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Abstract

An example is given of a finitely generated group G for which G = C * c G, where C is infinite cyclic.
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1. Introduction

We give an example of a finitely generated group G for which G = G *c G, where C
is infinite cyclic and C ^ G.

This example is probably 'optimal' for bad behaviour of amalgamated products.
In a previous paper [2] we have given an example of a group G for which G =
A *c G,A ^ C. The reader is referred to [2] for a discussion of such examples and
the folding sequence technique used in their construction. As we remarked in [2]
we had tried unsuccessfully to produce such an example with A = G. We can now
present such an example.

A similar construction was used in [1] to produce 2-generator inaccessible groups.
Factoring out by a central cyclic subgroup of our new example will also produce an
inaccessible group.

Although it is not possible to find a finitely generated group G for which G = G*G,
G ^ 1, the second author [3] gave an example of a finitely generated group G for
which G = Gx G,G^l.
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2. The construction

As in [2] our example is constructed using an infinite folding sequence. The
construction depends on the existence of a lattice of groups with certain properties.
Thus we show that there is a lattice of groups as in Figure 1, and also satisfying the
following three properties:

(i) H = l
(ii) A] and Bi are generated by their intersections with A and B

C,

FIGURE 1.

(iii) The amalgams in Figure 2 are isomorphic.

A B A Bt Ai B

c c, c2

FIGURE 2.

We note from (iii) that A and A i are isomorphic, as are B and Bx. First we note some
other consequences of conditions (i), (ii) and (iii) for the groups A and Ax.

By (i), H is infinite cyclic, and hence so is every subgroup of H. In particular, C
is infinite cyclic, say C — (c). Using (iii), we see that C\ and C2 are isomorphic to C,
so we may set C, = (v) and C2 = (a). Next we use (ii) to deduce that Ai = (H, C2),
so that if we set H = (h), we may conclude that At — {h, a), and in a similar way
5, = (A,i;).

Our aim will be to build 'templates' from which we can construct A, Au B and
B\, and then we will fit these groups together to form a diagram as in Figure 1. Let
m, n, s, t be integers greater than three with m and s coprime, and let k = mt and
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/ = ns. We also demand that n < k and that t < I. To facilitate later calculations, we
will use the specific values m = 5, n = 19, s = 7, t = 13.

Let L be the locally cyclic group

L — ( . . . , u_2, v-i, vo, Vi, i>2,... I uf = i>,+i for all i e I),

let M be the subgroup of L generated by the set {v" | i e I}, and let Mx be an
isomorphic copy of M. As n < k, M is a proper subgroup of L. For each integer i let
(JCJ) be a cyclic group of order m, and form the free product X = *jGz(;tj). The group
P = ?ifflll (v, x) is the amalgamated free product of L with the direct product X x Mi,
amalgamating the isomorphic groups M and Mi. Thus the amalgamated subgroup
M = M\ is central in / \ We next propose to factor out some relations from P, in
such a way as to ensure that each pair vit xt generates the whole group. When extra
relations are imposed on a group there is a danger that there will be an unexpected
amount of collapse of the original group. To check that our relations have not caused
much collapse, we use small cancellation theory over the amalgamated free product
P. An account of the theory we need can be found in Chapter 5 of [4].

For each / € Z, we impose the following relations on P:

(i) xi^(xlv-txxfv-2'Hxiv-')2(xfv-2tKxiv;1)3 • • • 0 t , V ) 8 V , V ) ,
(ii) xi+l(xivrT(xfv7*Xxiv7')'a(xfvr2')(xivr')" • • • ( J C , V ) 1 6 0 ( * , V ) ,

(Hi) ^.(x^-')161^^-2')^^')162^,2^2')^^-')163 • • • Oc,V)24V,V).
We now consider the symmetrised set R generated by these relations. We note that,

if C] c2 c3 • • • cn is a reduced, cyclically reduced element of an amalgamated free product
whose amalgamated subgroup is central, then the cyclically reduced conjugates of
Ci c2c3 • • • cn can be obtained simply by cyclic permutation. Moreover, if two reduced,
cyclically reduced words Cj c2c^ • • • cn and didjd^ • • • dm share a piece in common then
d^lc\, d^lc2,... d~[cr all lie in the amalgamated subgroup, where r is the length of
the piece. In our example, using the fact that the factor X x M\ is a direct product,
we see that if two elements of R have a piece in common, then the sequence of entries
from X appearing in them must agree for the length of the piece. With this in mind, it
is not difficult to see that R satisfies the small cancellation condition (7(1/10). Thus
the factors L and X x Mi are embedded in P/{R)P — Gk,m,nj(v, x), say. In particular,
each Vi has infinite order.

Since relations (i), (ii) and (iii) hold for each i € 2, it is clear that the map
which takes each vt to vi+l and each xt to xi+x is an automorphism of G*,m,n,,(v, x).
Moreover, G^mn,,(v, x) is generated by any pair vit xt since relations (i) and (iii) show
that {xt, v^ 2 (x,_i, u,_i), and hence that {xt, vt) 2 fo-i, u,-_i) 2 (*/-2> V1-2) 2 • • •,
while relation (ii) together with the relation v\ — vi+i of L shows that {x{, v() 2
(xi+i, vi+l), and hence that (xt, vt) 2 (*,-+i, v,-+i) 2 (xi+2, vi+2) 2 • • • •

We now define M,+I = xtv"'. Recalling that v" is central in Gtimn,,(v, x), we see that
u"+l = x™v""" = v"h = vf+l for each / 6 Z and hence that each «, has infinite order.
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We wish to show that each pair H,+1 , u,-+1 generates Gk,m<nJ(v, x). Since vi+\ and xi+i

are a pair of generators, relation (ii) shows that it is sufficient to prove that xtv~' and
xfvj2' both lie in (ui+i, vi+1). Now M,+1 = jc,-uj" and vi+1 = uf = vf so (w,+i, vi+i) 3
ut+iv^ = x,u,("~"4m)/ = XiV~' as n = 19 and m = 5. Thus jt/V,"' € (M, + I ,U ,+I ) .

Similarly, M +̂1 = ^fuf"' (since u," is central), so M?+1U^8, = x2vfn~im)t = x]vf\ so
that (w;+i, vi+1) contains both JC(-I>,~' and xfv~2' and hence xi+i. Thus we have shown
that ui+i and u,+i generate Gjt,m,n,/(v, x) as required.

Gt,m,n,,(v, x) is the template for the groups A and .A]. As a template for B and B\
we use G/ti,,,n(a, y), where, as before, the map sending each a, to ai+l and each y, to
v,+i is an automorphism of G/,,,,,,, (a, y), and each pair {a,, j ,} generates G/j,,,n(a, y).
Defining bi+\ = yta'", so that ^ + 1 = a'i+v and noting that bi+ia~+x = j ,a ' '~2 i )" =
ytdr" and 6?+,^, - j,2fl,(2'~4l>n = yfa'2" since r = 13 and s = 7, we see that bi+l

and ai+l generate G,,,,,,„(a, y).
We can now construct the required diagram. We take a copy A\ of G*,m,n,((v, x)

and a copy S, of Gt s,,n(a, y), and form the amalgamated free product B\ *bo=uo ^ i -
Since m and.? are coprime the resulting group, G, has a pattern of subgroups as in the
following diagram:

B

FIGURE 3.

Finally, we take groups A = Gt,m,n,,(v', x') and 5 = G;,j,,,n(a', y'), and form the
amalgamated free product A *„;=<,„ G *vo=a'o B. This group has a pattern of subgroups
as in Figure 1, so it only remains to check that the required conditions (i), (ii) and
(iii), given for that diagram, hold. The group labelled H in Figure 1 is (MO>, SO
condition (i) certainly holds. For (ii), we need to check that that A\ = («£, v0) and
B\ = (b™,a0). Now (us

0,v0) contains both us
0 and i£ = u" and so contains uQ

since m and s are coprime. Thus (us
0, v0) = (u0, v0) = A\. A similar argument

holds for B\, and so condition (ii) is satisfied. Now consider condition (iii). Recall
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that there is an automorphism of A = G,t>m,n,,(v', x') which takes u'o to u[ and v'o to
v[ = v'o

k. Composing the map from A i to A which takes M0 to H0 and vQ to UQ with this
automorphism we have an isomorphism between A\ and A which takes u0 to M', and
v0 to i>0*. Thus it carries the subgroup C2 = (v0) of Ai to the subgroup C = (v0*) of
A. The automorphism of 2? which takes a0 to aj and b'o to &', also carries C2 to C, so
we can combine the two isomorphisms to show that the first two amalgams of Figure 2
are isomorphic. A very similar argument shows that the first and third amalgams of
Figure 2 are isomorphic, and so condition (iii) holds. In the notation of Figure 1, M0

plays the role of h, a0 = v'o that of v, and v0 = a'o that of a.
Consider the infinite folding sequence shown in Figure 4.

A vk B

(subdivision)

A B
0 • •

(Type II folds)

A v (v,an) a" B
• • •

(vertex morphism)

A v Bi a" B
• • •

(subdivision and Type II folds)

A v Bx h (h,a) a B
0 « • •

(vertex morphism)

A v Bi h Ai a B
0 0 • •

(repeating process infinitely many times on Cantor Set)

A ftoi Bi h A, hw B

FIGURE 4.

The n-th term is a simplicial tree Tn acted on by a group Gn. There are surjective
homomorphisms

Go —>• G [ - > G2 — > • • • • .
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The group G is the direct limit of this sequence.
The group G that we have constructed has a lattice of subgroups as in Figure 5. By

considering this lattice it can be seen that the construction of G is like the construction
of a jigsaw puzzle. All the jigsaw pieces are similar to the piece given in Figure 1.
To get from Gn to Gn+1 one has to attach 2" pieces to the puzzle, all of these pieces
are congruent and fit into 2" V-shaped gaps in the upper boundary. The fitting of
each piece involves a sequence of folds in the tree Tn similar to the folds described in
Figure 4.

It can be seen that G = G*H G. Note that the isomorphism of G to the first factor
fixes A and carries B to Bi and H = (h) to (hOi). The isomorphism to the second
factor fixes B and carries A to Ax and H to {hw).
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