ON A DISCRETE ANALOGUE OF INEQUALITIES OF OPIAL AND YANG

Cheng-Ming Lee

(received August 29, 1967)

In a recent paper [2], Wong proved the following

THEOREM 1. Let $\{U_i\}_1^{\infty}$ be a non-decreasing sequence of non-negative numbers, and let $U_0 = 0$. Then we have

(1)
$$\sum_{i=1}^{n} (U_i - U_{i-1}) U_i^p \le (n+1)^p (p+1)^{-1} \sum_{i=1}^{n} (U_i - U_{i-1})^{p+1} \text{ for } p \ge 1.$$

Yang [3] proved the following integral inequality:

THEOREM 2. If y(x) is absolutely continuous on $a \le x \le X$, with y(a) = 0, then

(2)
$$\int_{a}^{X} |y^{p}y'^{q}| dx \leq q(p+q)^{-1} (X-a)^{p} \int_{a}^{X} |y'(x)|^{p+q} dx$$

for $p \ge 1$ and $q \ge 1$.

The purpose of this note is to obtain a discrete analogue of (2) which includes the inequality (1) as a special case. In fact, we are going to prove

THEOREM 3. Let $\{U_i\}_1^{\infty}$ be a non-decreasing sequence of non-negative numbers, and let $U_0 = 0$. If

$$p > 0$$
, $q > 0$, $p+q \ge 1$ or $p < 0$, $q < 0$,

Canad. Math. Bull. vol. 11, no. 1. 1968

then

(3a)
$$\sum_{1}^{n} (U_{i} - U_{i-1})^{q} U_{i}^{p} \le K_{n} \sum_{i=1}^{n} (U_{i} - U_{i-1})^{p+q},$$

<u>where</u> $K_0 = q(p+q)^{-1}$ <u>and for</u> n = 1, 2, 3, ...,

$$K_n = \max \{K_{n-1} + pn^{p-1}(p+q)^{-1}, q(n+1)^p(p+q)^{-1}\}.$$

If

 $p>0\;,\;q<0\;,\;p+q\leq 1\;,\;p+q \neq 0$ or $p<0\;,\;q>0\;,\;p+q\geq 1,$ then

(3b)
$$\sum_{1}^{n} (U_i - U_{i-1})^{q} U_i^{p} \ge C_n \sum_{1}^{n} (U_i - U_{i-1})^{p+q}$$

where

$$C_{0} = q(p+q)^{-1} \text{ and for } n = 1, 2, 3, ...,$$
$$C_{n} = \min \{ C_{n-1} + pn^{p-1}(p+q)^{-1}, q(n+1)^{p}(p+q)^{-1} \}$$

In particular, we have

(4)
$$\sum_{1}^{n} (U_{i} - U_{i-1})^{q} U_{i}^{p} \leq q(n+1)^{p} (p+q)^{-1} \sum_{1}^{n} (U_{i} - U_{i-1})^{p+q}$$

<u>for</u> $p \ge 1$, $q \ge 1$;

(5a)
$$\sum_{1}^{n} (U_{i} - U_{i-1})^{q} U_{i}^{p} \le K_{n}^{\prime \prime} \sum_{1}^{n} (U_{i} - U_{i-1})^{p+q}$$

for $p \leq 0$, q < 0;

(5b)
$$\sum_{1}^{n} (U_{i} - U_{i-1})^{q} U_{i}^{p} \ge K_{n}^{\prime \prime} \sum_{1}^{n} (U_{i} - U_{i-1})^{p+q}$$

<u>Proof.</u> Let $X_i = (U_i - U_{i-1})^{p+q}$ for i = 1, 2, 3, ..., $p+q \neq 0$, so that $(U_i - U_{i-1})^q = X_i^{qk}$, where $k = (p+q)^{-1}$. Since $U_i = \sum_{j=1}^{i} (U_j - U_{j-1})$, by Hölder's inequality we have

$$U_{i} \leq i^{1-k} \left(\sum_{j=1}^{i} X_{j} \right)^{k} \equiv D_{i} \quad \text{if } p+q \geq 1 ,$$

and

$$\boldsymbol{U}_{\underline{i}} \geq \boldsymbol{D}_{\underline{i}} \text{ if } \boldsymbol{p} + \boldsymbol{q} < 0 \text{ or } \boldsymbol{0} < \boldsymbol{p} + \boldsymbol{q} \leq 1$$
 .

Therefore, $U_i^p \leq D_i^p$ and hence

$$\sum_{1}^{n} (U_i - U_{i-1})^{q} U_i^{p} \le \sum_{1}^{n} X_i^{qk} D_i^{p}$$

if $p \ge 0$, $p+q \ge 1$ or $p \le 0$ and either p+q < 0 or $0 < p+q \le 1$; while $U_i^{p} \ge D_i^{p}$ and hence

$$\sum_{i=1}^{n} (U_{i} - U_{i-1})^{q} U_{i}^{p} \ge \sum_{i=1}^{n} X_{i}^{qk} D_{i}^{p}$$

if $p \le 0$, $p+q \ge 1$ or $p \ge 0$ and either p+q < 0 or $0 < p+q \le 1$. Thus, (3a), (3b) will follow if we can prove

(6a)
$$\sum_{i=1}^{n} X^{qk} D_{i}^{p} \le K_{n} \sum_{i=1}^{n} X_{i}^{k}$$
 for $pq > 0$,

and

(6b)
$$\sum_{1}^{n} X^{qk} D^{p} \ge C_{n} \sum_{i=1}^{n} X_{i} \quad \text{for } pq < 0$$

We prove (6a) by induction on n. Clearly it holds for n = 1 since $K_1 \ge 1$. Assume that it holds for n, and observe that

(*)
$$\sum_{i=1}^{n+1} X_i^{qk} D_i^p \le K_n \sum_{i=1}^n X_i^{p} + X_{n+1}^{qk} D_{n+1}^p$$

Now, note that $X_i \ge 0$ for all $i \ge 1$, so that by a classical theorem [1] of arithmetic and geometric means, we have for pq > 0,

$$X_{n+1}^{qk} D_{n+1}^{p} = (n+1)^{p} \{ X_{n+1}^{qk} [(n+1)^{-1} \sum_{i=1}^{n+1} X_{i}]^{pk} \}$$

$$\leq (n+1)^{p} \{ qk X_{n+1}^{-1} + pk(n+1)^{-1} \sum_{i=1}^{n+1} X_{i} \} \equiv E_{n+1}^{pk}$$

since pk+qk = 1. Hence from (*) we get

$$\sum_{i=1}^{n+1} \sum_{i=1}^{qk} D_i^p \le K_n \sum_{i=1}^{n} X_i + qk(n+1)^p X_{n+1} + pk(n+1)^{p-1} \sum_{i=1}^{n+1} X_i$$

$$\leq K_{n+1} \sum_{i=1}^{n+1} X_i$$

since $K_n \ge qk(n+1)^p$ and $K_{n+1} \ge K_n + pk(n+1)^{p-1}$, which proves (6a). Note that for pq < 0, one can easily see that $X_{n+1}^{qk} D_{n+1}^p \ge E_{n+1}$, so that (4b) will follow by proceeding as above, and the proofs of (3a) and (3b) are completed.

To see (4), consider
$$K_n' = q(n+1)^p (p+q)^{-1}$$
 for $p \ge 1$,
 $q \ge 1$. We have $K_1' = q 2^p (p+q)^{-1} \ge 1$, and

$$K'_{n+1} - K'_{n} = q(p+q)^{-1}[(n+2)^{p} - (n+1)^{p}]$$

$$\geq q(p+q)^{-1}[(n+1)^{p} + p(n+1)^{p-1} - (n+1)^{p}] \geq p(p+q)^{-1}(n+1)^{p-1}$$

where we used the Bernoulli inequality. Thus (4) follows from the proof of (3a). Also, (5a), (5b) follows from the facts:

$$K_{n+1}^{"} - K_{n}^{"} = p(n+1)^{p-1}(p+q)^{-1}$$
, and
 $K_{n}^{"} \ge 1 \ge q(n+1)^{p}(p+q)^{-1}$ for $p < 0$ and $q < 0$,

but $K''_n \le 1 \le q(n+1)^p (p+q)^{-1}$ for $p \ge 0$ and p+q < 0:

Thus we complete the proof of Theorem 3.

We remark that (3a) [or (4)] becomes (1) when q = 1 and $p \ge 1$. Also, note that (3a) is true even for 0 when <math>q = 1, but (1) fails to hold for p < 1.

ACKNOWLEDGEMENT. Thanks are due to Dr. Paul R. Beesack for many helpful suggestions and for his guidance and encouragement throughout the course of this research.

REFERENCES

- 1. Hardy, Littlewood and Polya, Inequalities p.17.
- 2. James S. W. Wong, A discrete analogue of Opial's inequality. Can. Math. Bull. 10 (1967) 115-118.
- Gou-Sheng Yang, On a certain result of Z. Opial, Jap. J. of Math. 42(1966) 78-83.

Carleton University