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INTERSECTIONS OF REAL CLOSED FIELDS 

THOMAS C. CRAVEN 

1. In this paper we wish to study fields which can be written as inter­
sections of real closed fields. Several more restrictive classes of fields have 
received careful study (real closed fields by Artin and Schreier, hered­
itarily euclidean fields by Prestel and Ziegler [8], hereditarily Pythago­
rean fields by Becker [1]), with this more general class of fields sometimes 
mentioned in passing. We shall give several characterizations of this class 
in the next two sections. In § 2 we will be concerned with Gal(F/F), 
the Galois group of an algebraic closure F over F. We also relate the 
fields to the existence of multiplier sequences; these are infinite sequences 
of elements from the field which have nice properties with respect to 
certain sets of polynomials. For the real numbers, they are related to 
entire functions; generalizations can be found in [3]. In § 3 a characteriza­
tion is given in terms of finite Galois extensions of the field. This is 
applied in § 4 to show that these fields suffice to obtain all isomorphism 
classes of reduced Witt rings (of equivalence classes of anisotropic 
quadratic forms over a field) with a certain finiteness condition on the 
rings. 

In this section we shall briefly outline some of the work other authors 
have done with these and related classes of fields. Our interest is only in 
formally real fields, though to study them we shall often have to look at 
their algebraic extensions. For any formally real field F, we denote by F* 
the intersection of all the real closed subfields of a fixed algebraic closure 
F which contain F. These fields have been studied in [6] where they are 
called "galois order closed" because of the following theorem. 

THEOREM 1.1 (cf. [6]). The field F* is the maximum normal extension of 
F to which all order in gs of F extend. 

A field is called Pythagorean if every sum of squares is again a square. 
Thus the field F* is pythagorean since it is an intersection of pythagorean 
fields. Pythagorean fields have been characterized by Diller and Dress 
[4], and this provides the inspiration for the results in § 3. One can always 
consider the pythagorean closure Fv of a field F, namely the intersection 
of all pythagorean fields containing F. See [7] for a construction of Fp. 
It is not difficult to obtain the following connection between F* and the 
pythagorean closure. 
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PROPOSITION 1.2. (cf. [6]). The Pythagorean closure of F is the intersec­
tion of F* with the quadratic closure of F. 

As examples of intersections of real closed fields, we have hereditarily 
euclidean fields (all formally real algebraic extensions are euclidean; i.e. 
Pythagorean with one ordering), wThich are characterized as intersections 
of real closed fields, any two of which are isomorphic over their inter­
section [8]. More generally, we have hereditarily pythagorean fields (all 
formally real algebraic extensions are pythagorean), which are charac­
terized by the property that every formally real extension L is equal to 
L* [1]. Both of these classes of fields have been characterized in several 
different ways and have interesting applications in the study of Witt rings. 

Example. The field Q*, where 0 denotes the field of rational numbers, 
is an intersection of real closed fields which is not hereditarily pythago­
rean. First note that since 0* is a normal extension of Q, the field 0* 
consists of precisely those elements of 0 whose minimal polynomial over 
Q has only real roots. Thus -\/~2 is not in Q*. One then checks that 
1 + ( \ /2)2 is not a square in 0 * ( A X 2 ) , SO that this extension of 0* is not 
pythagorean and hence 0* is not hereditarily pythagorean. 

2. In this section we characterize fields which are intersections of real 
closed fields in terms of the Galois groups of their algebraic closures and 
in terms of the behaviour of polynomials. We feel that the characteriza­
tion in terms of modifying the coefficients of polynomials is particularly 
interesting since no comparable results seem to exist for other classes of 
fields. The proof ultimately makes use of results in entire function theory 
due to Polya and Schur ([3]). We know of no strictly algebraic proof of 
[3, Theorem 3.7], and this result is certainly crucial to our present work. 

Definition 2.1. Let F be a formally real field, and let 

T = {To, 7I> • • • , 7n) 

be a sequence of elements of F. For any polynomial f(x) = J2 aixi of 
degree at most n in F[x], write T[f] for the polynomial ]£ cnytoc1. We 
call r an n-sequence for F if, given any such polynomial / which splits in 
F, the polynomial T[f] also splits in F. If an infinite sequence T is an 
n-squence for all n = 1, 2, 3, . . . , we call V a multiplier sequence for F. 

Multiplier sequences for the real numbers have been studied by Polya 
and Schur and related to entire functions; generalizations to other fields 
can be found in [3]. Among other things, the following theorem shows that 
an infinite sequence of totally positive elements (that is, positive in all 
orderings) is a multiplier sequence for a field F = F* if and only if 
T[(x + l)n] splits in F for all positive integers n. 
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THEOREM 2.2. Let F be a formally real field with algebraic closure F. Fhe 
following conditions are equivalent: 

(a) If T = {70, 71, . . . , y„] is a sequence of totally positive elements of 
F and the polynomial 

m + m = ± (n
k)y^ 

splits in F*, then T is an n-sequence for F. 
(b) If a polynomial f over F splits in F*> then f splits in F. 
(c) Let I be the subgroup of G = Gsl(F/F) generated by all involutions. 

Fhen I is dense in G in the profinite topology; that is, IN = G for any 
normal subgroup N of finite index in G. 

(d) F is an intersection of real closed fields; that is, F — F*. 

Proof, (a) => (b). Let f(x) = 2Tl=o«Pcz, an = 1 be a polynomial over 
F which splits in F*. Let a be any root of F. For any ordering of T7* and 
corresponding absolute value, we have 

n-l 
— 1 \—n ^ V"^ [ z-fl—n I 

a = — an_i — an-i<x — . . . — a0a S JL, |a<a I-

From this it follows that 

a S 1 + £ N S 1 + £ (1 + at
2) = b. 

Without loss of generality, we may replace f(x) by f(x + b), so that the 
roots of / may be assumed to be negative in all orderings. Thus the 
coefficients of / are totally positive. Now set V equal to {70, . . . , yn\ 
where 7^ is a totally positive element of F defined by 

•m = 5 7*(*r • 
Then, since/ splits in T7*, condition (a) says that T is an ^-sequence for 
Fy and thus fix) = T[(x + l)n] splits in F. 

(b) => (c). Let H be the closure of I and let K be the fixed field of H. 
Since H contains every involution of G, the field K is contained in every 
fixed field of an involution; that is, the field K is contained in every real 
closed subfield of F which contains F, and hence K C F*. Now let a 
be an element of K with minimal polynomial / over F. Since F* is a 
normal extension of F, the polynomial/ splits in F*, and so (b) implies 
that a £ F. Therefore K — F and so H = G by the Galois correspondence 
theorem. 

(c) => (d). Each involution in G fixes some real closed field containing 
Fy so F* is fixed by / . But then F* is fixed by the closure of / , which is all 
of G, whence F = F* is an intersection of real closed fields. 
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(d) =» (a). Assume T[(x + l)n] splits in F* a n d / £ F[x] splits in F. 
We must show that r [ / ] splits in F. But [3, Theorem 3.7] shows that 
r [ / ] splits in every real closed field containing T7*, and thus it splits in 
F = F* which is the intersection of those real closed fields. 

COROLLARY 2.3. Let F be afield with a unique ordering and let R be a real 
closure of F. Fhe following conditions are equivalent: 

(a) / / r is a sequence of positive elements of F and T[(x + l)n] splits 
in R, then T is an n-sequence for F. 

(b) If f Ç F[x] splits in R, then it splits in F. 
(c) The field R contains no proper normal extension of F. 
(d) Gsl(F/F) has no proper normal closed subgroup containing an 

involution. 
(e) The field F is an intersection of real closed fields. 

Proof. Since F has a unique ordering, any two real closures of F are 
isomorphic over F. Thus a polynomial over F which splits in one will 
split in all of them. Also, any two involutions in Gz\(F/ F) are conjugate 
since their fixed fields are isomorphic over F. In view of these facts, the 
result follows immediately from the previous theorem. 

Example 2.4. Let F be a field satisfying the conditions of Theorem 2.2. 
Let a, b be totally positive elements of F (i.e., squares in F). 
Then T = {70, 71, 72, • . .}, where yk = a + kb, is a multiplier sequence 
for F. We need only check that T[(x + l)w] splits in F. But we have 

V[(x + I)"} = Ê (a + kb)(l)xk = a(x + 1)" + b £ k{^xk 

= a(x + 1)" + bnx "Ë (W 7 fxk = (* + l)n_1((« + bn)x + a). 

3. In this section we shall give a characterization of fields which are 
intersections of real closed fields in terms of their finite Galois extensions. 
This characterization will be used to obtain our results in § 4. The ideas 
behind the theorem are due to Griffin, though the results he claims in [6] 
are incorrect. The following proposition shows that [6, Proposition 8] is 
incorrect. We shall obtain corrected versions of Proposition 11 and 
Corollary 12 of [6] as our characterization of intersections of real closed 
fields. The proofs of the following two propositions are contained in the 
proof of [4, Satz 1]. These also appear as an exercise in [7]. 

PROPOSITION 3.1. Let K be afield, b an element of K which is not a square, 
and L = K(\/b). There exists a quadratic extension AI of L such that M/K 
is cyclic of degree 4 if and only if b can be written as a sum of two squares. 
If M exists, it may be chosen inside Kp. 

Proof. Assume first that b is a sum of two squares. 
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Firs t note tha t , without loss of generality, we may assume b = a2 + 1. 
Set M = K(e) where e = (b + <s/b)l/2 and f = (b - Vb)l/2. Over K, 
the element e has four different conjugates die, dzf = die~la\/b, all 
of which lie in M. Thus M is Galois over K. Let a £ Gal (M/K) 
with a(\/b) = —sjb and <r(e) = / . S i n c e / = e~lay/b, we have er2(e) = 
a(e~1a\/b) = — <?, so t ha t cr does not have order 2. Therefore Gal (M/K) 
must be cyclic of order 4. Finally, we have M C_ Kv since 6 + V& = 
h^2 + è ( l + Vfr)2 is a square in i£p. 

Conversely, assume b cannot be writ ten as a sum of two squares and 
assume M = K(y/b, (a + /3\/b)1/2) is a cyclic extension of K of degree 4 
with a, p e K. Set e = (a + /3Vb)1/2 a n d / = (a - $s/b)l/2. Since I f is 
a normal extension of K, the element / must lie in M, and hence 
ef = (a2 - 026)1 / 2 £ M. 

We first note tha t ef d K; for if ef £ i£, one can easily check tha t 
Gal (M/K) has exponent 2, a contradiction. Also we can write 

a2 - ^b = (r + sVb + /(a + PVb)1/2 + w(a6 + $by/b)112)2, 

where r, s, t, u £ X . This implies 

(1) a2 - /32b = r2 + bs2 + a*2 + abu2 + 2fibtu 

(2) 0 = /3t2 + (3bu2 + 2rs + 2atu 

(3) 0 = 2r/ + 2Ô5W 

(4) 0 = 2ru + 2st. 

Equat ions (3) and (4) imply either rit — st = 0 or b = (tu~1)2, con­
tradicting our choice of &. 

Case 1. w = 0. Equat ions (3) and (4) imply either t = 0 or r = s = 0. 
The lat ter clearly contradicts (1) and (2). For the former, equation 
(2) implies either s = 0 (and ef — dzf G K) or r = 0 (and b = 
(as(s2 + / 3 2 ) - 1 ) 2 + (aP(s2 + /S2)"1)2 by (1)), neither of which can occur. 

Case 2. r = 0. Equat ions (3) and (4) imply either s = 0 or u = / = 0. 
The lat ter was eliminated in Case 1. For the former, equation (2) becomes 

0 - Qbu2 + 2atu + (3t2, 

which when solved for u, implies tha t ef £ K. Thus all possibilities lead 
to contradictions and the proposition is proved. 

PROPOSITION 3.2. Let M be a field with proper subfields K C L such that 
M/K is cyclic of degree 4. Then L C Kv. 

Proof. Assume tha t L = K(y/a) and M = L((b + cy/a)1/2), a, b, 
c Ç K. Let o- be a generator of Gal (M/K) and set e = (b + cy/a)112. 
Then a2 fixes L, so a2(e) = — e. Since a does not fix L, we must have 
o-(V^) = — V # , and hence o-(e2) — b — cy/a. These lead to 

(ea(e))2 = e2a(e2) = b2 — ac2 and a2(ea(e)) — ea(e), 
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so tha t ea(e) G L. Thus 

(ea(e))2 = b2 - ac2 £KrMJ = K2 VJ aK\ 

If (ea(e))2 Ç K2, then e<r(e) is fixed by a, leading to a contradict ion of 
a2(e) = —e. Therefore b2 — ac2 £ aK2; say ft2 — ac2 = ax2. Then 

a = b2(c2 + x 2 ) - 1 = (bx(c2 + x2)-1)2 + (bc(c2 + x 2 ) - 1 ) 2 

is a sum of squares, hence is a square in Kv; and thus L C -Kp. 

Definition 3.3. Let L be a finite extension of a field i£. Following [6], 
a chain of subfields K = L 0 C Lx C • • . C Ln = L, n ^ 0, is called 
Pythagorean if for each i, the degree [Li+i : L J = 2 and Li+i is contained 
in some cyclic extension of L{ of degree 4. T h e extension L/K is called 
midtiqiiadratic if L is generated over i£ by the square roots of elements 
of K. 

L E M M A 3.4. Let L be a finite Galois extension of the formally real field 
K with G = Gal (L/K). The following conditions are equivalent: 

(a) L C K*. 
(b) There exists a Pythagorean chain from the fixed field of each Sylow 

2-subgroup of G to a multiquadratic extension F of L contained in Lp. The 
field F can be chosen so that it is a finite Galois extension of K contained 
in K*. 

(c) There exists a Pythagorean chain from the fixed field of some Sylow 
2-siibgroup of G to a multiquadratic extension F of L contained in Lp. 

Proof, (a) => (b) . Let M be the fixed field of a Sylow 2-subgroup of 
G and let M = L\ C L2 C • • • C Ln = L be a maximal chain of sub-
fields from M to L. Since Gal (L/M) is a 2-group and any proper subgroup 
of a 2-group is contained in a normal subgroup of index 2, wTe have 
[Lt+i : Lt] = 2 for each i. Since K C M C K*, any real closure of M 
contains K and any real closure of K contains K* D M, so t ha t Aï* = K*. 
T h u s L is contained in the intersection of AI* with the quadra t ic closure 
of AI, which by Proposition 1.2 is AIV. I t follows tha t for each i, 
Li+i C (Li)p, so we can write 

Li+1 = Li(\/bi) where 

mi 

bi = S ai3\ mf ^ 2, a^ G L*. 

We now construct a new chain of fields above M. Let 

F n = L i ; Fifc - ^ u _ i ( ( f l n 2 + . . . + a l f c
2)1 / 2), * = 2, . . . , mi - 1; 

^ 2 1 = F i ) T O l _ i ( V ô i ) ; 

and so forth to Fn, a mul t iquadra t ic extension of L contained in AIV. 
The chain jus t constructed is pythagorean by Proposition 3.1 since each 
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field is extended by the square root of a sum of two squares. Now let F 

be the normal closure of Fn over K. For any a £ Gal(K/K), we have 

<?Œ,ai2) = 2 (o"(«0)2 so tha t 

*((2>*2)1/2) = ±(2>(«; ) ) 2 ) 1 / 2 ; 

therefore, since L is normal over K, F is also a mult iquadrat ic extension 
of L contained in Mp C M* = K*. I t is easy to see tha t the chain of 
fields from M to Fn can be extended to F so tha t it remains pythagorean. 

(b) => (c). This is clear. 
(c) =» (a). Let I f be the fixed field of the Sylow 2-subgroup of G. Note 

t ha t since F is a mult iquadrat ic extension of L, the Galois group Gal(F/L) 
is a 2-group, so tha t M is also the fixed field of a Sylow 2-subgroup of 
Gal (F/K). Since [M : X] is odd, all orderings of K extend to M. By 
Proposition 3.2 each field in the pythagorean chain is contained in the 
Pythagorean closure of the preceding field. Thus F C Mv C M* and all 
of the orderings of M extend to F. Therefore all orderings of K extend to 
F. Since F is Galois over K, we obtain F C K* by Theorem 1.1 and 
therefore the subfield L is contained in K*. 

T H E O R E M 3.5. Let K be a formally real field. The field K can be written 
as an intersection of real closed fields if and only if for every nontrivial finite 
Galois extension L of K, there is no pythagorean chain from the fixed field 
of any Sylow 2-subgroup of Gal (L/K) to L. 

Proof. Assume first t ha t K = K*, and tha t there is a pythagorean 
chain from the fixed field M of a Sylow 2-subgroup of Gal(L/K). Then 
[M : K] is odd and L C Mv so tha t every ordering of K extends to L. 
Since L is Galois over K, we obtain L C K* by Theorem 1.1. But 
K =K*, so L = K, a contradiction. Conversely, assume K j* K*. Then 
there exists a nontrivial finite Galois extension L/K with L C K*. Let 
M be the fixed field of a Sylow 2-subgroup of Gal (L/K). By the previous 
lemma, there exists a Galois extension F/K with L C F C K* and there 
exists a pythagorean chain from M to F. Also F C Lp, so t ha t G a l ( F / L ) 
is a 2-group and AI is also the fixed field of a Sylow 2-subgroup 
of Gal (F/K). Thus F is the desired extension to complete the proof of 
the theorem. 

4. In this section we relate intersections of real closed fields to the 
s tudy of quadrat ic forms over formally real fields. One approach to the 
s tudy of quadrat ic forms over a field F is to consider the Wi t t ring of 
equivalence classes of anisotropic quadrat ic forms W(F). When F is 
formally real, it is also useful to consider the reduced Wi t t ring Wrea(F) 
(i.e., W(F) modulo its nilradical). I t is a well known fact tha t 
W(F) = WTea(F) for a formally real field F if and only if F is pythag-
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orean. For further information on W i t t rings, see [7]. T h e objective of 

this section is to prove the following theorem. 

T H E O R E M 4.1. Given any formally real field F with finitely many places 
into the real numbers, there exists a field K which is an intersection of real 
closed fields with W(K) isomorphic to WT^{F). 

In [2] we proved tha t a pythagorean held K satisfying the theorem 
always exists. Fur thermore , the hniteness condition is independent of the 
chosen field F. T h e present theorem further restricts the class of fields 
needed to obtain all isomorphism classes of reduced W i t t rings with the 
given finiteness condition. We conjecture t ha t the theorem is true 
without the restriction to finitely many real places. We hope tha t by 
restricting the class of fields which one needs to consider, a deeper under­
standing of the s t ructure of reduced W i t t rings can be obtained. The 
proof of the above theorem will be based on valuat ion theory. T h e reader 
is referred to [5] or [9] for basic facts and definitions. 

L E M M A 4.2. If (F, v) is a henselian valued field with residue class field 
Fv where Fv = Fv* and the value group Yv is divisible, then F = F*. 

Proof. Since Fv is formally real, the field F is also. Assume F ^ F*. 
Then Theorem 3.5 implies t ha t there exists a Galois extension L of F and 
a chain of subfields F C LQ C L\ C • • • C Ln

 = L such tha t L0 is the 
fixed field of a Sylow 2-subgroup of Gal(L/F); for each i, the degree 
[Li+i : Lf] = 2; and Li+Ï is contained in some extension Mt with 
Gd\{Mi/Li) cyclic of order 4. We shall show tha t a corresponding chain 
exists for Fv, contradict ing the hypothesis t ha t Fv = Fv*. Since (F, v) 
is henselian, the valuat ion v extends uniquely to each extension field Lt. 
For each i, let kt be the residue class field and Tt the value group. Each 
Tf = Tv since I\, is divisible. T h u s the relation 

[L1+i : Lf] = [Ti+i : r j [ ^ i + 1 : kt] 

shows t ha t [ki+i : k,] = 2, i = 0, . . . , n — 1. Similarly, [L0 : F] = 
[ko : Fv], and [L : F] = [kn : F7], and the degree of the residue class field 
of Mi over kt is 4. By [10, Chapter 6, Theorem 21], whenever our exten­
sions are Galois, the residue class field extensions are also Galois with 
isomorphic Galois groups. In part icular, the residue class field of Mi is a 
cyclic extension of degree 4 over kt and ko is the fixed field of a Sylow 
2-subgroup of Gal(&„.//%). We have thus shown tha t &0 C &i C • • • C kn 

is a pythagorean chain, contradict ing our assumption tha t Fv = Fv*. 

Proof of Fheorem 4 .1 . T h e reduced W i t t rings of fields with finitely 
many places into the real numbers have been characterized in [2, Theorem 
2.1]. They are precisely the rings constructed via the following recursion: 
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(a) The ring of integers, Z, is one such ring. 
(b) If Ri and R2 are such rings and Mt is the unique maximal ideal of 

Rt containing 2, then R = Z + M\ X M2 is again such a ring, where Z 
has the diagonal embedding in R\ X R2. 

(c) If i?o is such a ring, then so is the group ring Ro[A] where A is any 
group of exponent 2. 

For (a), we can take the real numbers as our field. For construction 
(b), assume we have fields Kx, K2 satisfying the theorem such tha t 
Ri = W(Ki). We shall construct a field F which is an intersection of real 
closed fields with Wi t t ring isomorphic to R •= Z + IKi X IK2; here 
IKf denotes the ideal of W(K/) formed by equivalence classes of all even 
dimensional forms, or equivalently, the unique maximal ideal containing 
2. We first show tha t we can raise the transcendence degree of Kt over Q 
without changing the Wi t t ring. Let v be the x-adic valuation on K1(x), 
and let M = Ki(x1/2, x1/s, x1/4, x1/5, . . .) with w the extension of v to M. 
Then the residue class fields Mw and K\{x)v are isomorphic to K\, and 
the value group of w is divisible. Let K\ be the henselization of M with 
respect to w. The field Ki = Ki* by the previous lemma with W(Ki) ~ 
W{K\) [2] and transcendence degree over 0 o n e greater tha t the tran­
scendence degree of K\ over Q. 

I terat ing the above construction (infinitely often, if necessary), wre 
may assume tha t L C Ki, K2, where L is a purely transcendental exten­
sion of 0 a n d the fields Kly K2 are algebraic over L. We consider two 
valuations on L(x): the x-adic valuation will be denoted by v and the 
degree valuation will be denoted by w. Note tha t v and w are independent, 
and for both of them the residue class field is isomorphic to L. Theorem 
27.6 of [5] implies tha t there exists a field Lr algebraic over L(x) and 
extensions vf, w' of v, w, respectively, such tha t the value groups of vf 

and w' are divisible and the residue class fields satisfy L' v> == Ki and 
L'W' ~ K2. Let Mi, v be the henselization of L' a t v' and let M2, w be the 
henselization of L' a t w\ Let F = Mi C\ M2. We have M1 = Mx* and 
M2 = M2* by the lemma so F = F* also. To show tha t W(F) ^ Z + 
IKi X IK2 = Z + IMi X IM2, it will suffice to show tha t the canonical 
map 

ip : F'/F'2 -> Mî/MÎ2 X M2/M2
2 

is an isomorphism, since the Harrison subbasis determines the (reduced) 
Wi t t ring. (We use F' to denote the multiplicative group of nonzero 
elements of F.) I t is injective because F = Mi C\ M2. Let v0 = v\F and 
Wo = w\F. Then Mi is the henselization of .Pat v0 and M2 is the henseliza­
tion of F Rt w0. The valuations v0 and w0 are independent since they are 
extensions of v and w on L(x). Given elements wz- G M/, i = 1, 2, we can 
first find elements at- Ç F' such tha t mjai = 1 modulo the maximal 
ideal of the valuation ring of v (for i = 1) or zu (for i = 2). Then apply 
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the approximation theorem for independent valuat ions [5, Theorem 
3.13] to obtain an element a £ F such tha t 

v(a - at) < mm(v(ai), 1) (i = 1, 2). 

Then a/at — 1 lies in the maximal ideal of the valuat ion ring of v0 (for 
i = 1) or Wo (for i = 2). T h u s anti 6 MY2, so the map <p is surjective. 

Finally we consider construction (c). Given a group ring W(K)[A] 
where K = K* and A is a group of exponent 2, we take F to be an i terated 
power series field over K, the number of variables being equal to the 
cardinali ty of an F2-vector space basis for A, where F 2 denotes the field 
with two elements. Then F satisfies W(F) ^ W(K)[A] [2]. T o see t ha t 
F = T7*, we need only note t ha t when K = C\ Ri with each Rt real 
closed, then K((t)) = H Rt((t)) where each field Rt((t)) is hereditarily 
Pythagorean [1, Chapter 3, § 2]. This concludes the proof of the theorem. 
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