NEIGHBOURHOOD AND THE EXISTENCE OF FRACTIONAL k-FACTORS OF GRAPHS

SIZHONG ZHOU, BINGYUAN PU and YANG XU

(Received 3 August 2009)

Abstract

Let G be a graph, and k a positive integer. Let $h : E(G) \to [0, 1]$ be a function. If $\sum_{e \ni x} h(e) = k$ holds for each $x \in V(G)$, then we call $G[F_h]$ a fractional k-factor of G with indicator function h where $F_h = \{ e \in E(G) \mid h(e) > 0 \}$. In this paper we use neighbourhoods to obtain a new sufficient condition for a graph to have a fractional k-factor. Furthermore, this result is shown to be best possible in some sense.

2000 Mathematics subject classification: primary 05C70.

Keywords and phrases: graph, neighbourhood, fractional k-factor.

1. Introduction

In this paper we consider only finite undirected graphs which have neither loops nor multiple edges. We refer the readers to [1] for the terminology not defined here. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. For each $x \in V(G)$, we use $d_G(x)$ to denote the degree of x in G, and $N_G(x)$ to denote the neighbourhood of x in G. For a subset X of $V(G)$, we define the neighbourhood of X as

$$N_G(X) = \bigcup_{x \in X} N_G(x).$$

Note that $N_G(x)$ does not contain x, but it may happen that $N_G(X) \supseteq X$. For any $S \subseteq V(G)$, we use $G[S]$ and $G - S$ to denote the subgraph of G induced by S and $V(G) - S$, respectively. A vertex set $S \subseteq V(G)$ is called independent if $G[S]$ has no edges. Let S and T be two disjoint subsets of $V(G)$; we denote by $E_G(S, T)$ the set of edges with one end in S and the other end in T, and $e_G(S, T) = |E_G(S, T)|$. We denote the minimum degree of G by $\delta(G)$. Let r be a real number. Recall that $\lfloor r \rfloor$ is the greatest integer such that $\lfloor r \rfloor \leq r$.

Let k be an integer such that $k \geq 1$. Then a spanning subgraph F of G is called a k-factor if $d_F(x) = k$ for each $x \in V(G)$. Let $h : E(G) \to [0, 1]$ be a function. If

This research was sponsored by Qing Lan Project of Jiangsu Province and was supported by Jiangsu Provincial Educational Department (07KJD110048) and Sichuan Provincial Educational Department (08zb068).

© 2010 Australian Mathematical Publishing Association Inc. 0004-9727/2010 $16.00
\[\sum_{e \in x} h(e) = k \] holds for each \(x \in V(G) \), then we call \(G[F_h] \) a fractional \(k \)-factor of \(G \) with indicator function \(h \) where \(F_h = \{ e \in E(G) \mid h(e) > 0 \} \).

Many authors have investigated graph factors \([2, 5, 6, 8, 12]\). Liu and Zhang \([3]\) obtained a necessary and sufficient condition for a graph to have a fractional \(k \)-factor. Liu and Zhang \([4]\) gave a toughness condition for a graph to have a fractional \(k \)-factor. Zhou \([9–11]\) gave some other sufficient conditions for graphs to have fractional \(k \)-factors. Yu et al. \([7]\) obtained a degree condition for a graph to have a fractional \(k \)-factor.

The following results on fractional \(k \)-factors are known.

Theorem 1.1 \([4]\). Let \(k \geq 2 \) be an integer. A graph \(G \) of order \(n \) with \(n \geq k + 1 \) has a fractional \(k \)-factor if its toughness \(t(G) \geq k - 1/k \).

Theorem 1.2 \([7]\). Let \(k \) be an integer with \(k \geq 1 \), and let \(G \) be a connected graph of order \(n \) with \(n \geq 4k - 3, \delta(G) \geq k \). If

\[
\max\{d_G(x), d_G(y)\} \geq \frac{n}{2}
\]

for each pair of nonadjacent vertices \(x, y \) of \(G \), then \(G \) has a fractional \(k \)-factor.

Theorem 1.3 \([10]\). Let \(k \) be an integer such that \(k \geq 1 \), and let \(G \) be a connected graph of order \(n \) such that \(n \geq 9k - 1 - 4\sqrt{2(k-1)^2 + 2} \), and the minimum degree \(\delta(G) \geq k \). If

\[
|N_G(x) \cup N_G(y)| \geq \max\left\{ \frac{n}{2}, \frac{1}{2}(n + k - 2) \right\}
\]

for each pair of nonadjacent vertices \(x, y \in V(G) \), then \(G \) has a fractional \(k \)-factor.

Theorem 1.4 \([9]\). Let \(k \) be a positive integer and \(G \) a graph of order \(n \) with \(n \geq 4k - 6 \). Then:

(a) if \(k \) is even and

\[
|N_G(X)| \geq \frac{(k-1)n + |X| - 1}{2k - 1}
\]

for every nonempty independent subset \(X \) of \(V(G) \), and

\[
\delta(G) \geq \frac{k - 1}{2k - 1}(n + 2),
\]

then \(G \) has a fractional \(k \)-factor; and

(b) if \(k \) is odd, and

\[
|N_G(X)| > \frac{(k-1)n + |X| - 1}{2k - 1}
\]

for every nonempty independent subset \(X \) of \(V(G) \), and

\[
\delta(G) > \frac{k - 1}{2k - 1}(n + 2),
\]

then \(G \) has a fractional \(k \)-factor.
In this paper we use neighbourhoods to obtain a new sufficient condition for a graph to have a fractional k-factor. The main result is the following theorem.

Theorem 1.5. Let k be an integer with $k \geq 1$, and let G be a graph of order n with $n \geq 6k - 12 + 6/k$. Suppose, for any subset $X \subset V(G)$, that

$$N_G(X) = V(G) \quad \text{if } |X| \geq \left\lceil \frac{kn}{2k-1} \right\rceil; \quad \text{or}$$

$$|N_G(X)| \geq \frac{2k-1}{k} |X| \quad \text{if } |X| < \left\lceil \frac{kn}{2k-1} \right\rceil.$$

Then G has a fractional k-factor.

2. The Proof of Theorem 1.5

The proof of Theorem 1.5 relies heavily on the following lemmas.

Lemma 2.1 [3]. Let G be a graph. Then a graph G has a fractional k-factor if and only if for every subset S of $V(G)$,

$$\delta_G(S, T) = k|S| + d_{G-S}(T) - k|T| \geq 0,$$

where $T = \{x : x \in V(G)\setminus S, d_{G-S}(x) \leq k - 1\}$ and $d_{G-S}(T) = \sum_{x \in T} d_{G-S}(x)$.

Lemma 2.2. Let G be a graph of order n which satisfies the assumption of Theorem 1.5. Then $\delta(G) \geq ((k - 1)n + k)/(2k - 1)$.

Proof. Let x be a vertex of G with degree $\delta(G)$. Set $X = V(G)\setminus N_G(x)$. Obviously, $x \notin N_G(X) \text{ and } N_G(X) \neq V(G)$. Thus, we obtain

$$n - 1 \geq |N_G(X)| \geq \frac{2k-1}{k} |X|,$$

that is,

$$(2k - 1)|X| \leq k(n - 1). \quad (2.1)$$

Using (2.1) and $|X| = n - \delta(G)$,

$$(2k - 1)(n - \delta(G)) \leq k(n - 1).$$

Hence,

$$\delta(G) \geq \frac{(k - 1)n + k}{2k - 1}.$$

This completes the proof of Lemma 2.2. \qed

Proof of Theorem 1.5. Let G be a graph satisfying the hypotheses of Theorem 1.5, which has no fractional k-factor. Then by Lemma 2.1, there exists some $S \subseteq V(G)$ such that

$$\delta_G(S, T) = k|S| + d_{G-S}(T) - k|T| \leq -1 \quad (2.2)$$
where $T = \{x : x \in V(G) \setminus S, d_{G-S}(x) \leq k - 1\}$. Obviously, $T \neq \emptyset$ by (2.2). Define

$$h = \min\{d_{G-S}(t) \mid t \in T\}.$$

From the definition of T, we obtain

$$0 \leq h \leq k - 1.$$

Case 1. $2 \leq h \leq k - 1$.

In terms of Lemma 2.2 and the definition of h, we get

$$|S| + h \geq \delta(G) \geq \frac{(k - 1)n + k}{2k - 1}. \quad (2.3)$$

According to (2.2) and $|S| + |T| \leq n$, we obtain

$$-1 \geq \delta_G(S, T) = k|S| + d_{G-S}(T) - k|T|$$

$$\geq k|S| + h|T| - k|T|$$

$$= k|S| - (k - h)|T|$$

$$\geq k|S| - (k - h)(n - |S|)$$

$$= (2k - h)|S| - (k - h)n.$$

This inequality implies that

$$|S| \leq \frac{(k - h)n - 1}{2k - h}. \quad (2.4)$$

From (2.3) and (2.4),

$$\frac{(k - 1)n + k}{2k - 1} \leq \delta(G) \leq |S| + h \leq \frac{(k - h)n - 1}{2k - h} + h. \quad (2.5)$$

If the left-hand and right-hand sides of (2.5) are denoted by A and B respectively, then (2.5) says that $A - B \leq 0$. But, after some rearranging, we find that

$$(2k - 1)(2k - h)(A - B) = (h - 1)(kn - (2k - 1)(2k - h) + k - 1)$$

$$- 2k^2 + 5k - 2. \quad (2.6)$$

Since $n \geq 6k - 12 + 6/k$, we obtain

$$kn - (2k - 1)(2k - 2) + k - 1 \geq 2k^2 - 5k + 3 \geq 0. \quad (2.7)$$

Using (2.6), (2.7), $2 \leq h \leq k - 1$ and $n \geq 6k - 12 + 6/k$, we get

$$(2k - 1)(2k - h)(A - B)$$

$$= (h - 1)(kn - (2k - 1)(2k - h) + k - 1) - 2k^2 + 5k - 2$$

$$\geq (h - 1)(kn - (2k - 1)(2k - 2) + k - 1) - 2k^2 + 5k - 2$$

$$\geq kn - (2k - 1)(2k - 2) + k - 1 - 2k^2 + 5k - 2$$

$$= kn - 6k^2 + 12k - 5 \geq 1.$$
This inequality implies that
\[A - B > 0, \]
which contradicts \(A - B \leq 0. \)

Case 2. \(h = 1. \)

Subcase 2.1. \(|T| \geq \lfloor kn/(2k - 1) \rfloor + 1. \)

In terms of the definition of \(h \) and \(h = 1 \), there exists \(t \in T \) such that \(d_{G-S}(t) = h = 1. \) Thus, we obtain
\[t \notin N_G(T \setminus N_G(t)), \]
which implies that
\[N_G(T \setminus N_G(t)) \neq V(G). \]
(2.8)

On the other hand, using \(|T| \geq \lfloor kn/(2k - 1) \rfloor + 1 \) and \(d_{G-S}(t) = 1, \)
\[|T \setminus N_G(t)| \geq |T| - 1 \geq \left\lfloor \frac{kn}{2k - 1} \right\rfloor. \]

Combined with the condition of Theorem 1.5, the inequality above implies that
\[N_G(T \setminus N_G(t)) = V(G), \]
which contradicts (2.8).

Subcase 2.2. \(|T| \leq \lfloor kn/(2k - 1) \rfloor. \)
Since \(h = 1 \), there exists \(u \in T \) such that \(d_{G-S}(u) = 1. \) Thus, from Lemma 2.2,
\[|S| + 1 = |S| + d_{G-S}(u) \geq d_G(u) \geq \delta(G) \geq \frac{(k - 1)n + k}{2k - 1}, \]
that is,
\[|S| \geq \frac{(k - 1)n + k}{2k - 1} - 1 = \frac{(k - 1)(n - 1)}{2k - 1}. \]
(2.9)

Subcase 2.2.1. \(|T| > (k(n - 1))/(2k - 1). \)

In terms of (2.9) and \(|T| > (k(n - 1))/(2k - 1) \), we get
\[|S| + |T| > \frac{(k - 1)(n - 1)}{2k - 1} + \frac{k(n - 1)}{2k - 1} = n - 1. \]

Combining this with \(|S| + |T| \leq n, \) we obtain
\[|S| + |T| = n. \]
(2.10)

According to (2.2), (2.10) and \(|T| \leq \lfloor kn/(2k - 1) \rfloor \leq kn/(2k - 1), \)
\[-1 \geq \delta_G(S, T) = k|S| + d_{G-S}(T) - k|T| \geq k|S| + |T| - k|T| = k|S| - (k - 1)|T| = k(n - |T|) - (k - 1)|T| = kn - (2k - 1)|T| \]
\[\geq kn - (2k - 1) \cdot \frac{kn}{2k - 1} = 0, \]

which is a contradiction.

Subcase 2.2.2. \(|T| \leq (k(n - 1))/(2k - 1)\).

Since \(k - 1 \geq h = 1\), we obtain \(k \geq 2\) in this case. Set

\[p = |\{ t : t \in T, d_{G-S}(t) = 1 \}|. \]

Clearly, \(|T| \geq p\). Combining this with (2.9) and \(k \geq 2\) and \(|T| \leq (k(n - 1))/(2k - 1)\), we obtain

\[\delta_G(S, T) = k|S| + d_{G-S}(T) - k|T| \]
\[\geq k|S| + 2(|T| - p) + p - k|T| \]
\[= k|S| - (k - 2)|T| - p \]
\[\geq k \cdot \frac{(k - 1)(n - 1)}{2k - 1} - (k - 2) \cdot \frac{k(n - 1)}{2k - 1} - p \]
\[= \frac{k(n - 1)}{2k - 1} - p \]
\[\geq |T| - p \geq 0. \]

This contradicts (2.2).

Case 3. \(h = 0\).

Let \(m\) be the number of vertices \(x\) in \(T\) such that \(d_{G-S}(x) = 0\). Clearly, \(m \geq 1\) since \(h = 0\). Set \(Y = V(G) \setminus S\). Then \(N_G(Y) \neq V(G)\) since \(h = 0\).

Claim 1. \(|Y| < \lfloor kn/(2k - 1) \rfloor\).

If \(|Y| \geq \lfloor (kn/(2k - 1)) \rfloor\), then by the condition of Theorem 1.5 we have \(N_G(Y) = V(G)\). This contradicts \(N_G(Y) \neq V(G)\) and proves Claim 1.

In terms of Claim 1 and the condition of Theorem 1.5, we obtain

\[n - m \geq |N_G(Y)| \geq \frac{2k - 1}{k} |Y| = \frac{2k - 1}{k} (n - |S|). \]

This inequality implies that

\[|S| \geq \frac{(k - 1)n + km}{2k - 1}. \quad (2.11) \]

From (2.2), (2.11), \(m \geq 1\) and the fact that \(|S| + |T| \leq n\),

\[-1 \geq \delta_G(S, T) = k|S| + d_{G-S}(T) - k|T| \]
\[\geq k|S| + |T| - m - k|T| \]
\[= k|S| - (k - 1)|T| - m \]
\[\geq k|S| - (k - 1)(n - |S|) - m \]
\[= (2k - 1)|S| - (k - 1)n - m \]
This is a contradiction.

In all the cases above, we deduced contradictions. Hence, G has a fractional k-factor. This completes the proof of Theorem 1.5. \square

Remark 2.3. Let us show that the condition in Theorem 1.5 cannot be replaced by the condition that $N_G(X) = V(G)$ or $|N_G(X)| \geq ((2k-1)/k)|X|$ for all $X \subseteq V(G)$. Let k be an odd integer with $k \geq 2$. Let m be any odd positive integer. We construct a graph G of order n as follows. Let $V(G) = S \cup T$ (disjoint union), $|S| = (k-1)m$ and $|T| = km + 1$, and put $T = \{t_1, t_2, \ldots, t_{2l}\}$, where $2l = km + 1$. For each $s \in S$, define $N_G(s) = V(G) \setminus \{s\}$, and for any $t \in T$, define $N_G(t) = S \cup \{t_i\}$, where $\{t, t_i\} = \{t_{2i-1}, t_{2i}\}$ for some i, $1 \leq i \leq l$. Obviously, $n = (2k-1)m + 1$. We first show that the condition that $N_G(X) = V(G)$ or $|N_G(X)| \geq ((2k-1)/k)|X|$ for all $X \subseteq V(G)$ holds. Let any $X \subseteq V(G)$. It is obvious that if $|X \cap S| \geq 2$, or $|X \cap S| = 1$ and $|X \cap T| \geq 1$, then $N_G(X) = V(G)$. Of course, if $|X| = 1$ and $X \subseteq S$, then

$$|N_G(X)| = |V(G)| - 1 = n - 1 > \frac{n - 1}{km} = \frac{(2k-1)m}{km} = \frac{2k-1}{k}m = \frac{2k-1}{k}X.$$

Hence, we may assume that $X \subseteq T$. Since $|N_G(X)| = |S| + |X| = (k-1)m + |X|$, $|N_G(X)| \geq ((2k-1)/k)|X|$ holds if and only if $(k-1)m + |X| \geq ((2k-1)/k)|X|$. This inequality is equivalent to $|X| \leq km$. Thus if $X \neq T$ and $X \subset T$, then $|N_G(X)| \geq ((2k-1)/k)|X|$ holds for all $X \subseteq V(G)$. If $X = T$, then $N_G(X) = V(G)$. Consequently, $N_G(X) = V(G)$ or $|N_G(X)| \geq ((2k-1)/k)|X|$ for all $X \subseteq V(G)$ follows. In the following, we show that G has no fractional k-factor. For above S and T, obviously, $d_{G-S}(t) = 1$ for each $t \in T$. Thus, we obtain

$$\delta_G(S, T) = k|S| + d_{G-S}(T) - k|T|$$

$$= k|S| + |T| - k|T|$$

$$= k|S| - (k-1)|T|$$

$$= k(k-1)m - (k-1)(km + 1)$$

$$= -(k-1) \leq -1.$$

In terms of Lemma 2.1, G has no fractional k-factor. In the above sense, the condition in Theorem 1.5 is best possible.

References

SIZHONG ZHOU, School of Mathematics and Physics, Jiangsu University of Science and Technology, Mengxi Road 2, Zhenjiang, Jiangsu 212003, PR China
e-mail: zsz_cumt@163.com

BINGYUAN PU, Department of Fundamental Course, Chengdu Textile College, Chengdu, Sichuan 611731, PR China

YANG XU, Department of Mathematics, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China
e-mail: xuyang_825@126.com