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S(R) is the semigroup, under composition, of all continuous selfmaps of the space
R of real numbers. We show that the primes of S(R) are precisely those continuous
selfmaps which are surjective and have exactly two local extrema. Additional
results are then derived from this. For example, if / is any surjective continuous
selfmap of R with rt ^ 2 local extrema, then there exist homeomorphisms {/i;}£Li
from R onto R such that m ^ 1 + n/2 and

f = h\ oPohioPo---o hm-i o P o hm

where P is the polynomial defined by P{x) = x3 — x. It follows from this that the
homeomorphisms together with the polynomial P generate a dense subsemigroup
of S(R) where the topology on S(R) is the compact-open topology.

An element a of a semigroup S with identity is said to be prime if it is not a unit
and if a — be, then either a is a unit or b is a unit. The symbol S(X) denotes the
semigroup, under composition, of all continuous selfmaps of the topological space X.
The units of S(X) are simply the homeomorphisms from X onto X. There are many
spaces X for which S(X) contains no primes whatsoever. The next result provides us
with a class of such spaces.

PROPOSITION 1. If X is homeomorphic to a proper retract of itself, then S(X)
has no primes.

PROOF: Let g be a homeomorphism from X onto a proper retract Y oi X.
Then there exists a mapping v € S(X) which maps X onto Y such that v[x) = x
for each x 6 Y. Now g E S(X) and for any / £ S(X), f o g~l o v £ S(X) and
/ = (/ o g~x o») o g. But g is not a unit and neither is / o </-1 o r . U

It follows from the latter result that no S(lN) contains any primes where IN is
the Euclidean n-cell. In particular, S{I) has no primes where / is the closed unit
interval. On the other hand, S(R) does contain primes where R is the space of real
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numbers and it is our purpose here to characterise those primes. Although 5(7) has
no primes, the semigroup of all continuous surjections of / does have primes and these
were characterised by Young in [2].

Recall that a mapping / from a space X to a space Y is said to be light if
f~1(f(x)) is totally disconnected for each x £ X. The symbol Ran(/) will be used to
denote the range of a function / .

LEMMA 2 . Every prime in S(R) is surjective and light.

PROOF: Suppose / € S(R) is not surjective. We may assume that Ran(/) =
[a, oo). Define g(x) = \x — a\ + a. Then / = g o / but neither / nor g is a unit.
Now suppose / is not light. Then there exists an interval [a, b] such that f(x) = c
for each x £ [a, b]. Choose any function g £ S(R) such that g{x) = x for x $ (a, b),
g[a, b] — [a, b] and g is not injective on [a, b]. Then / = / o g but neither / nor g is
a unit. U

LEMMA 3 . Suppose f £ S(R) is prime. Then both the sets /(—oo, 0) and
/(0, oo) are unbounded.

PROOF: Suppose /(—oo, 0) is a bounded set. Then according to the previous
lemma, / must map (0, oo) onto R. Choose any a > 0 such that f(a) > f(x) for all
x ^ 0 and let 6 = min f~x(f{a)). Then 6 > 0 and we define t(x) = x + f(b) - b. We
then define

[ t(x) for x ^ 6

\ f(x) for x ^ 6

f t-WOO iorx^b
h(x) — <

[ x for x ^ b.

Now t maps (—oo, 6] homeomorphically onto (—oo, /(&)]. Suppose x ^ 6. Then
f(x) ^ f(b) and g o h(x) = g(t~1(f(x))) - f(x). On the other hand, for x ^ b, we
have g o h(x) = g(x) = f(x). Consequently / = g o h. But g is not a unit since it is
not injective on (0, oo) ( / must map (0, oo) onto R) and h is not a unit since it is
not surjective. This, of course, is a contradiction and we must conclude that /(—oo, 0)
is unbounded. Now define t[x) — —x and let g = f ot. Then g is prime since / is and
the previous argument shows that g(—oo, 0) is unbounded. This concludes the proof
since / (0 , oo) = g(-oo, 0). D

LEMMA 4 . Suppose f e S(R) is prime. Then / ( -oo , 0) ̂  R and /(0, oo) ̂  R.

PROOF: Suppose /(0, oo) = R. According to Lemma 3, /(—oo, 0) is an un-
bounded set. We will assume that it is unbounded from below. We assert that there
exists an interval [a, 6] such that

(4.1) / is not injective on [a, b] and f(a) ^ f(b)
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and either

(4.2) / ( a ) ^ f{x) < f(b) for all z G [a, 6]

or

(4.3) f(b) < / ( « ) ^ / ( a ) for all z G [a, 6].

Since / ( 0 , oo) = i? , the set f~1(y) is unbounded from above for each y G R. Choose
0 < ci < c2 < 6i such that / ( c i ) = / ( c 2 ) = 0. Choose mx < min{ / ( z ) : x G [0, 6i]}
and let 62 be any point such that 62 > 6i and / (6 2 ) = m i . Now choose Mi >
max{ / (z ) : z G [0, 62]} and let 63 = m i n f / ' ^ M i ) n [0, oo)]. Note that 63 > 62 and
/ ( z ) ^ Mi = / (63) for z G [0, 63]. Next let m 2 = min{ / (z ) : z G [0, 63]} and note that
m2 ^ m i < / ( 0 ) . Consequently, / - 1 ( m 2 ) ("1 (—00, 0) = / - 1 ( m 2 ) D (—00, 0] ^ 0 since
/(—00, 0) is unbounded from below. Let Oi = m a x [ / - 1 ( m 2 ) D (—00, 0]] and observe
that / ( z ) ^ m 2 for z G [ai, 63]. We consider two cases:

CASE 1. / ( z ) ^ Mi for all z G [OI, 63].

In this case, we take a — a\ and 6 = 63 and we have / ( a ) ^ / ( * ) ^ f(b) for
o < z < 6. That is, (4.2) is satisfied.

C A S E 2. / ( z ) > Mi for some 1 £ [o], 6S].

In this case, we let M2 = m a x { / ( i ) : x G [01,63]}. Note that if z G [01,63]
and f(x) = M2, then x < 0 since / ( z ) ^ Mi < M2 for z G [0, 63]. Let a =
m a x [ / - 1 ( M 2 ) D (—00, 0]] and let 6 be any point in [0, 63] such that /(&) = m 2 . Note
that 6 > 61 since f(x) < mi ^ m 2 for z G [0, 61] and we have a < C\ < c2 < 6.
Moreover, / (6) ^ / ( * ) ^ / (o ) for z G [a, 6] and, in this case, (4.3) is satisfied. In
both cases, both ci and c2 belong to [a, 6] and thus, / is not injective on [a, b] since
/ ( c i ) — /(C2)- In addition, / ( a ) ^ /(&) since m 2 < Mi < M 2 . This verifies the
assertion.

Next, let t be the linear map from R onto R such that t(a) = / ( a ) and t(b) = f(b).

If (4.2) is satisfied, t will map [a, 6] homeomorphically onto [/(a), /(6)] while t will
map [a, 6] homeomorphically onto [/(6), f(a)] in the event (4.3) is satisfied. Define

/ ( z ) for x ^ a

g(x) = { t{x) for a ^ x ^ 6 .

/(z) for z ^ 6
z for z ^ a

i"1 o f(x) for a ^ z < 6

z for z ^ 6.
Since by assumption, /(0, 00) = R, it follows that # | [6, 00) = / | [6, 00) is not
injective and hence that g is not a unit. On the other hand, h is not a unit either since
/ is not injective on [a, 6]. We have reached a contradiction since / = g o h.
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Suppose again that / (0, oo) = R but now consider the case where /(—oo, 0) is
not bounded from above. Let k=wof where w(x) = —x for all x. Then A:(0, oo) = R
and A;(—oo, 0) is unbounded from below. The previous argument allows us to conclude
that k = g oh where neither g nor A is a prime and we arrive at a contradiction here
also. We now conclude that

(4.4) If / is prime, then /(0, oo) ^ R.

Now suppose /(—oo, 0) = R and define k = f ow where again, w(x) = — x for all
x. Then fc(0, oo) = R and thus k = g o h for two nonunits g and h according to (4.4).
Evidently f = g o {how) so that if / is prime, then we cannot have /(—oo, 0) = R
either. This verifies the lemma. D

The latter lemma tells us that functions such as f{x) = x sin x and g(x) = x cos x

are not prime. Of course / can be factored in a more direct way since it is an even
function. Specifically, if h is any even function then h — ho k where fc(x) = \x\. The
next lemma is an immediate consequence of Lemmas 2, 3 and 4.

LEMMA 5 . Suppose f G S(R) is prime. Then exactly one of the following two
conditions must hold:

/(—oo, 0) = (—oo, o) or /(—oo, 0) = (—oo, a] for some a and
\ )

/(0, oo) = (b, oo) or / (0, oo) = [b, oo) for some b;

or

/(—oo, 0) = (a, oo) or / ( -oo , 0) = [a, oo) for some a and

/(0, oo) = (—oo, 6) or /(0, oo) = (—oo, b] for some b.

Our next lemma strengthens the preceding one.

LEMMA 6. Let f be a prime. Then there exist points a and b such that a < b,

f is injective on (—oo, o] and on [b, oo) and either / assumes a iocal maximum at a

and a local minimum at b or it assumes a local minimum at a and a local maximum

at b.

PROOF: We first note the (easily demonstrated) fact that

(6.1) Every surjective function in S(R) which is not a unit

has at least one local maximum and one local minimum.

In particular, each prime must have at least one local maximum and one local minimum
in view of Lemma 2. Since / is prime, either (5.1) or (5.2) holds. Assume first that
(5.1) holds and let c = lub /(—oo, 0). We consider two cases.
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C A S E 1. / ( a ) = c for some a < 0.

In this case, f(x) ^ / ( a ) for all x ^ 0. In particular, / has a local max at a and

f(x) ^ / ( a ) for all x ^ a. Let i be any linear map such that t(a) = / ( a ) and which

maps ( - c o , a] onto (—oo, f(a)] and define

!

t(x) for x ^ a

j\x) for x ^ a.

•(:"'

. . . . ° /(a:) for x ^ a

for x ^ a.

One readily verifies that / = g o h and since / has a local maximum at a, and / ( 0 , oo)
is unbounded from above, / cannot be injective on [a, oo). Thus, g is not a unit and
consequently, h must be. It follows from this and (5.1) that, in this case, / is increasing
on (—oo, a] .

CASE 2. / ( x ) < c for each x < 0.

Let a — m in /~ 1 ( c )D [0, oo). Again, we have f(x) ^ f(a) for x ^ a and we define
the functions g and h just as before. This time, however, we do not know whether or
not / is injective on [a, oo) but at least one of g and h must be a unit and this implies
that either

(6.2) / is injective on (—oo, a] or

(6.3) / is injective on [a, oo) .

The former must happen for h to be a unit and the latter for g to be a unit. Suppose
(6.2) holds. In this situation, we have c = / (0 ) and a — 0. Then there exist points
c\ and C2 such that 0 ^ c\ < c^ and / assumes a local maximum at c\ and a
local minimum at c-i. Let cj be a point in [0, c-z] at which / assumes its absolute
maximum value on that interval. Then 0 ^ cs < c^, f has a local maximum at c3 and
f(x) ^ / ( c j ) for x ^ cj since / is increasing on (—oo, 0]. This time, let ( b e a linear
map such that <(cj) = / ( c j ) and which maps (—oo, Cj] onto (—oo, / (cj)] and define
the functions g and h as follows:

•I
- {

/(*
X

0
o

for x
for x

for

for

=s

X

X

Again, we have f = g o h. Moreover g is not a unit since / assumes a local min on
[c3, oo). Thus h is a unit and / must, in this case, be injective on (—oo, cj].
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Now assume (6.3) holds. In this instance there exist points c\ and c2 such that
C\ < C2 ^ a. and / assumes a local maximum at Cj and a local minimum at c2. Since
/(—oo, 0) is unbounded from below, there exists a point C3 < Ci such that / (cs) < /(a;)
for x £ [ci, o]. Let c4 be a point at which / assumes its absolute minimum value on
the interval [cs, a] . Then, c3 ^ ct < c\ and / ( z ) ^ f(c4) for z ^ c4 since / is
increasing on [a, 00). Now let t be a linear map such that t(c4) = / (c 4 ) and which
maps [c4, 00) onto [/(c4), 00). Then define g and h as follows:

•{;-

/ (z) for x ^ c4

t(x) for x ^ C4.

for z ^ c4

H^ ' - ' © / ( x ) for

Again, we have / = go h, but h is not a unit since / assumes a local minimum at the
point C2 > c4. This means g must be a unit and therefore / is injective on (—00, c4].
Since (5.1) holds, this means / is increasing on (—00, c4].

Next, let cs be a point at which / assumes its absolute maximum on the interval
[c4, c2]. Then C4 ^ c5 < c2 and /(z) ^ /(cs) for x < c5 since / is increasing
on (—00, c4]. Now let t be a linear map such that t(cs) = f(cs) and which maps
(—00, cs] onto (—00, f(cs)] and this time define g and h as follows:

{ t(z) for x ^ cs

f(x) for x ^ cs.

J t'1 o f(x) for x ^ c5

|_ z for z ^ C5.

Then f = g o h and </ is not a unit since / has a local minimum at c2 > C5. Con-
sequently, /i must be a unit which means / is injective on (—00, C5]. This, in turn,
means / is increasing on (—00, cs] and since /(cs) is the absolute maximum value for
/ on [c4, C2], it follows that / assumes a local maximum at c5.

At this point, we have shown that if a prime / satisfies (5.1) then there exists a
point a such that / assumes a local maximum at a and / is injective on (—00, a].
The proof that there is a point b such that / assumes a local minimum at 6 and / is
injective on [6, 00) is quite similar and for that reason we omit the details. Moreover
we must have a < b, otherwise / would be injective on R and would be a unit. As for
the case where / satisfies (5.2), define t(x) = —x and let g = t o f. Then g satisfies
(5.1) and there exist points a and b such that a < b, g has a local maximum at a and
a local minimum at 6 and g is injective on both (—00, a] and [b, 00). Consequently,
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in this case, / is injective on those same sets but it has a local minimum at a and a
local maximum at 6. U

DEFINITION 7: Let / be a selfmap of R. If there exists a number K such that
/ (x ) < / (y ) for x < y and |z | , |y| > K, we say that / is eventually increasing. If
f(x) > / ( y ) for x < y and |a;|, \y\ > K, we say that / is eventually decreasing.

DEFINITION 8: A selfmap of R is a generalised odd degree polynomial if it is con-
tinuous, surjective and has only a finite number of local extrema.

For any / G S(X), we will denote by L(f) the collection of all those points at
which / assumes a local extreme value and the cardinality of a set A will be denoted
by \A\.

DEFINITION 9: For a generalised odd degree polynomial / , we let O r d ( / ) =

\Hf)\-
LEMMA 1 0 . Let f be a. generalised odd degree polynomial with Ord (/) > 0 and

let y be any point in R whatsoever. Then f~1(y) contains a point which does not
belong to L(f).

PROOF: Every point in R is of the form / ( a ) for some a. If a ^ L(f), it is evident
that / - 1 ( / («)) contains a point which does not belong to L(f). The remaining case
is where a G -£(/) • Now / is either eventually increasing or eventually decreasing. We
will assume the former and we will also assume that / has a local maximum at the point
o. The remaining cases are similar. Let oi be the greatest point in / - 1 ( / ( o ) ) D L(f)
at which / assumes a local maximum. Since / is surjective, there is a point o.i > ai
such that / ( o 2 ) = / ( O l ) and o2 G / " ^ / ( o ) ) \ L{f). D

LEMMA 1 1 . Let f and g be any two generalised odd degree polynomials such
that Ord(/ ) = Ord (g) = 2. Then there exist homeomorphisms h and k from R onto
R such that f = ho g ok.

PROOF: We first consider the case where both / and g are eventually increasing.
Let L(f) = {a, 6} and let L(g) = {c, d} where a < b and c < d. Let h be any
(necessarily increasing) homeomorphism from R onto R such that h(g(c)) = / ( o ) and
h(g(d)) = f(b). Now let gi = g \ ( - c o , c], 32 = 9 \ [c> d\ and g% — g\ [d, 00) and then
define

{ g^1 o h-1 o f for x ^ o

g'1 oh'1 of for o ^ x < b

g'1 oh'1 of for x ^ b.

One verifies that k is continuous. Moreover h must be increasing and / is increasing
on (—oo, a] and [6, 00) and decreasing on [a, 6] while g is increasing on (—00, c] and
[d, 00) and decreasing on [c, d]. It readily follows that k is increasing on each of the
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intervals (—oo, a ] , [a, b] and [b, oo) . Thus, & is a homeomorphism from R on to R

a n d it follows easily t h a t f = hog ok.

Now suppose / is eventually decreasing and g is eventually increasing. Then

t o / is eventually increasing where t(x) = — x and by our previous considerations,

t o f = h o g o k for two (increasing) homeomorphisms h and k. Consequently / —

(t~* o / t j o j o i . If b o t h / and g are eventually decreasing, then to f and tog are

eventual ly increasing and tof = hotogok for appropriate homeomorphisms h and

k and thus, f = (tohot)ogok. D

Let P be the polynomial function which is defined by P(x) = x3 — x. We are now
in a position to state and prove the main result of this paper.

THEOREM 12. The following statements about a function f in S(R) are equiv-
alent.

(12.1) f is prime.

(12.2) / is surjective and has exactly one local maximum and one local min-
imum. In other words, f is a generalised odd degree polynomial with
Ord(/) = 2.

(12.3) There exist homeomorphisms h and k from R onto R such that f =
hoPok.

PROOF: We first show that (12.1) implies (12.2). Since / is prime, either (5.1) of
(5.2) holds and we assume first that (5.1) holds. It follows from our assumption and
Lemma 6 that there are points a and b such that a < b, f has a local maximum at
a and a local minimum at b and / is increasing on both the intervals (—oo, a] and
[b, oo). Let ai be a point at which / assumes its absolute maximum value on [a, b] and
let 6i be a point at which / assumes its absolute minimum value on [a, b]. The points
ai and &i must be distinct since, by Lemma 2, / is light. Suppose b\ < ai. Let t be a
linear map such that t(ai) = /(oi) and which carries (—oo, ai] onto (—oo, f(a{)] and
define

- {
- {

, t(x) for x ^ Oi
g(x) =<

f(x) for x ^ a\.

t~* o /(x) for x

z for x

Since f(x) ^ f(ai) f°r * ^ aj , it follows that f = g o h. Now g is not a unit since
ai < b and / assumes a local minimum at b. On the other hand, h is not a unit
either since 6i < a\ and / also assumes a local minimum at &i. This, of course, is a
contradiction and we conclude that Oi < b\. Thus, we have a ^ ai < b\ ^ b. Suppose
a < ai and let g and h be the maps we just defined previously. Here again, g is not

https://doi.org/10.1017/S0004972700029920 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700029920


[9] The primes of S(R) 425

a unit since / has a local minimum at 6 > a\ and h is not a unit since / has a local
maximum at a < a\. With this contradiction, we conclude that a\ — a. In a similar
manner, one can verify that 6i = 6 and we have now shown that

(12.4) / is increasing on both ( - co , a] and [b, oo)

and f[b) < / (x) ^ f(a) for a < x < b.

Now let t be the linear map which maps [a, 6] onto [/(&), /(<*)] such that t(a) = f(a)
and t(b) — f(b) and define

/ (x ) for x ^ a

g{x) = ^ t(x) for a ^ x ^ 6

/ (x ) for x ^ b

x for x ^ a

h(x) = { t-1 o / ( x ) for a < x < b

x for x ^ 6.

Now f = g o h and p is not a unit since it has a local maximum at a and a local
minimum at b. Consequently h must be a unit and therefore / is injective on [a, b]

which implies that / is decreasing on [a, b]. We have now shown that (12.2) holds
whenever (5.1) holds. Suppose (5.2) holds and consider the function t o f where t is
defined by t(x) = —x. Then t o / is a prime and satisfies (5.1). Thus (12.2) holds for
tof and therefore, also for / . This concludes the verification that (12.1) implies (12.2).

It follows immediately from Lemma 11 that (12.2) implies (12.3) and it is evident
that (12.3) implies (12.2) so the proof will be complete when we show that (12.2) implies
(12.1). Suppose, then, (12.2) holds and suppose f — g oh. Iffce S(R) is surjective
and L(k) £ 0, then |£(Jfe)| > 1. Evidently L{f) = L{h) U h-1^)} and, of course,
| i ( / ) | — 2. Now g is surjective since / is and it follows from Lemma 10 that either
L(g) = 0 and \L(h)\ = 2 or \L(g)\ = 2 and L(h) = 0. In the first case, g is a unit. If
the second case holds, h must be surjective since / is surjective and |£(<7)| = 2 (one
really only needs L(g) to be finite). Therefore, in the second case, h is a unit since not
only is h surjective, but L(h) = 0 as well. This proves the theorem. D

COROLLARY 13 . A continuous selfmap of R is a generalised odd degree polyno-

mial if and only if it is the product of a finite number of primes. Moreover, the number

of primes in any factorisation of a generalised odd degree polynomial f cannot exceed

Ord(/) /2 .

PROOF: It is a straightforward matter to verify that any product of primes is a

generalised odd degree polynomial. Suppose, on the other hand, / is a generalised
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odd degree polynomial. If it is prime, we axe finished. If it is not prime, then / =
/ i o f2 where neither f\ nor /2 is a unit. Then L(fi) ^ 0 ^ L(f2)

 aQd since L{f) =
L(f2)Uf2

1[L(f1)],veha.ve Ord (.ft) < Ord(/) and, Ord(/2) < Ord(/) . In fact, since
Ord( / ) , Ord(/i) and Ord(/2) are all even integers, we conclude that O r d ^ ) <
Ord(/) — 2 and Ord(/2) ^ Ord(/) — 2. This same argument is then used for each of
the factors f\ and /2 which are not prime and then repeated for subsequent nonprime
factors. The process terminates when all the factors are prime. Now we want to show
that if / = / i o f2 o • • • o fn, and the functions fi are all prime, then Ord (/) ^ In.
This is immediate if n = 1. Suppose it holds for n = m and let / = g o fm+i where
9 = h ° h ° • • • ° fm • Then L(f) = L(fm+1) U / " ^ [L(g)). According to Lemma 10, for
each point a € L(g), there exists a point b G /m+i(°)\^(/m+i) and since Ord (g) ^ 2n
by the induction hypothesis, we have

Ord(/) = \L{f)\ = \L(fm+1) U /£.![£(*)]| ^ \L{fm+1)\ + \L(g)\ >2 + 2n

and the assertion has been verified by induction. We have therefore shown that the
number of factors in any prime factorisation of a generalised odd degree polynomial /
cannot exceed Ord (/)/2 and the proof is complete. U

EXAMPLE 14: The previous corollary tells us that no factorisation of / can contain
more than Ord(/)/2 primes and there are certainly instances where this number is
attained. However, there are also instances where the number of primes in a prime
factorisation of / is actually less than Ord(/)/2. All this is illustrated in what follows.
Define

x + 2 for x ^ - 1

h(x) = { -x for - 1 ^ x ^ 1

x — 2 for 1 < x

x + 4 for x < - 2

k(x) = { -x for - 2 ^ x < 2

x — 4 for 2 ^ x.

Now let / = hok and let g = koh. Both h and k are primes and Ord (ft.) = Ord(fc) = 2.
One can verify that Ord(/) = 4 while Oid(g) = 8. In fact, L(f) = {-4, - 1 , 1, 4}
and L(g) = {—5, —3, —2, —1, 1, 2, 3, 5}. Moreover, one can show that f(x) — x + 6
for x ^ —4, f(x) = x — 6 for z ^ 4 and the graph of / on the interval [—4, 4] consists
of successive straight line segments joining the points (—4, 2), (—1, —1), (1> 1) and
(4, —2) in order. As for the function g, g(x) — x + 6 for x ^ — 5, g(x) = x — 6 for
x ^ 5 and graph of g on the interval [—5, 5] consists of successive straight line segments
joining the points ( -5 ,1 ) , ( - 3 , - 1 ) , (-2,0) , ( - 1 , - 1 ) , (1,1), (2,0), (3,1) and
(5, —1) in order.
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COROLLARY 1 5 . Let f be any generalised odd degree polynomial which is not

a unit and let g be any prune. Then there exist n units {hi}?=1 of S(R), that is,

homeomorphisms from R onto R, such that f = h\ o j o h 2 o j o - • -ohn-iogohn where

PROOF: By Corollary 13, / = / i o / 2 o • • • o fm where each /,• is prime and

m ^ Ord(f)/2. By Lemma 11, there exists for each /j two homeomorphisms hi and

ki such that fc = hi o g o fcj. Thus / = <i o j o i 2 o j o t s - " o i m o j o <m+i where

h = hx, tm+1 = Jbm and U = fc*_i o hi for 2 ^ i ^ m . Then n < 1 + O r d ( / ) / 2 where

n-m + 1. •
COROLLARY 16. Let G(R) denote the group of units of S(R) and let f be any

prime of S(R). Then the semigroup generated by G(R) together with the element
f is precisely the semigroup of all generalised odd degree polynomials. Consequently,
G(R), together with any prime f generates a dense subsemigroup of S(R) where S(R)
is provided with the compact-open topology.

PROOF: Denote by (G(R), f) the semigroup generated by G(R) together with the
prime / . It is immediate that (G(R), f) consists of generalised odd degree polynomials.
On the other hand, every generalised odd degree polynomial belongs to (G(R), f) in
view of Corollary 13. Finally, it is well known that given any function g £ S{R), any
bounded closed interval [a, 6] and any e > 0, there exists a generalised odd degree
polynomial / such that \f(x) — g(x)\ < c for x £ [a, b]. It follows that (G{R), f) is
dense in S(R) with respect to the compact-open topology. D

The generators G(R) together with / in the previous corollary are far from being a
minimal generating set so far as obtaining a dense subsemigroup of S(R) is concerned.
Subbiah showed in [1] that S(R) has a dense subsemigroup with only two generators.
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