<0 \tag{6b}
\end{equation*}
$$

We prove (6a) by induction on n. Clearly it holds for $\mathrm{n}=1$ since $\mathrm{K}_{1} \geq 1$. Assume that it holds for n , and observe that

$$
\begin{equation*}
\sum_{i=1}^{n+1} X_{i}^{q k} D_{i}^{p} \leq K_{n} \sum_{i=1}^{n} X_{i}+X_{n+1}^{q k} D_{n+1}^{p} \tag{*}
\end{equation*}
$$

Now, note that $X_{i} \geq 0$ for all $i \geq 1$, so that by a classical theorem [1] of arithmetic and geometric means, we have for $p q>0$,

$$
\begin{aligned}
X_{n+1}^{q k} D_{n+1}^{p} & =(n+1)^{p}\left\{X_{n+1}^{q k}\left[(n+1)^{-1} \sum_{i=1}^{n+1} X_{i}\right]^{p k}\right\} \\
& \leq(n+1)^{p}\left\{q k X_{n+1}+p k(n+1)^{-1} \sum_{i=1}^{n+1} X_{i}\right\} \equiv E_{n+1}
\end{aligned}
$$

since pk+qk = 1. Hence from (*) we get

$$
\begin{aligned}
\sum_{i=1}^{n+1} x_{i}^{q k} D_{i}^{p} & \leq K_{n} \sum_{i=1}^{n} x_{i}+q k(n+1)^{p} x_{n+1}+p k(n+1)^{p-1} \sum_{i=1}^{n+1} x_{i} \\
& \leq K_{n+1} \sum_{i=1}^{n+1} x_{i}
\end{aligned}
$$

since $\mathrm{K}_{\mathrm{n}} \geq \mathrm{qk}(\mathrm{n}+1)^{\mathrm{p}}$ and $\mathrm{K}_{\mathrm{n}+1} \geq \mathrm{K}_{\mathrm{n}}+\mathrm{pk}(\mathrm{n}+1)^{\mathrm{p}-1}$, which proves (6a). Note that for $\mathrm{pq}<0$, one can easily see that $X_{n+1}^{q k} D_{n+1}^{p} \geq E_{n+1}$, so that (4b) will follow by proceeding as above, and the proofs of (3a) and (3b) are completed.
'To see (4), consider $K_{n}^{\prime}=q(n+1)^{p}(p+q)^{-1}$ for $p \geq 1$,
$\mathrm{q} \geq 1$. We have $\mathrm{K}_{1}^{\prime}=\mathrm{q}_{2}^{\mathrm{p}}(\mathrm{p}+\mathrm{q})^{-1} \geq 1$, and

$$
\begin{aligned}
& K_{n+1}^{\prime}-K_{n}^{\prime}=q(p+q)^{-1}\left[(n+2)^{p}-(n+1)^{p}\right] \\
& \quad \geq q(p+q)^{-1}\left[(n+1)^{p}+p(n+1)^{p-1}-(n+1)^{p}\right] \geq p(p+q)^{-1}(n+1)^{p-1}
\end{aligned}
$$

where we used the Bernoulli inequality. Thus (4) follows from the proof of (3a). Also, (5a), (5b) follows from the facts:

$$
\begin{aligned}
& K_{n+1}^{\prime \prime}-K_{n}^{\prime \prime}=p(n+1)^{p-1}(p+q)^{-1}, \text { and } \\
& K_{n}^{\prime \prime} \geq 1 \geq q(n+1)^{p}(p+q)^{-1} \text { for } p<0 \text { and } q<0,
\end{aligned}
$$

but $K_{n}^{\prime \prime} \leq 1 \leq q(n+1)^{p}(p+q)^{-1}$ for $p \geq 0$ and $p+q<0$:
Thus we complete the proof of Theorem 3.
We remark that (3a) [or (4)] becomes (1) when $q=1$ and $p \geq 1$. Also, note that (3a) is true even for $0<p<1$ when $\mathrm{q}=1$, but (1) fails to hold for $\mathrm{p}<1$.

ACKNOWLEDGEMENT. Thanks are due to Dr. Paul R. Beesack for many helpful suggestions and for his guidance and encouragement throughout the course of this research.

REFERENCES

1. Hardy, Littlewood and Pólya, Inequalities p. 17.
2. James S. W. Wong, A discrete analogue of Opial's inequality. Can. Math. Bull. 10 (1967) 115-118.
3. Gou-Sheng Yang, On a certain result of Z. Opial, Jap. J. of Math. 42(1966) 78-83.

Carleton University

