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Abstract

Let G be a graph, and k a positive integer. Let & : E(G) — [0, 1] be a function. If Zesx h(e) =k
holds for each x € V(G), then we call G[F},] a fractional k-factor of G with indicator function # where
F, ={e € E(G) | h(e) > 0}. In this paper we use neighbourhoods to obtain a new sufficient condition for
a graph to have a fractional k-factor. Furthermore, this result is shown to be best possible in some sense.

2000 Mathematics subject classification: primary 05C70.

Keywords and phrases: graph, neighbourhood, fractional k-factor.

1. Introduction

In this paper we consider only finite undirected graphs which have neither loops nor
multiple edges. We refer the readers to [1] for the terminology not defined here. Let G
be a graph with vertex set V (G) and edge set E(G). For each x € V(G), we use dg (x)
to denote the degree of x in G, and Ng(x) to denote the neighbourhood of x in G. For
a subset X of V(G), we define the neighbourhood of X as

Ng(X) = No(x).
xeX

Note that Ng(x) does not contain x, but it may happen that Ng(X) 2 X. For any
S C V(G), we use G[S] and G — S to denote the subgraph of G induced by S and
V(G) — S, respectively. A vertex set S € V(G) is called independent if G[S] has no
edges. Let S and T be two disjoint subsets of V(G); we denote by Eg (S, T) the set
of edges with one end in S and the other end in 7', and eg (S, T) = |Eg(S, T)|. We
denote the minimum degree of G by §(G). Let r be a real number. Recall that |r ] is
the greatest integer such that [r] <r.

Let k be an integer such that k > 1. Then a spanning subgraph F of G is called
a k-factor if dp(x) =k for each x € V(G). Let h: E(G) — [0, 1] be a function. If
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Y o5y 1(e) =k holds for each x € V(G), then we call G[F},] a fractional k-factor of G
with indicator function 2 where F, = {¢ € E(G) | h(e) > 0}.

Many authors have investigated graph factors [2, 5, 6, 8, 12]. Liu and Zhang [3]
obtained a necessary and sufficient condition for a graph to have a fractional
k-factor. Liu and Zhang [4] gave a toughness condition for a graph to have a
fractional k-factor. Zhou [9-11] gave some other sufficient conditions for graphs to
have fractional k-factors. Yu et al. [7] obtained a degree condition for a graph to have
a fractional k-factor.

The following results on fractional k-factors are known.

THEOREM 1.1 [4]. Let k > 2 be an integer. A graph G of order n withn > k + 1 has
a fractional k-factor if its toughness t (G) > k — 1/k.

THEOREM 1.2 [7]. Let k be an integer with k > 1, and let G be a connected graph of
order n withn > 4k — 3, §(G) > k. If

max{de (x), dg(y)} > ’%

for each pair of nonadjacent vertices x, y of G, then G has a fractional k-factor.

THEOREM 1.3 [10]. Let k be an integer such that k > 1, and let G be a connected
graph of order n such that n > 9k — 1 — 4/2(k — 1)2 + 2, and the minimum degree
5(G) = k. If
n 1
ING(x) UNGg(y)| = maX{E, E(n +k— 2)}

for each pair of nonadjacent vertices x, y € V(G), then G has a fractional k-factor.

THEOREM 1.4 [9]. Let k be a positive integer and G a graph of order n with
n >4k — 6. Then:

(@) ifk is even and
k—Dn+|X| -1

ING(X)| =

2k — 1
for every nonempty independent subset X of V(G), and
56) > ~—L w42
“2%—1 T

then G has a fractional k-factor; and
(b) ifkisodd, and
(k—Dn+|X| -1

Ng(X
ING(X)| > —F5——
for every nonempty independent subset X of V(G), and
56) > 2L+ 2)
Tk

then G has a fractional k-factor.
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In this paper we use neighbourhoods to obtain a new sufficient condition for a graph
to have a fractional k-factor. The main result is the following theorem.

THEOREM 1.5. Let k be an integer with k > 1, and let G be a graph of order n with
n > 6k — 12 4 6/k. Suppose, for any subset X C V(G), that

Ne(X)=V(G) ifIX|>| |,
c(X)=V(G) if] Lb{_IJ, or

21X irix) n
< .
L 2% — 1

ING(X)| =
Then G has a fractional k-factor.

2. The Proof of Theorem 1.5
The proof of Theorem 1.5 relies heavily on the following lemmas.

LEMMA 2.1 [3]. Let G be a graph. Then a graph G has a fractional k-factor if and
only if for every subset S of V(G),

86 (S, T) =k|S| +dg-s(T) —k|T| =0,
where T ={x :x € V(G)\S, dg-s(x) <k — 1} and dg_s(T) =) _ .y dG—s(x).

LEMMA 2.2. Let G be a graph of order n which satisfies the assumption of
Theorem 1.5. Then §(G) = ((k — Dn + k)/(2k — 1).

PROOF. Let x be a vertex of G with degree §(G). Set X = V(G)\Ng(x). Obviously,
x ¢ Ng(X) and Ng(X) # V(G). Thus, we obtain

2k —1

n—1=|Ng(X)| = | X1,

that is,
Rk—-DIX|<k(n-—1). 2.1)
Using (2.1) and | X| =n — §(G),

2k —D(n —8(G)) <k(n—1).

Hence,
(k—Dn+k
2k —1
This completes the proof of Lemma 2.2. O

8(G) =

PROOF OF THEOREM 1.5. Let G be a graph satisfying the hypotheses of Theorem 1.5,
which has no fractional k-factor. Then by Lemma 2.1, there exists some S C V(G)
such that

6g(S, T)=k|S|+dg_s(T) —k|T| <—1 2.2)
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where T = {x : x € V(G)\S, dg—s(x) <k — 1}. Obviously, T # # by (2.2). Define
h=min{dg_s() |t € T}.
From the definition of 7', we obtain
O0<h<k-1
Casel. 2<h<k-—1.
In terms of Lemma 2.2 and the definition of 4, we get
k—Dn+k
S|+h>86(G)> —F—. 2.3
SI+h=258(G) 2 = — 23)
According to (2.2) and |S| 4 |T| < n, we obtain
—1>686(S, T) =k|S| +dg-s(T) — k|T|
> k|S|+h|T|—k|T|
= k|S| — (k —h)|T|
> k[S| — (k= h)(n —|S])
= 2k — h)|S| — (k — h)n.

This inequality implies that

k—hyyn —1
A — 24
S1= 5 @4
From (2.3) and (2.4),
(k —n +k (k —hn —1
WZ TR & < P b — . 2.
7 SO =ISIths—————+h (2.5)

If the left-hand and right-hand sides of (2.5) are denoted by A and B respectively,
then (2.5) says that A — B < (. But, after some rearranging, we find that

Qk — 1)k —h)Y(A—B) = (h— D(kn — @k — DQk —h) +k — 1)
— 2k% + 5k — 2. (2.6)

Since n > 6k — 12 + 6/k, we obtain
kn—(2k—1)(2k—2)+k—122k2—5k+320. 2.7)
Using (2.6), (2.7),2<h <k —1andn > 6k — 12 4+ 6/k, we get

(2k — 1)(2k — h)(A — B)
=(h—1)(kn — 2k — )2k —h) + k — 1) — 2k> 4+ 5k — 2
>(h—1)kn— 2k — 1)k —2) +k — 1) — 2k*> + 5k — 2
>kn— Qk— 1)k —2)+k — 1 —2k*> + 5k — 2
=kn — 6k> + 12k — 5> 1.
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This inequality implies that
A—B >0,

which contradicts A — B <0.
Case 2. h=1.

Subcase 2.1. |T| > lkn/(2k —1)] + 1.
In terms of the definition of & and h = 1, there exists t € T such that dg_s(t) =
h = 1. Thus, we obtain

t & Ng(T\Ng (1)),
which implies that
NG(T\Ng (1)) # V(G). (2.8)
On the other hand, using |T'| > |kn/(2k — 1)| + 1 and dg_5(¢) =1,

WG = 171 - 12| 71 |

Combined with the condition of Theorem 1.5, the inequality above implies that
NG(T\Ng (1)) = V(G),
which contradicts (2.8).

Subcase 2.2. |T| < lkn/(2k —1)].
Since h = 1, there exists u € T such that dg_g(u) = 1. Thus, from Lemma 2.2,

k—1Dn+k
ST 1 =181+ dgs() 2 do(w) 2 5(G) = *
that is,
k—Dn+k k—1mn-1)
> = 2.
I51= 2k — 1 2k —1 @9)
Subcase 2.2.1. |T|> (k(n —1))/(2k — 1).
In terms of (2.9) and |T'| > (k(n — 1))/(2k — 1), we get
k—1n—1 k(n—1
5|47y > DO =D ko=
2k — 1 2k — 1
Combining this with |S| + |T| < n, we obtain
IS| + 1T =n. (2.10)

According to (2.2), (2.10) and |T| < lkn/(2k — 1)] <kn/(2k — 1),

—12386(S, T) =k|S| +dG-s(T) — kIT|
> kIS|+ |T| — k|T|

= k[S| — (k — DIT|
=k(n—|T]) — (k= DIT|
= kn — (2k — 1)|T|
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>kn— 2k — 1) -
=0,

2k —1

which is a contradiction.
Subcase 2.2.2. |T| < (k(n —1))/2k —1).
Since k — 1 > h = 1, we obtain k£ > 2 in this case. Set
p=Ht:teT, dg-s)=1}|.
Clearly, |T| > p. Combining this with (2.9)and k > 2 and |T| < (k(n — 1))/(2k — 1),
we obtain
86 (S, T) = k|S| +dg-s(T) — k|T|
> kISI+2(T|—p)+p —kIT|
=k|S|— (k=TI —p

k—Dn-1) k(n—1)
R e T
_k(n—l)_

S 2k—1
z[T|—=p=0.

This contradicts (2.2).

Case 3. h=0.

Let m be the number of vertices x in T such that dg_g(x) = 0. Clearly, m > 1 since
h=0.SetY =V(G)\S. Then Ng(Y) # V(G) since h =0.

Claim 1. Y| < |lkn/(2k —1)].

If |Y| > [(kn/(2k — 1))], then by the condition of Theorem 1.5 we have Ng(Y) =
V(G). This contradicts Ng(Y) # V(G) and proves Claim 1.

In terms of Claim 1 and the condition of Theorem 1.5, we obtain

2k — 1 2k — 1
n—m2>|Ng(Y)| > Y| = (n —1S).
k k
This inequality implies that
k—1 k
5z & Dntkm @.11)
2k — 1

From (2.2), (2.11), m > 1 and the fact that |[S| + |T| < n,
—1>386(S, T)=k|S| +dg-s(T) —k|T|
> k|S|+|T| —m —k|T|
=k|S| = (k= DIT|—m
> k|S|— (k=D —|S)) —m
=Rk—DIS|—k—1Dn—m
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2(2k—1)-(k_211€)—i—;km—(k—l)n—m

=k—-1m=>=k—-1>0.

This is a contradiction.
In all the cases above, we deduced contradictions. Hence, G has a fractional
k-factor. This completes the proof of Theorem 1.5. U

REMARK 2.3. Let us show that the condition in Theorem 1.5 cannot be replaced by
the condition that Ng(X) = V(G) or |[Ng(X)| > ((2k — 1)/k)| X| for all X C V(G).
Let k be an odd integer with k > 2. Let m be any odd positive integer. We construct
a graph G of order n as follows. Let V(G) = S U T (disjoint union), |S| = (k — 1)m
and |T|=km+ 1,and put T = {11, tp, . . ., tp;}, where 2l = km + 1. For each s € §,
define Ng(s) = V(G)\({s}, and for any ¢ € T, define Ng(¢) = S U {t'}, where {z, t'} =
{tri—1, tpi} for some i, 1 <i <[. Obviously, n = 2k — 1)m + 1. We first show that
the condition that Ng(X) = V(G) or [Ng(X)| > ((2k — 1)/ k)| X]| for all X C V(G)
holds. Let any X € V(G). It is obvious that if [X N S|>2, or [ XNS|=1 and
| XNT|>1,then Ng(X) =V (G). Of course, if | X| =1 and X C S, then

~1 _ @k-Dm 2k—1 2k-1

n
NeX)|=|V(G)|—1=n—1 =
INc(X)| =V (G)] n—l>— o r r

| X1

Hence, we may assume that X C T. Since |[Ng(X)|=|S| + |X| = (k — D)m + | X]|,
ING(X)| > ((2k — 1)/ k)| X| holds if and only if (k — 1)m + | X| > ((2k — 1)/ k)| X|.
This inequality is equivalent to |X|<km. Thus if X#7T and X CT, then
ING(X)| > ((2k — 1)/ k)| X| holds for all X C V(G). If X =T, then Ng(X) = V(G).
Consequently, Ng(X) =V (G) or |[Ng(X)| > ((2k — 1)/k)|X]| for all X C V(G)
follows. In the following, we show that G has no fractional k-factor. For above S
and T, obviously, dg_s(¢t) =1 for each t € T. Thus, we obtain

86 (S, T) = k|S| +dG-s(T) — k|T|

=k|S|+|T| —k|T|

=k|S| = (k= DIT|

=k(k — Dm — (k — D)(km + 1)
=—k—-1)<-1

In terms of Lemma 2.1, G has no fractional k-factor. In the above sense, the condition
in Theorem 1.5 is best possible.
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