
2

Modular stuff

This chapter introduces modular functions and forms, a subject central to the remainder
of the book. Some earlier parts of this chapter are beautifully covered in [414].

Section 2.1 supplies the underlying geometry, but can be skimmed on a first reading.
In spite of this background material, the theory of modular forms and functions discussed
in Sections 2.2 and 2.3 will probably appear as somewhat arbitrary to the uninitiated
reader. Section 2.4.1 addresses some of this apparent artificiality, by developing the
broader context of automorphic forms.

As explained in the introductory chapter, Moonshine involves unexpected occurrences
of modularity. The modularity of Moonshine functions follows from Zhu’s Theorem
(Theorem 5.3.8). However, the complexity of the underlying mathematics begs the ques-
tion: Can modularity be established in a more elementary way? The simplest example of
Moonshine involves theta functions. Hence we explore the limits and potentials of four
classical strategies for proving the modularity of theta functions: Poisson summation,
Dirichlet series, the heat kernel and representations of Heisenberg groups (Sections 2.2.3,
2.3.1, 2.3.4 and 2.4.2, respectively).

Moonshine has really only been worked out in genus 1,1 but conformal field theory
tells us that there is an analogue for every genus (Section 6.3.1). It will be much more
complicated, but it will be more rewarding because the number theoretic side is much less
developed. In other words, we will find traces of, for example, the Monster in automorphic
forms for the higher mapping class groups �g,n and Sp2n(Z). We include Sections 2.1.4
and 2.3.5 in anticipation of this most natural and significant future development.

2.1 The underlying geometry

2.1.1 The hyperbolic plane

The birth of hyperbolic geometry is one of the most remarkable and instructive in the
history of mathematics. Euclid’s Fifth Postulate2 was noticeably more complicated than
the other axioms, looking more like a theorem than a self-evident proposal. Indeed, its
converse was a theorem proved by Euclid. For example, compare it with Euclid’s First

1 There are two possible meanings of ‘genus’ in a phrase like ‘higher genus Moonshine’. Ordinary
Monstrous Moonshine is genus 0 in the sense that the j-function is a Hauptmodul, i.e. a function on a
sphere. It is genus 1 in the sense that the argument τ of j parametrises different tori. In this paragraph we
are anticipating Moonshine’s extension to higher genus in this second sense.

2 Also called the Parallel Postulate, it is equivalent to the simpler statement: Given any line L and a point p
not on L, there is a unique line parallel to L that passes through p.
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Fig. 2.1 Several parallel lines in the hyperbolic plane H.

Postulate: There is a unique line passing through any two points, or Euclid’s Fourth
Postulate: All right angles are equal. For centuries, starting with Archimedes, math-
ematicians (both professional and amateur) tried to prove it from the other axioms.
Finally in 1868 Beltrami established its independence by finding models for the hyper-
bolic plane, proving the conjecture of Gauss, Bolyai and Lobachevski as to the existence
(i.e. internal consistency) of this non-Euclidean geometry. (More precisely, Beltrami’s
models reduced the question of the consistency of hyperbolic geometry to the consis-
tency of Euclidean geometry.) Far from being an artificial construct, we’ve now learned
that hyperbolic geometry is far more important than Euclidean geometry, at least in two
and three dimensions.

In place of the Euclidean plane R2, consider the upper half-plane

H := {(x, y) ∈ R2 | y > 0} = {τ ∈ C | Im τ > 0}. (2.1.1)

The angles between intersecting curves in H are measured as in R2 (namely, take the
angle between the two Euclidean lines tangent to the curves at the point of intersection).
However, the hyperbolic lines consist of all half-lines perpendicular to the x-axis, together
with all semi-circles with centre on the x-axis (see Figure 2.1). All axioms of Euclidean
geometry hold here (e.g. between any two distinct points there passes a unique line),
except for the Parallel Postulate: there are always infinitely many hyperbolic lines parallel
to a given hyperbolic line L and passing through a given point p �∈ L .

It is possible to prove from the other axioms that the remaining possibility (namely
that there are no lines parallel to line L through point p) cannot occur. Nevertheless,
there is a second kind of non-Euclidean geometry, called spherical geometry. In place of
R2 we have the sphere S2, and lines now are great circles. If we identify antipodal points
±p ∈ S2, then we get a geometry satisfying most of Euclid’s axioms. The exceptions are
that we can’t speak unambiguously of the portion of a line between two points, and the
Parallel Postulate (there are no parallel lines). Spherical geometry is older than Euclid –
we needed it, for example, in our study of the night sky.

In Euclidean R2 the metric (infinitesimal length-squared) is given by ds2 = dx2 + dy2,
and so the arc-length of a curve γ : [0, 1] → R2 is

length(γ ) :=
∫ 1

0

√
γ ′1(t)2 + γ ′2(t)2 dt.

On H the arc-length of a curve γ : [0, 1] → H becomes

lengthH :=
∫ 1

0

√
γ ′1(t)2 + γ ′2(t)2

γ2(t)
dt =

∫ 1

0

|γ ′(t)|
Im γ (t)

dt. (2.1.2)
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Define the hyperbolic distance distH(p, q) between two points p, q ∈ H to be the infimum
infγ lengthH(γ ) of the arc-lengths of all paths γ between p = γ (0) and q = γ (1). Just
as the shortest path (geodesic) between two points in Euclidean geometry is the line
segment between them, so in hyperbolic geometry it is the hyperbolic line segment.

The ‘boundary’ for R2 can be thought of as the circular horizon of ‘points at infinity’,
parametrised by angle, and every line touches this circle at two points. Likewise, the
boundary of H can be thought of as the circle R ∪ {∞}, and again every line touches
this circle at two points. This circle will appear as the infinitely distant horizon to beings
living in H. The point ‘∞’ here is often written i∞ to emphasise its relation to the
vertical lines. The difference is that in R2, all parallel lines share the same two points at
infinity; in H, parallel lines share at most one point at infinity.

The most compelling model of the hyperbolic plane is perhaps the Poincaré disc

D := {z ∈ C | |z| < 1}.
Here, angles are again as in R2, but lines consist of diameters of the boundary circle
|z| = 1, together with the intersection of D with circles hitting the boundary |z| = 1 at
right angles. The metric is |dz|2/(1− |z|2)2, and the ‘points at infinity’ form the boundary
circle |z| = 1. The equivalence with H is given by the isometry τ �→ τ−i

τ+i taking H onto D.
It may seem strange that both models H and D of hyperbolic geometry have a distorted

notion of length and line. Is there any way to realise hyperbolic geometry, using a surface
embedded in R3 inheriting the usual metric and angle of R3? Hilbert proved the answer
is No: There is no complete surface in R3 with constant negative curvature (see e.g.
page 51 of [527]). Nash’s Theorem (footnote 5 in chapter 1) implies though that there
will be an embedding of the hyperbolic plane in some Rn (n = 5 works). ‘Complete’
means that any Cauchy sequence converges, so there aren’t any points missing. To find
the curvature of a surface at a point, first find the smallest and largest circles hugging
the surface the closest at that point; the curvature is the inverse product r−1 R−1 of their
radii. For example, a sphere of radius r has constant curvature r−2. A surface with 0
curvature is (locally) flat in one direction – for example, a cylinder or torus has constant
curvature 0. The small and large circles for a surface � with negative curvature have
centres on opposite sides of the tangent plane Tp�, like a saddle curving up from front
to back, but curving down from side to side. The hyperbolic plane has constant negative
curvature (Theorem 2.1.4(b)).

What is the significance of the word ‘hyperbolic’ here? It was chosen by Klein, partly
because sinh and cosh appear in many formulae, but also because of another model
of H. Consider the hyperboloid x2

1 + x2
2 − x2

3 = −1, embedded in Minkowski space
R2,1 (so it is a Minkowski sphere of radius i). It consists of two sheets; let’s focus on
the upper one (where x3 ≥ 1). As a surface in R2,1, it inherits its notions of angle and
metric ds2 = dx2

1 + dx2
2 − dx2

3 – in particular this induced geometry is equivalent to
the hyperbolic plane. The lines here consist of the intersection of planes through the
origin with the upper sheet (when those intersections are non-empty). Stereographic
projection from the point (0, 0,−1) conformally maps the upper sheet onto the Poincaré
disc D× {0}.
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Just as the area of a region R ⊂ R2 is given by the double integral
∫

R dx dy, so is the
hyperbolic area of region R ⊂ H given by

areaH(R) :=
∫

R

dx dy

y2
. (2.1.3a)

This just says that the hyperbolic area of the infinitesimal rectangle [x, x + dx]× [y, y +
dy] is the product dx

y × dy
y of hyperbolic length with hyperbolic height. This area formula

fails for macroscopic rectangles, if for no other reason than that there are no macroscopic
rectangles! In fact, one of the most remarkable formulae of geometry must be the expres-
sion, originally due to Lambert (1766),3 for the area of a triangle T in terms of its interior
angles α1, α2, α3:

areaH(T ) = π − α1 − α2 − α3. (2.1.3b)

More generally, the area of an n-sided hyperbolic polygon is (n − 2)π −∑i αi . From
this we obtain the non-existence of rectangles. These formulae apply even in the limiting
case where some vertices lie on the boundary R ∪ {i∞}. In particular, the area of any
hyperbolic triangle is bounded above (even though H itself has infinite area)!

Klein proposed to study geometry using the group of symmetries of whichever geo-
metric quantities are important to the context (Section 1.2.2). The group Isom(R2) of
isometries (i.e. distance-preserving maps) of R2 consists of all translations x �→ x + a,
all orthogonal maps (rotations and reflections) x �→ x A where AAt = I , and all combi-
nations x A + b thereof. Likewise, the group Isom(H) of hyperbolic isometries consists
of all Möbius, or fractional linear, transformations

z �→ az + b

cz + d
, ∀a, b, c, d ∈ R with ad − bc = 1, (2.1.4a)

together with the reflection z �→ −z, and all combinations thereof. As in the Euclidean
case, Isom(H) is a three-dimensional real Lie group, with two connected components;
the component Isom+(H) containing the identity consists of (2.1.4a), and is isomorphic
to

PSL2(R) := SL2(R)/

{
±
(

1 0
0 1

)}
. (2.1.4b)

As in the Euclidean case, isometries preserve the absolute value |θ | of angles; maps
α ∈ Isom+(H) preserve the angles themselves and so are conformal. Isometries preserve
area and send hyperbolic lines to hyperbolic lines. PSL2(R) preserves everything of
geometric significance and is thus the group of symmetries of the hyperbolic plane.

Likewise, the group Isom+(S2) of symmetries of spherical geometry is PSL2(C), acting
on the Riemann sphere P1(C) by Möbius transformations. The symmetries PSL2(R) of
H are precisely those transformations in PSL2(C) that send H to itself. The only reason
this action by Möbius transformations of the 2× 2 matrices on P1(C) or H ∪ {i∞}might
not look strange to us, is because familiarity breeds numbness. Much more natural is

3 This is the same Lambert who proved the irrationality of π and e.
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the action of n × n matrices on Cn , and this induces their action on Cn−1 (together
with a codimension-2 set of ‘points at infinity’) by interpreting Cn as homogeneous
coordinates for Cn−1 (Section 1.2.2). Specialising to n = 2 gives us the action (2.1.4a).
In Section 2.4.1 we interpret (2.1.4a) using the multiplication of matrices in SL2(R).

A model for n-dimensional hyperbolic geometry is the upper half-space Hn := {(xi ) ∈
Rn | xn > 0}, which is conformally equivalent to the interior of the unit n-ball, or to the
upper (i.e. xn+1 > 0) sheet of the hyperboloid x2

1 + · · · + x2
n − x2

n+1 = −1. Euclidean
angle is used, but the metric is ds2 = (dx2

1 + · · · + dx2
n )/x2

n . Hyperbolic lines con-
sist of half-lines and semi-circles perpendicular to the boundary hyperplane x0 = 0;
hyperbolic planes in Hn consist of half-planes and half-spheres perpendicular to the
boundary hyperplane x0 = 0. The hyperboloid model makes it clear that the isome-
tries Isom(Hn) of hyperbolic n-space is isomorphic to the group of those matrices
A ∈ On,1(R) with An+1,n+1 ≥ 1. The group Isom+(Hn) of conformal isometries is the
Lorentz group SOn,1(R)+, obeying in addition the condition det(A) = 1. Of course the
Lorentz group SO3,1(R)+ is more famous in its incarnation as the symmetry of special
relativity (Section 4.1.2). By identifying the boundary plane of H3 with C, the group
Isom+(H3) ∼= SO3,1(R)+ can be naturally identified with the Möbius transformations
PSL2(C).

Recall Hilbert’s theorem from a few paragraphs ago. Although no surface embedded
in R3 can provide a model of the full hyperbolic plane, they can provide a model of
a piece of that plane (i.e. be ‘incomplete’). This is accomplished by any surface of
constant negative curvature. For example, consider the ‘tractrix’ – the path traced by a
stone, initially placed at (0,1), pulled (‘tractored’) by a string of length 1 as we walk
along the x-axis. Take the tractrix in the xy-plane and rotate it about the x-axis; the result
is called the ‘pseudo-sphere’, and is a surface of constant negative curvature in R3. More
generally, by a hyperbolic surface we mean a surface that is also a metric space (i.e. it
has a notion of distance between points, and of arc-length), which is locally isometric to
H (i.e. the open sets Vα in Definition 1.2.3 are taken to be in H ⊂ R2, and the transition
functions ϕαβ are in Isom(H)). The pseudo-sphere is an example of a hyperbolic surface
different from the hyperbolic plane; crocheting constructs several other examples [284].
Similarly, we can define hyperbolic manifolds of arbitrary dimension. We conclude this
subsection with the classification of all hyperbolic surfaces. But first we need the notion
of a Fuchsian group.

As was discussed in Section 1.2.2, tori S1 × S1 arise from the quotient R2/L of
the plane by a two-dimensional lattice. This construction is equivalent to the familiar
depiction of a torus as a parallelogram with opposite sides identified. We discuss the
Riemann surfaces in more detail next subsection, but a genus-g surface can be depicted
by identifying appropriate sides in a 4g-gon (see Figure 2.2 for the situation with a
genus 2 surface). This arises from making 2g circular cuts into the surface and flattening
it out. But can we also interpret that 4g-gon as corresponding to some quotient of R2,
generalising the R2/L construction of a torus? The answer is no – the group Isom(R2)
doesn’t have a rich enough supply of discrete subgroups. We can interpret the 4g-gon
as a quotient, but of the hyperbolic plane and not the Euclidean one.
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Fig. 2.2 A genus 2 surface and its octagon.

Definition 2.1.1 A Fuchsian group is a discrete subgroup � of SL2(R), i.e. one with

inf {(a − 1)2 + b2 + c2 + (d − 1)2} > 0, where the infimum is over all

(
a b
c d

)
�= I

in �.

We identify a subgroup � of SL2(R) with its canonical projection � into PSL2(R), since
these give rise to identical surfaces. Examples of Fuchsian subgroups are

G N =
{(

cos(πk/N ) sin(πk/N )
− sin(πk/N ) cos(πk/N )

)
| 0 ≤ k < N

}
, ∀N = 1, 2, . . . ,

GZ =
{(

1 k
0 1

)
| k ∈ Z

}
,

and the modular group SL2(Z). The latter is certainly the most interesting of these.
Let � be a Fuchsian group. Most points z ∈ H (i.e. all but at most countably many)

are fixed only by the identity in � (why?). Let z0 ∈ H be any of those generic points.
Define the set

D�(z0) := {w ∈ H | distH(z0, w) < distH(γ.z0, w) for all γ ∈ �, γ �= ±I } .
So D�(z0) is the intersection of a number of hyperbolic half-planes. This set D = D�(z0)
is called a fundamental domain of �, as it satisfies the following properties: (i) it is open;
(ii) each orbit �.z intersects D in at most one point, and every orbit intersects the closure
of D in at least one point; (iii) the boundary ∂D of D in H consists of at most countably
many hyperbolic line segments. (In fact, as long as � is finitely generated, D can be
chosen with boundary consisting of only finitely many segments.)

For example, a fundamental domain for G N consists of the points lying between any
pair of hyperbolic lines intersecting at i with angle 2π/N . A fundamental domain for GZ

is {z ∈ H | − 1
2 < Re z < 1

2 }. Choosing z0 = 2i, we get the fundamental domain D for
SL2(Z) depicted in Figure 2.3: the vertical sides are Re z = ± 1

2 , and the circle is |z| = 1.
Applying � to a fundamental domain D will tile the hyperbolic plane – see Escher’s

Circle Limit I,II, . . . for examples. Since� ⊂ Isom+(H), each of these tiles is an identical
copy (a congruent translate) of D. All this holds as well in hyperbolic n-space – for
example, an analogue of SL2(Z) for H3 is SL2(Z+ iZ).
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R

D

Fig. 2.3 Two fundamental domains for SL2(Z).

Just as we constructed the torus by identifying opposite sides of the parallelogram, so
we can obtain a surface by identifying the appropriate sides of the fundamental domain
of a Fuchsian group �. This surface will be a realisation of the orbit space �\H (we
write � on the left because it acts on the left). Provided no γ ∈ � has fixed points in
H (except for the trivial maps γ = ±I ), the orbit space �\H will inherit the hyperbolic
geometry of H and be a hyperbolic surface.

Theorem 2.1.2 Any complete hyperbolic surface � is isometric to a surface of the
form �\H where � is a torsion-free Fuchsian subgroup of PSL2(R). Two such sub-
groups �1, �2 define isometric surfaces �1\H and �2\H iff α�1α

−1 = �2 for some
α ∈ PSL2(R).

‘Torsion-free’ means that all nontrivial elements of � have infinite order – see Question
2.1.2(b). Almost all surfaces with a conformal or metric or complex structure are�\H for
some Fuchsian subgroup �. An unexpected revelation of Thurston’s Programme is that
something similar happens in three dimensions – see the review [497]. Any surface of
genus g ≥ 2 supports uncountably many different hyperbolic structures. By contrast, the
Mostow Rigidity Theorem (1973) tells us that a connected compact oriented manifold
of dimension n ≥ 3 supports only one.

2.1.2 Riemann surfaces

Manifolds M, N are homeomorphic if there is a continuous map M → N with continu-
ous inverse. Compact connected orientable surfaces are characterised, up to homeomor-
phism, by the genus g ∈ N. A sphere is genus 0, a torus genus 1, and the double-torus
of Figure 2.2 is genus 2. The surface of a wine glass or fork is topologically a sphere,
while coffee mugs and keys are (usually) tori. A ladder with n rungs has genus n − 1.
The surface of a pair of pants is genus 2, while that of a sweater is genus 3.

A torus can be realised in many different ways. One is the Cartesian product S1 × S1

of circles (lay one circle horizontally, then from each point on it place a vertical circular
rib perpendicular to it, filling out the torus’s surface). A complex curve of the form
y2 = ax3 + bx2 + cx + d is a torus (at least if the points at infinity are included), as is
the quotient C/L of the complex plane with a two-dimensional lattice L (Section 1.2.1).
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(r, s)

(0,1)

Fig. 2.4 Diophantus’ argument.

If we drop the requirement that our surface be compact, then up to homeomorphism it
is uniquely specified by two numbers: the genus g as above, and the number of punctures
(or boundary components) n. For instance, a sphere with one puncture is homeomorphic
to an open disc or equivalently the plane C. We see this when we pop a balloon: the
sphere becomes a rather jagged-edged disc. A sphere with two punctures is a cylinder or
annulus.

The non-orientable surfaces have a very similar classification. For example, if we could
create a P2(R)-shaped balloon, then popping it would create a jagged-edged Möbius band.
We always require orientability in this book.

The surfaces we encounter have more structure than mere topology. If the surface
� is in fact smooth (Section 1.2.2), then we are interested in their classification up to
diffeomorphism. In this case though nothing changes, the surface is again parametrised
by the genus and number of punctures: any surface � has a unique differential structure
compatible with its topology. In order to obtain a finer distinction between the surfaces,
we need to further enrich their structure. The easiest way to do this is by introducing a
metric onto the tangent spaces, or give the surface a complex or conformal structure. More
on the resulting Riemann surfaces shortly. Nevertheless, the genus remains the single
most important invariant distinguishing Riemann surfaces. There are many qualitative
differences captured by genus – we will give three of them.

Diophantus [45] was a mathematical giant who lived in Alexandria in the second or
third century a.d. He seems to have been the first Greek to regard fractions as legitimate
numbers, and he was the first to use negative numbers (though only in intermediate
arithmetical calculations, so probably didn’t believe their ontological reality), and the
first to invent an abstract symbolism for algebra. The following (expressed in modern
language) is how Diophantus found all Pythagorean triples, that is the integer solutions
to a2 + b2 = c2.

First, it’s enough to look for all rational solutions to the circle x2 + y2 = 1. Then the
integers a, b, c can be recovered by clearing denominators. Consider a line through the
point (0, 1) that intersects the circle at another rational point (r, s) (see Figure 2.4). Clearly
this line must have rational (or infinite) slope s−1

r . Conversely, consider any line through
(0,1) with rational slope u: its equation will be y = ux + 1. Where does it intersect the cir-
cle? We get 1 = x2 + (ux + 1)2 = (u2 + 1)x2 + 2ux + 1, i.e. x ((u2 + 1)x + 2u) = 0.
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So apart from our original point (0, 1), it will also intersect the circle at

(x, y) =
( −2u

u2 + 1
,

1− u2

u2 + 1

)
.

As long as u is rational, so will be this point. Thus Diophantus found a parametrisation
of all rational points on the circle, and hence all Pythagorean triples.

His method is far more general than this, as he knew. In fact, consider any nondegen-
erate conic. To find all rational points on it, we first find one rational point, and then
consider all lines with rational slope through that point. This will exhaust all rational
points on the curve. Thus if a conic has one rational point (it might have none), then it
will have infinitely many, and all can be found explicitly.

Why won’t this trick work for other equations of this sort? For example, Fermat’s Last
Theorem challenges us to find a nontrivial rational solution to xn + yn = 1, for n > 2.
If we draw a line through the obvious solution (x, y) = (0, 1), we simply get a mess.
What’s so special, geometrically, about conics?

The modern way (due to Bezout in the eighteenth century) to think about this is
to regard the given equation, say x2 + y2 = 1, as an equation relating two complex
numbers (x, y) ∈ C2. The result will be a complex curve, that is a real surface. To which
complex curve does x2 + y2 = 1 correspond? The real curve (a circle) is parametrised
by x = cos θ and y = sin θ , and a moment’s deliberation will convince oneself that
permitting θ to take complex values will exhaust all points on the complex curve. So
write x = 1

2 (w + w−1) and y = i
2 (w − w−1) for anyw ∈ C exceptw = 0; this identifies

the complex curve x2 + y2 = 1 with the complex plane punctured at 0, that is a cylinder.
The unit circle in R2 is merely the slice of this cylinder in C2 by the plane passing through
the two real axes of C2. A different slice will produce, for instance, an hyperbola.

More generally, any polynomial in x, y defines a noncompact surface in C2. For
example, a nondegenerate cubic y2 = x3 + ax2 + bx + c is a once-punctured torus –
explicitly, the quotient C′/(Z+ τZ), where C′ means deleting from C the lattice points
Z+ τZ, is equivalent in every sense one could want (e.g. conformally) to the cubic

y2 = 4x3 − 60G4(τ )x − 140G6(τ ),

where the Eisenstein series Gk(τ ) is defined in (0.1.5). Similarly, the complex curve
x3 + y3 = 1 corresponds to the torus C/(Z+ τZ) with three points removed.

In any case, we can now answer our question: What is so special geometrically about
the conics, that Diophantus’ method works for them? The answer: They are (punctured)
spheres, that is have genus 0.

It will always seem that some points ‘at infinity’ are missing from these complex
curves. Kepler back in 1604 knew that adding such points simplifies the geometry. We
do this by projectifying the given equation (Section 1.2.2). For example, x2 + y2 = 1
corresponds to the homogeneous equation x2 + y2 = z2, where we identify (x, y, z) and
(λx, λy, λz) for λ �= 0. The two ‘infinite’ points, that is the points with z = 0, are then
(1,±1, 0). Similarly, the three missing points on the Fermat curve x3 + y3 = 1 have
homogeneous coordinates (x, y, z) = (1,−ξ, 0) for any third root of unity ξ . We see
that in homogeneous coordinates the ‘infinite points’ don’t look so bad.

https://doi.org/10.1017/9781009401548.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401548.003


The underlying geometry 113
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Fig. 2.5 Addition of points on a hyperbola.

−p−q

e p+q

q
p

Fig. 2.6 Addition of points on a cubic.

Another special property of conics (avoiding the infinite points) is that they are additive
groups. Fix any point e on the conic C (it will be the identity); given any two finite
points p, q on the conic, the sum p + q ∈ C is defined to be the intersection with C
of the line through e parallel to the line through p and q (Figure 2.5). Associativity
follows from Pascal’s Theorem concerning hexagons inscribed in conics. For example,
choosing the identity e = (1, 0) and the parametrisation (x(t), y(t)) = (cos(t), sin(t)) of
the circle x2 + y2 = 1, this addition of points corresponds to addition of angle t . The same
conclusion holds for the hyperbola x2 − y2 = 1, with e = (1, 0) and parametrisation
t �→ (cosh(t), sinh(t)) of the x > 0 branch. See Question 2.1.3.

Better known is the addition of points on a nondegenerate (projective) cubic C . Fix
any e ∈ C (again it will play the role of identity), and choose any points p, q ∈ C . Let
r ∈ C be the intersection with C of the line through p, q; the sum p + q is defined to
be −r , that is the intersection with C of the line through r and e (see Figure 2.6). This
also is commutative and associative, provided we include the points at infinity. Addition
continues to work when the cubic is complexified, and that’s how to make sense of it: the
resulting surface is a torus, equivalent to one of the form C/(Z+ τZ) for some τ ∈ C,
and this addition on the cubic lifts to ordinary addition on C. Incidentally, the addition
of points is only one of a number of senses in which conics are toy models for the much
richer theory of elliptic curves (i.e. cubics with a marked point e) [372].

The simplest quantitative distinction between surfaces of different homeomorphism
type (g, n) is the fundamental groupπ1, defined in Section 1.2.3. For example,π1(S2) = 1
since S2 is simply connected, and π1 of a torus is Z⊕ Z. Let �g be a compact genus
g > 0 surface. Then π1(�g) has presentation

π1(�g) ∼= 〈
α1, . . . , αg, β1, . . . , βg |α1β1α

−1
1 β−1

1 · · ·αgβgα
−1
g β−1

g = 1
〉
. (2.1.5a)

The generators αi , β j are chosen as in Figure 2.2 (α1 = a, β1 = b, etc.). The easiest way
to read off the genus from (2.1.5a) is to compute the abelianisation π1/[π1, π1] (which
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equals incidentally the first homology group H1(�g,Z)); as is clear from (2.1.5a), it is
the abelian group Z2g generated by αi , β j . On the other hand, the fundamental group of
a genus-g surface �g,n with n > 0 punctures is free (see e.g. page 64 of [103]):

π1
(
�g,n

) ∼= F2g+n−1. (2.1.5b)

The preceding discussion indicates the significance of genus. Now let’s impose more
structure. A Riemann surface is a connected orientable surface with a conformal struc-
ture, together with a choice of orientation. Equivalently, a Riemann surface can be defined
as a complex analytic curve: any polynomial equation in x, y ∈ C inherits the conformal
and differential structure of C. This is because locally the conformal maps in R2 are
precisely the locally holomorphic maps in C with nonvanishing derivative (theorem 14.2
of [481]). A third possible definition is that Riemann surfaces consist of those connected
2-manifolds with a complete metric with constant curvature. As mentioned above, its
homeomorphism class is given by its genus g and number of punctures n, and the surface
is compact iff n = 0. We are primarily interested in compact Riemann surfaces.

Any topological surface can be made into a Riemann surface, usually in a continuum
of inequivalent ways (Section 2.1.4). We identify two Riemann surfaces if they are
conformally equivalent, or holomorphically equivalent, or isometric. In Section 2.1.4
we discuss the classification of Riemann surfaces up to conformal equivalence.

The basic example of a Riemann surface is the complex plane C. Also important
is the complex projective line P1(C) = C ∪ {∞}; stereographic projection verifies that
it is topologically a sphere, called the Riemann sphere. Now, a meromorphic function
f : D → C by definition is holomorphic everywhere except for isolated poles; if f has
poles at zi , then defining f (zi ) = ∞ gives a conformal map f : D → P1(C) between
Riemann surfaces (perhaps it is this picture, in which zi is sent to the ‘north pole’
∞, which is the origin of the term ‘pole’). Likewise, we can extend the domain of
a function f on C to P1(C), provided it is meromorphic at ∞. For example, if p is a
polynomial of degree n, then p has a pole of degree n at∞, and we obtain a holomorphic
map p : P1(C) → P1(C). By comparison, the functions ez and cos(z) have essential
singularities at∞ and so cannot be extended to P1(C).

Historically, Riemann surfaces were introduced by Riemann to supply the maximal
domain (via analytic continuation) of a holomorphic function. The problem is that many
of the most natural complex functions are multivalued, for example f (z) = √z or g(z) =
log z or other inverses of nice functions. As we move counterclockwise along the unit
circle |z| = 1, starting at z = 1, the value f (z) = √z changes continuously from f (1) =
1 to f (1) = −1, and the value of g(z) = log z changes continuously from g(1) = 0 to
g(1) = 2π i. To Riemann, we should regard f (z) as a holomorphic function on a double
cover D = Db ∪ Dt of the complex plane, and g(z) is holomorphic on a helix. As we
move along the circle, the argument z of f (z) moves from the bottom sheet Db ∼= C
to the top sheet Dt ∼= C, and if we continue a second time around the circle, we return
from the sheet Dt to Db. To identify D homeomorphically, cut both Db and Dt from 0
to∞, and glue the θ = 0+ slit of Db to the θ = 0− slit of Dt and vice versa. The result
is homeomorphic to a sphere with one puncture, corresponding to the point at infinity.
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Note that f : D → C is well-defined and holomorphic; it is an example of what we will
shortly call a cover of C, ramified at z = 0.

The remainder of this subsection describes an important realisation (called uniformi-
sation) of any Riemann surface. The idea is simple. There are two different connected
real curves, up to homeomorphism, and they are the line R and the circle S1. The circle
can be realised as S1 ∼= R/Z. We call R the ‘universal cover’ S̃1 of S1, because it is
simply-connected; Z here is the fundamental group π1(S1). See also Theorem 1.4.3.

The same works with surfaces. For example, the sphere with two punctures (a cylin-
der) and a torus both have universal cover homeomorphic to C; the cylinder itself is
homeomorphic to S1 × R and the torus to C/(Z+ iZ), where Z and Z+ iZ are isomor-
phic to their fundamental groups. Let’s make these ideas more precise, and incorporate
as well the conformal structure.

Definition 2.1.3 Let �∗, � be two Riemann surfaces. We say that �∗ covers � by
f if f : �∗ → � is a holomorphic map from �∗ onto �. If in addition f is locally
conformal, we call f a conformal or unramified cover. If f : �∗ → � is a conformal
cover, and �∗ is simply-connected, then we call �∗ a universal cover of �.

Let Uα ⊂ �, ϕα : Uα → Vα ⊂ C be a family of coordinate charts for � (Defini-
tion 1.2.3); by local coordinates we mean the complex numbers z ∈ Vα . In local coordi-
nate z about point p∗ ∈ �∗, a cover f sends a neighbourhood of p∗ to one of f (p∗) ∈ �
with local coordinates a + czn+ higher terms, for some constants a and c �= 0. To be
conformal, this order n must always be 1 (otherwise we say f is ramified at p∗).

If f : �∗ → � is a conformal cover, then the fundamental group π1(�∗) is naturally
isomorphic to a subgroup of π1(�) (Section 1.7.2). In this way, the covers�∗ of� (up to
homeomorphism) are in one-to-one correspondence with conjugacy classes of subgroups
of π1(�). A universal cover �̃ is the ‘largest’ and most important cover, and is unique up
to conformal equivalence. It can be identified as the space of all homotopy-equivalence
classes of paths on � with fixed initial point p ∈ �. For example, visualise a ‘point’
p̃ on S̃1 as a curve starting at 1 ∈ S1 and ending at eiθ (0 ≤ θ < 2π ), and wrapping
around the circle (i.e. crossing 1 ∈ S1) n times; the identification of S̃1 with R comes
from identifying this path with the number θ + 2πn ∈ R.

We are now ready to state the basic result of this subsection.

Theorem 2.1.4 (Uniformisation Theorem)

(a) Up to conformal equivalence, the only simply-connected Riemann surfaces (i.e. the
only candidates for a universal cover) are the sphere S2 = P1(C) = C ∪ {∞}, the
plane C and the upper half-plane H.

(b) Let� be any Riemann surface, and let �̃ be its universal cover. Then� is conformally
equivalent to �̃/�, where � ∼= π1(�) is a subgroup of the automorphisms of �̃ that
act on �̃ without fixed points. A metric can be chosen for � with constant curvature
+1, 0,−1, respectively, if �̃ = S2,C,H, respectively. Two surfaces �̃/�, �̃′/�′

are conformally equivalent iff the universal covers �̃ and �̃′ are the same, and �

and �′ are conjugate subgroups in Aut(�̃).
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Table 2.1. The universal covers of the genus g surfaces with n punctures

g\n 0 1 2 ≥3

0 S2 C,H C,H H
1 C H H H
≥2 H H H H

Of course H and C are homeomorphic, but they aren’t conformally equivalent (replacing
H with the disc D, this follows from Liouville’s Theorem: a bounded holomorphic func-
tion on C must be constant). Part (a) is due to Klein, Poincaré and Koebe. These three
possibilities for �̃ correspond respectively to the three geometries: spherical, Euclidean
and hyperbolic. The group of automorphisms of �̃ is just Isom+. The condition that �
acts without fixed points (apart from the identity in�) is significant – fixed points change
the geometry. A famous example of an orbit space with fixed points is SL2(Z)\H, which
has conical singularities at i and eπ i/3.

Table 2.1 gives the universal cover of any Riemann surface, as a function of the genus
and number of punctures. We see there that almost every surface is hyperbolic: the
generic geometry in two dimensions is hyperbolic.

The Uniformisation Theorem easily proves Picard’s Theorem (‘the range f (C) of any
holomorphic nonconstant function f : C → C can omit at most one point from C’). The
proof, which the reader can fill in, uses Liouville’s Theorem together with the fact that
the universal cover of the twice-punctured plane is D.

2.1.3 Functions and differential forms

The last subsection gives several equivalent notions of a Riemann surface. Here we
see that any compact Riemann surface is the locus of a homogeneous polynomial
f (a, b, c) = 0 in the complex projective plane P2(C).

We study a manifold through the functions living on it. Two manifolds differing merely
by a single point can have a completely different family of functions. For instance, we all
know many examples of holomorphic functions on C. But the only functions holomorphic
on C and also holomorphic at ∞ are the constants. More generally, any noncompact
Riemann surface � has several functions f : �→ C holomorphic everywhere, while
if � is compact, the only holomorphic functions f : �→ C are the constants. We are
more interested in compact �.

Given any Riemann surface �, let K(�) denote all the meromorphic functions f :
�→ C – equivalently, all holomorphic functions f : �→ P1(C) (by convention we
discard the constant function f ≡ ∞). Let Uα ⊂ �, ϕα : Uα → Vα ⊂ C be a family of
coordinate charts for �. Then f ∈ K(�) iff each f ◦ ϕ−1

α is a meromorphic function of
the local coordinate z ∈ Vα .

For example, K(P1(C)) consists of all rational functions f (z) = poly(z)
poly(z) , while K(C) is

much larger. This space K(�) is in fact always a field; its algebraic structure determines
the surface � (up to conformal equivalence) and naturally mirrors all aspects of �. A
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compact Riemann surface � has genus 0 iff K(�) ∼= C(z), the field of rational functions
in some variable z. For positive genus, two generators are needed.

Theorem 2.1.5 Let � be a compact Riemann surface of genus g > 0. Choose any
nonconstant function f ∈ K(�). Then there exists another nonconstant function g ∈
K(�), such that K(�) = C( f )[g], i.e. for some n ∈ N, any h ∈ K(�) can be written in
the form h =∑n−1

i=0 ai ( f ) gi , where ai (z) are rational. Moreover, there is an irreducible
polynomial P(z, w) such that P( f, g) = 0, and such that K(�) is isomorphic as a field
to the quotient C(z, w)/(P(z, w)) of the algebra of rational functions in z, w by the
ideal generated by polynomial P. Moreover, writing P as a homogeneous polynomial in
three variables, � is conformally equivalent to the complex curve P = 0 in the complex
projective plane P2(C).

For a proof and more material on Riemann surfaces, see [180]. It is nontrivial that
we can embed any Riemann surface into the complex projective plane. In fact, most
complex n-tori Cn/L (where L ⊂ Cn is a 2n-dimensional lattice), for n > 1, cannot be
embedded in any projective space (Section 6.3.2). The plane curve P = 0 will typically
have ‘singularities’, that is points where all three partial derivatives vanish, where the
curve self-intersects transversely. These singularities can be ‘blown up’, that is the two
intersecting ‘complex strands’ (i.e. open discs in C) can be separated, but this requires
the complex curve to be embedded in P3, not P2.

Every geometric feature (except the choice of orientation) of the surface � has an
algebraic analogue in K(�), and hence the geometry of� can be studied via algebra. For
example, a C-algebra homomorphism F : K(�′) → K(�) lifts to a holomorphic map F̃ :
�→ �′. This general observation is the starting point of both algebraic geometry and
noncommutative geometry. For example, the space of smooth complex-valued functions
on a manifold M will be an infinite-dimensional commutative algebra, since the target
C is a commutative algebra. Connes suggests that we study a noncommutative algebra
as if it too is the algebra of functions on some manifold. The hope is that this should be
directly relevant to quantum theories, since we access space-time only indirectly, via the
functions (‘quantum fields’) living on it. We seem to get into problems in quantum field
theory when we take too literally the (naive and improbable) intuition that space-time
is anything like a manifold. In any case calculus in noncommutative geometry formally
resembles quantum mechanics (e.g. the role of coordinates is played by self-adjoint
operators – observables – and infinitesimal distance ds by the fermion propagator).

For a concrete example of Theorem 2.1.5, consider the torus Tτ = C/(Z+ τZ). A
meromorphic function f : Tτ → C lifts to a meromorphic function (which we also
call f ) on C, with periods 1 and τ . That is, f ∈ K(Tτ ) iff f : C → C is meromor-
phic and f (z + m + nτ ) = f (z) ∀z ∈ C, ∀m, n ∈ Z. Any such doubly-periodic mero-
morphic function is called an elliptic function, for fairly obscure reasons.4 We know

4 One of the more carefree creative outlets for mathematicians is through their happy role as nomenclators.
Elliptic functions first arose historically as the functional inverse of a certain class of integrals called
‘elliptic integrals’. This class got its name since it included the integral computing arc-lengths of ellipses.
Likewise, the name ‘elliptic curve’ for a genus-1 complex curve arose since the functions living on it are
those elliptic functions. There is however no direct relation between ellipses and elliptic curves.
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any nonconstant f ∈ K(Tτ ) must have at least one pole in the ‘fundamental parallel-
ogram’ Pτ with corners at 0, τ, 1, 1+ τ . Moreover, the contour integral

∫
C f about

the parallelogram C = ∂Pτ vanishes by periodicity, so the sum of residues of f inside
Pτ must vanish. Hence any nonconstant elliptic function must have at least two poles
in Pτ .

We can construct an elliptic function by averaging f (z) =∑
m,n g(z + m + nτ ) for

any function g over each orbit z + Z+ τZ. As the simplest possibility for a noncon-
stant elliptic function would have a single pole of order 2 at the lattice points, it is
tempting to take g(z) = z−2. Unfortunately, for large m, n, (z + m + nτ )−2 is close to
(m + nτ )−2, and so its sum over all m, n won’t converge. Thus we are led to consider its
‘regularisation’

p(z) := z−2 +
∞∑

m,n=−∞
′{(z + m + nτ )−2 − (m + nτ )−2} (2.1.6a)

function, called the Weierstrass function (although Eisenstein knew of it years earlier),
where

∑′ here means to avoid m = n = 0. Its derivative

p′(z) = −2
∞∑

m,n=−∞
(z + m + nτ )−3 (2.1.6b)

is also elliptic. Being meromorphic functions on a compact Riemann surface, p and p′

must be polynomially related: we find

p′(z)2 = 4(p(z)− e1)(p(z)− e2)(p(z)− e3), (2.1.6c)

where e1 = p(1/2), e2 = p(τ/2) and e3 = p((1+ τ )/2). This is shown by verifying that
(p− e1)(p− e2)(p− e3)/p′ has no poles and hence must be constant. Together, p and
p′ generate K(Tτ ): we can write any elliptic function f ∈ K(Tτ ) as R1(p)+ p′ R2(p),
where R1(p(z)) is the even part ( f (z)+ f (−z))/2 of f and p′(z) R2(p(z)) the odd part.
Tτ is conformally equivalent to the projective curve with ‘finite’ points (p(z), p′(z), 1) ∈
P2(C), together with the ‘infinite’ point (0, 1, 0) corresponding to the pole of p and p′ at
z = 0.

One way to embed Riemann surfaces into projective space uses theta functions:

θr,s(τ, z) :=
∑
m∈Z

exp[π iτ (m + r )2 + 2π i (m + r )(z + s)], (2.1.7a)

for any r, s ∈ Q. These functions and their generalisations are central to Moonshine, but
for now note that they converge for all (τ, z) ∈ H× C to a function holomorphic in both
τ and z. These θr,s are nearly doubly-periodic in z: if r, s ∈ 1

N Z then

θr,s(τ, z + Nm + τNn) = exp[−π iN 2n2τ − 2π iNnz] θr,s(τ, z), (2.1.7b)

for all m, n ∈ Z. Apart from a constant root of unity, θr,s depends only on the values of r
and s mod 1. Enumerate the N 2 pairs (ri , si ) ∈ 1

N ZN × 1
ZN

ZN . Then for any N and any

https://doi.org/10.1017/9781009401548.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401548.003


The underlying geometry 119

τ ∈ H, the map from Tτ to PN 2−1(C) defined in homogeneous coordinates by

z �→ (θr1,s1 (τ, N z), θr2,s2 (τ, N z), . . .) ∈ PN 2−1(C)

is well defined (to see that this N 2-tuple can never be the 0-vector, find explicitly the zeros
of θr,s). This map is one-to-one, that is it embeds the torus Tτ as a complex submanifold
of PN 2−1(C). We can specify this submanifold more explicitly (in the simplest case,
namely N = 2) by the homogeneous polynomials

θ0,0(τ )2z2
1 = θ0,1/2(τ )2z2

2 + θ1/2,0(τ )2z2
3, θ0,0(τ )2z2

4 = θ1/2,0(τ )2z2
2 − θ0,1/2(τ )2z2

3,

where (z1, z2, z3, z4) ∈ P3(C) are homogeneous coordinates and θr,s(τ ) = θr,s(τ, 0). The
fact that the image of Tτ satisfies those equations follows from the Riemann theta iden-
tities. Moreover, any elliptic function f : Tτ → C can be written in the form

f (z) = c
∏

1≤i≤�

θ0,0(τ, z − ai )

θ0,0(τ, z − bi )
,

for arbitrary complex numbers ai , bi , c subject to the relation
∑

i ai =
∑

i bi . The Weier-
strass p-function can be written

p(z) = − d2

dz2
θ1/2,1/2(τ, z)− π2

3
.

For any k ∈ Z, a holomorphic (respectively meromorphic) k-form ω (Section 1.2.2)
on a complex curve � looks like f dzk in local coordinates, where f is holomorphic
(respectively meromorphic). If we change local coordinates z1 �→ ϕ2(ϕ−1

1 (z1)), then
(1.2.4b) becomes

fβ(zβ) = dk zα
dzk

β

fα(zα). (2.1.8)

For example, dz is a meromorphic (but not holomorphic) 1-differential on P1(C) (it has a
pole of order 2 at∞). LetHk(�) be the vector space of holomorphic k-forms, andMk(�)
be the space of meromorphic ones. Given any ω,ω′ ∈Mk(�), ω′ not identically 0, the
ratio ω/ω′ lies in the function field K(�). Of course, as vector spaces M0(�) = K(M).
For any surface � and integer k, Mk(�) is infinite-dimensional, but for any compact
surface � and any integer k, the Riemann–Roch theorem implies that Hk(�) is always
finite-dimensional and may be 0.

2.1.4 Moduli

In physics, the phase space lets us consider all possible states of a physical system; the
actual time-evolution of a given instance of that system will be a curve in phase space.
Likewise, we often want to consider simultaneously families of manifolds, rather than
fix a single manifold. For example, last subsection we treated all tori Tτ simultaneously.
The role of phase space is played by a moduli space, the space of orbits of a group of
diffeomorphisms of a geometric structure placed on a manifold. A path on the moduli
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space connecting orbits [p] and [q] is a continuous deformation from the geometric
structure on p to that on q.

The notion of moduli space for surfaces is due to Riemann, who also computed
its dimension. The idea is to consider the space M(�0) of all conformal equivalence
classes of Riemann surfaces homeomorphic to a given surface �0. As �0 is completely
characterised by the genus g and number n of punctures, we also denote this by Mg,n .
With a few exceptions mentioned shortly, Mg,n has complex dimension 3g − 3+ n.
However, these moduli spaces usually aren’t manifolds (they have conical singularities).
It was for this reason that Teichmüller introduced a cover, now called the Teichmüller
space Tg,n . The moduli space is recovered by the quotient Mg,n = Tg,n/�g,n , where�g,n

is a discrete group called the mapping class group (see Definition 2.1.6). Teichmüller
space is much better behaved than the moduli space – it is a complex manifold (except
for certain small g, n), and as a real manifold is diffeomorphic to R6g−6+2n .

As we shall see, there’s a small number of pairs (g, n) that don’t behave com-
pletely generically for one reason or another: namely, (0, 0), (0, 1), (0, 2), (0, 3), (0, 4),
(1, 0), (1, 1) and (2,0). We mention some of their individual peculiarities below.

In order to anticipate the definitions, consider a torus T (so g = 1, n = 0). For con-
creteness (this doesn’t lose any generality), restrict to tori coming from a parallelogram
in the complex plane C, with one pair of opposite sides labelled ‘1’, and the other
pair labelled ‘2’; the torus is recovered by first identifying the opposite sides labelled
‘1’, and then identifying the opposite sides labelled ‘2’ (changing this order changes
the shape – though not the conformal class – of the torus). By translating, rotating and
rescaling this parallelogram, we can put the vertices at 0, 1, τ and τ + 1, for some τ ∈ H,
where the horizontal sides are labelled ‘1’, which continuously deforms the torus without
changing its conformal equivalence class. This is the best we can do, if we restrict to
continuous deformations. The resulting parameter space, namely the upper half-plane
H, is the Teichmüller space T1,0 for the torus. The torus corresponding to τ ∈ H is
Tτ = C/(Z+ Zτ ).

However, different points τ in H can correspond to conformally equivalent tori. For
example, we can cut the torus open along the seam ‘2’, twist the open arm m complete
turns, and then sew it back up. This amounts to replacing parameter τ with τ + m. As
long as m is an integer, this is a conformal diffeomorphism of the torus (if m isn’t an
integer, this map isn’t even continuous). Thus the points τ + Z all correspond to the same
conformal structure. Similarly, cutting open seam ‘1’ and giving the upper cap n complete
twists before resewing corresponds to replacing the parallelogram 0, 1, τ and τ + 1
with the parallelogram 0, 1+ nτ , τ and (n + 1)τ + 1 – after putting it into canonical
form, this replaces τ with τ/(nτ + 1). Both these twists are called Dehn twists. We can
also switch the roles of sides ‘1’ and ‘2’, which replaces τ with −1/τ (why?). More
generally, the tori corresponding to parameters τ and aτ+b

cτ+d are conformally equivalent,

for any

(
a b
c d

)
∈ SL2(Z). This accounts for all redundancies in the parametrisation

by H of the conformal equivalence classes of tori. The orbit space SL2(Z)\H is the
‘moduli space’ M1,0 for the torus. Note that M1,0 has conical singularities at the orbits
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[τ ] = [i] and [e2π i/3], corresponding to those tori with additional automorphisms. This
happens in higher genus too. Indeed, any finite group G is the automorphism group of
some surface of sufficiently high genus. For example, there will be a compact Riemann
surface with automorphism group exactly the Monster M, though it will have genus at
least 9.6× 1051.

Definition 2.1.6 Let�0 be a fixed Riemann surface. Consider all pairs (�, f ), where f
is an orientation-preserving homeomorphic map of �0 onto �. Write (�, f ) ∼ (�′, f ′)
if there exists a conformal homeomorphism h : �→ �′ such that the homeomor-
phism f ′−1 ◦ h ◦ f : �0 → �0 is homotopic to the identity. The set of these equivalence
classes is the Teichmüller space T(�0). The mapping class group �(�0) is the quotient
Homeo+(�0)/Homeo0(�0) of the group of orientation-preserving self-homeomorphisms
f of �0, by the (normal) subgroup consisting of those homotopic to the identity.

For example, �1,0 = SL2(Z) and T1,0 = H; as we explain in Section 2.2.4, the moduli
space M1,0 is a punctured sphere. Because C/(Z+ τZ) can also be interpreted as a
torus with a special point, namely the additive identity 0, we also have T1,1 = H and
�1,1 = SL2(Z). For a different reason, we also have T0,4 = H and �0,4 = SL2(Z).

The basic idea, illustrated above, is that the Teichmüller space Tg,n accounts for
‘continuous’ conformal equivalences, while the mapping class group �g,n contains the
left-over ‘discontinuous’ ones. To help make this important but abstract definition more
accessible, consider the following artificial example. Let X = R2, and suppose the addi-
tive group G = Z× R acts on X by addition. Then G is a disconnected Lie group
with connected components Gn := {n} × R for each n ∈ Z; the component G0 is the
one containing the identity (0, 0). The group π0 = G/G0

∼= Z interchanges the compo-
nents in the obvious way. We can mod out first by the continuous part G0 of G (which
should be relatively easy), then by the discontinuous π0: the orbit space X/G is then
(X/G0)/π0 = R/Z = S1. Of course, here X plays the role of the infinite-dimensional
space of all conformal structures, G plays the role of all conformal homeomorphisms,
and X/G is the moduli space. The identity component G0 corresponds to the homeo-
morphisms homotopic to the identity, π0 is the mapping class group and X/G0 is the
Teichmüller space.

The mapping class groups are central to our story, so we’ll try to make them more
accessible. More details and proofs are provided in [56], [270], [60] and chapter 4 of
[59]. A simple presentation of the mapping class group �g,n for n = 0, 1 – the cases of
greatest interest to us – is given in [550].
�g,n acts like a braid group. For example, any f ∈ Homeo+(�) permutes the n punc-

tures, so the same is true of γ ∈ �g,n; the ‘pure’ mapping class group P�g,n consists of
those γ ∈ �g,n that fix each puncture. Then P�g,n is normal in �g,n and has quotient
�g,n/P�g,n = Sn .

A braid group Bn(�) can be associated with any surface � in the obvious way [59].
For genus g ≥ 2 and any n ≥ 0, the group �g,n is an extension of Bn(�g), by the group
�g,0. For genus g = 1 and n ≥ 2, �1,n is an extension of the quotient Bn(�1)/Z (Bn(�1))
by PSL2(Z), where the centre Z (Bn(�1)) ∼= Z2. For genus g = 0 and n ≥ 3, the group
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�0,n is isomorphic to the quotient Bn(S2)/Z (Bn(S2)), where Z (Bn(S2)) ∼= Z2. For any
n, �0,n is a homomorphic image (i.e. a quotient) of the braid group Bn .

Let � be a compact Riemann surface. To any simple closed loop γ in �, we can
define the Dehn twist about γ , by cutting out from � a neighbourhood of the loop
homeomorphic to a cylinder, giving one end of this cylinder an integral twist, and gluing
it back. The Dehn twists about the 2g elementary loops ai , b j defined in Section 2.1.2
generate the mapping class group of �.

Teichmüller space need not be connected. In particular, there are three different kinds
of twice-punctured spheres: one is flat and has conformal structure given by the cylinder
C/Z; one is the punctured disc 0 < |z| < 1 and corresponds to the half-cylinder H/〈z �→
z + 1〉; and finally, we have the family of annuli Ar := {r < |z| < 1}, which are all of
the form H/〈z �→ λz〉 for λ > 1. Thus T0,2 and M0,2 consist of two isolated points and
an open line segment (0, 1) say. �0,2

∼= Z2 consists of the identity, and the inversion
through 0 that exchanges the two boundary circles. Similarly, both T0,1 and M0,1 consist
of two isolated points.

The mapping class group usually (but not always) acts faithfully on Teichmüller space
(a faithful action means that the only group element that acts trivially is the identity
element). �1,0 = �1,1 = �0,4 are exceptions: −I ∈ SL2(Z) acts trivially on H. Also,
consider the thrice-punctured sphere P1(C)/{z1, z2, z3}. As is well known, Aut(S2) ∼=
PSL2(C) can conformally move any three points to any other three points, so we can send
z1, z2, z3 ∈ P1(C) respectively to 0, 1,∞. Thus T0,3 consists of a single point. However,
we could have moved, for example, z2, z1, z3 instead to 0, 1,∞, respectively. A total of
six different choices could have been made, corresponding to the mapping class group
�0,3 = S3, which acts trivially on Teichmüller space.

Mg,n is simultaneously the moduli space of: (i) conformal equivalence classes of real
surfaces; (ii) complete Riemannian metrics of constant negative curvature on real sur-
faces; and (iii) complex-analytic structures on complex curves. This is an accident of
small dimensions, for example the Mostow Rigidity Theorem says that in three dimen-
sions the moduli space of (ii) consists of a single point.

A different approach to moduli spaces ties in with Sections 2.3.5 and 6.3.2. First,
by the Siegel upper half-space Hg we mean the space of all symmetric g × g complex
matrices � whose imaginary part Im(�) is positive-definite – that is, vt Im(�) v > 0 for
any nonzero column vector v ∈ Rg . Hg is a higher-genus generalisation of H. The role of
the group SL2(Z) here is played by the symplectic group Sp2g(Z), that is the group of all

determinant 1 2g × 2g matrices M satisfying Mt

(
0 I
−I 0

)
M =

(
0 I
−I 0

)
, where

I = Ig and 0 are, respectively, the g × g identity and g × g zero matrices. The familiar

action

(
a b
c d

)
.τ = aτ+b

cτ+d is replaced by the action

(
A B
C D

)
.� = (A�+ B)(C�+ D)−1, ∀

(
A B
C D

)
∈ Sp2g(R), ∀� ∈ Hg.

(2.1.9a)
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The generalisation of the Jacobi theta function (2.1.7a) is Siegel’s theta function

θ (�, z) =
∑
n∈Zg

exp(π i nt�n + 2π i n · z), (2.1.9b)

which converges for all � ∈ Hg and z ∈ Cg .
Where does Hg come from? Associate with a compact genus-g surface�g its Jacobian

variety, as follows. The space H1(�g) of holomorphic 1-forms is g-dimensional, so let
{ω1, . . . , ωg} be a basis. Fix any base-point p ∈ �g; then we get a map from�g × · · · ×
�g to Cg by integrating:

(q1, . . . , qg) �→
g∑

i=1

(∫
Ci

ω1,

∫
Ci

ω2, . . . ,

∫
Ci

ωg

)
,

where Ci is any path on �g from p to qi . Of course the result depends on which paths
Ci are chosen, and so isn’t well defined as a function of qi ’s alone. However, consider
the set L of all possible values (

∫
C ω1, . . . ,

∫
C ωg) ∈ Cg , where C runs over all possible

closed loops in �g passing through P . Then our ill-defined map �g × · · · ×�g → Cg

will become well-defined (i.e. independent of the choice of path Ci ) if we replace the
target Cg with Cg/L . It isn’t hard to show that L is a 2g-dimensional lattice (in fact a
basis is given by the values on the 2g loops we call αi , β j in (2.1.5a)), and so Cg/L
is a 2g-dimensional torus, called the Jacobian variety Jac(�g). This map �g × · · · ×
�g → Cg/L is holomorphic and surjective (‘Jacobi Inversion’). Restricting it to the
diagonal embedding q �→ (q, . . . , q) ∈ �g × · · · ×�g , we get a one-to-one conformal
embedding q �→ F(C, . . . ,C) of �g into Jac(�g). When g = 1, �1 and Jac(�1) are
identical; when g > 1 the embedding is into a proper submanifold of the Jacobian (check
dimensions).

Now, we can select our basis ωi of 1-forms so that the integral
∫
αi
ω j equals δi j .

This choice means that our lattice L contains Zg . The remaining basis vectors of L
are (

∫
βi
ω1, . . . ,

∫
βi
ωg) ∈ Cg , and it can be shown (the ‘Riemann bilinear relations’)

that these basis vectors will be column vectors of a symmetric g × g matrix � whose
imaginary part is positive-definite – that is, the period matrix� lies in Hg . So the lattice L
becomes Zg +�Zg and the Jacobian becomes T� := Cg/(Zg +�Zg), where we regard
vectors in Zg and Cg as column vectors. Different choices of bases correspond to the
Sp2g(Z)-orbit of �.

So every surface�g corresponds to an Sp2g(Z)-orbit in Hg . The Schottky Problem asks
which points in Hg arise as period matrices. Call this subset Cg . Our moduli space Mg,0

can be identified with Cg/Sp2g(Z) and Sp2g(Z) is a homomorphic image (or quotient)
of �g,0. Since the symplectic group Sp2g(Z) is much more accessible than the mapping
class group �g,0, the main difficulty is to find a nice characterisation of Cg and the kernel
of �g,0 → Sp2g(Z). For a formal solution to the Schottky problem, see e.g. [12].

The moduli space Mg,n is rarely compact. A very naturalway to compactify Mg,n , due
to Deligne and Mumford, is fundamental to conformal field theory. Consider first the
complex curve w2 = (z − 2) (z + 1− α) (z − 1− α), where α is a parameter. Provided
α �= 0,±1, this is a genus-1 nonsingular curve, conformally equivalent to the torus
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(c)(b) (d)
(a)

Fig. 2.7 The surface w2 = (z − 2)(z + 1− α)(z + 1+ α).

C/(Z+ τZ) where

j(τ ) = (α2 + 3)2 − (2α2 − 2)3

(2− 1+ α)2(2+ 1− α)2(1− α − 1+ α)2
.

We know that M1,0 is real-diffeomorphic to a sphere with one point removed. As we vary
α, we move through M1,0, and as α→ 0 we approach the missing point. What happens
to the curve in that limit? In Figure 2.7(a)–(c) we intersect our curve, for α = 1/2, 1/4, 0,
respectively, with the plane R2 ⊂ C2. Figure 2.7(d) gives a picture of the complex curve
at α = 0: it is a pinched torus. We call the nonsmooth point (z, w) = (−1, 0) a node. This
is the surface to which the boundary point of M1,0 corresponds. Including it, compactifies
M1,0 to M1,0

∼= S2.
More generally, we add to each moduli space Mg,n the surfaces � with nodes. These

are connected compact spaces where the neighbourhood of any point either looks like
C (i.e. � is smooth there) or like zw = 0 at (0, 0) (these are the nodes). We say � has
type (g, n) if unpinching each node results in a genus-g surface with n punctures – for
example, Figure 2.7(d) has type (1,0). We require these surfaces to have the following
property: when you delete all nodes and the surface falls into connected pieces, none of
those pieces is a sphere with one or two punctures (the only exception is that we also
allow a torus with one node). These surfaces are called stable, because they have a finite
automorphism group (this terminology is explained by visualising a marble versus a dice
on a tabletop). As we know, the larger the automorphism group, the worse the singularity
is in moduli space.

The moduli space Mg,n is compactified if we include the conformal equivalence
classes of stable type (g, n) surfaces with nodes. The resulting space Mg,n is called the
moduli space of stable surfaces. A nice review is given in [447]. For example, the moduli
space M0,4 is also a sphere with one missing point. That missing point corresponds to
pinching a sphere with four punctures into two spheres, each with two punctures.

Moduli spaces of curves seem first to have been introduced into string theory and con-
formal field theory by Polyakov in 1981, and have played an important role there ever
since. We are actually more interested in an enhanced moduli space, obtained by decorat-
ing Riemann surfaces with additional structure. Many more or less equivalent alternatives
have appeared in the literature. In particular, let � be a compact genus-g surface, possi-
bly with nodes, with n marked points pi ∈ � (none of which are at a node). About each
point pi is chosen a local coordinate zi , vanishing at pi , identifying a neighbourhood
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Fig. 2.8 The Dehn twists on the torus with one marked point.

of pi with a neighbourhood of 0 in C (see section 2.1 of [530] for details). We call
this data (�, {pi }, {zi }) an enhanced surface of type (g, n). It is essentially equivalent
to removing a disc from � about pi and choosing a parametrisation about the boundary
circle. We call two enhanced surfaces (�, {pi }, {zi }) and (�′, {p′i }, {z′i }) equivalent if
there is a conformal equivalence h : �→ �′ such that h(pi ) = p′i and z′i (hx) = zi (x)
locally about pi . The resulting moduli space M̂g,n will be infinite-dimensional, but the
mapping class group �̂g,n will be an extension of the usual �g,n by Zn .

These groups �̂g,n are of great interest to us – for example, a rational conformal field
theory gives a projective finite-dimensional representation of each of them. This yields
the braid group representations in quantum groups or Jones subfactor theory, as well as
the modularity of Moonshine. They are discussed, with many examples, in section 5.1
of [32] (where they are denoted �g,n , and what we call �g,n is denoted there �n

g ). For
example, �̂1,1 is the braid group B3, a central extension of SL2(Z) by Z. It is generated
by the Dehn twists depicted in Figure 2.8. We return to this in Sections 4.3.3, 5.3.4
and 7.2.4.

The main reason we prefer extended surfaces to ordinary Riemann surfaces is that
there are canonical ways to sew them together. This sewing operation is fundamental in
conformal field theory, because it permits us to decompose a higher-genus surface into
discs and ‘pairs-of-pants’ (Section 4.4.1).

Question 2.1.1. How would a hyperbolic mathematician model the Euclidean plane?

Question 2.1.2. (a) Let γ =
(

a b
c d

)
∈ SL2(R), γ �= ±I . We can regard γ as a map

from the extended upper-half plane H ∪ R ∪ {∞} to itself. Show that:

(i) |a + d| = 2 iff γ has exactly one fixed point on the boundary R ∪ {∞}, iff γ can
be conjugated in SL2(R) to the translation z �→ z + t ;

(ii) |a + d| > 2 iff γ has exactly two distinct fixed points on the boundary R ∪ {∞},
iff γ can be conjugated in SL2(R) to the dilation z �→ λz;

(iii) |a + d| < 2 iff γ has exactly one fixed point in H, iff γ can be conjugated in
SL2(R) to the rotation z �→ cos(θ )z+sin(θ )

− sin(θ )z+cos(θ ) about i with fixed point i.

(b) Suppose � is a Fuchsian group. Prove that γ ∈ � has a fixed point in H iff γ has
finite order.

Question 2.1.3. Explain how the addition of points on a conic is a degenerate case of the
addition of points on a cubic.
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Question 2.1.4. Find all rational solutions (r, s) to r2 − 2rs + r + 2s − s2 = 0. Verify
that, for the choice of identity e = (0, 0) and addition defined as in Figure 2.6, the rational
points form a subgroup. As an abstract group, what is this subgroup isomorphic to?

Question 2.1.5. Using the conformal map z �→ (x, y) = (p(z), p′(z)) between C/(Z+
τZ) and the cubic y2 = 4(x − e1)(x − e2)(x − e3), verify that the addition of points on
the cubic corresponds to the addition z1 + z2 (mod Z+ τZ) in C.

Question 2.1.6. Identify M0,4 with a space of S3-orbits in C \ {0, 1}.
Question 2.1.7. Let G be a finite group. Define

K (g, h) = 1

‖G‖
∑
ρ

dim(ρ) chρ(gh−1),

for g, h ∈ G, where the sum is over all irreducible representations ρ of G.
(a) Verify that K (g, h) = δg,h .
(b) For any γ ∈ N, take f : G2γ → G by

f (g1, h1, . . . , gγ , hγ ) = g1h1g−1
1 h−1

1 g2h2g−1
2 h−1

2 · · · gγ hγ g−1
γ h−1

γ .

Define I =∑
(gi ,hi )∈G2γ K ( f (gi , hi ), e). By evaluating I in two ways, obtain the formula

‖Hom(π1(�γ ),G)‖ = ‖G‖2γ−1
∑
ρ

dim(ρ)2−2γ ,

where �γ is a compact genus-γ surface.

2.2 Modular forms and functions

Number theory, at its most elemental level, is concerned with finding integer solutions
to various (systems of) equations. It is truly remarkable how this seemingly pedestrian
pursuit has resulted in the creation of the richest and deepest mathematics. Indeed, it
is tempting to suspect that beneath any spot on the mathematical turf, no matter how
remote or seemingly barren, is a gemstone merely requiring hard work and discerning
fingertips to unearth.

2.2.1 Definition and motivation

As we saw in several different contexts in Section 2.1, the group SL2(R) of 2× 2 matrices
with real entries and determinant 1 acts on the upper half-plane H = {τ ∈ C | Im(τ ) > 0}
by Möbius transformations (2.1.4a). For example, the matrices s :=

(
0 −1
1 0

)
and

t :=
(

1 1
0 1

)
correspond to the functions τ �→ −1/τ and τ �→ τ + 1, respectively.

Consider � = SL2(Z), the subgroup of SL2(R) consisting of the matrices with integer
entries. It is generated by s and t :

SL2(Z) =
〈(

0 −1
1 0

)
,

(
1 1
0 1

)〉
= 〈s, t | s4 = e, (st)3 = s2〉. (2.2.1a)
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Because −I ∈ SL2(Z) yields the trivial map in H, weare also interested in the group

PSL2(Z) = SL2(Z)/{±I } = 〈s, t | s2 = (st)3 = e〉 =: Z2 ∗ Z3, (2.2.1b)

the free product of Z2 with Z3. Groups like � act on the extended upper half-plane
H := H ∪ {i∞} ∪Q in the obvious way (e.g. s interchanges 0 and i∞). The extra points
{i∞} ∪Q are called cusps because of the hyperbolic triangle R in Figure 2.3, which
points at one of them. Cusps correspond to tori with a single node (Figure 2.7(d)), and
compactify the moduli space M1,0.

Recall Definition 0.1: a modular function for�is a meromorphic function f : H → C,
symmetric with respect to �. A related definition is:

Definition 2.2.1 A modular form f for � = SL2(Z) of weight k ∈ Q and multiplier
μ : �→ C, |μ| = 1 is a holomorphic function f : H → C, which is also holomorphic
at the cusps Q ∪ {i∞} and obeys the transformation law

f

(
aτ + b

cτ + d

)
= μ

(
a b
c d

)
(cτ + d)k f (τ ), ∀

(
a b
c d

)
∈ �. (2.2.2)

For fractional k we choose the branch of the kth power to be the principal one (so xk > 0
when x > 0). For number-theoretic purposes, we require the values of μ to be roots of
unity. Writing μ(t) = e2π ih , we can expand f in powers of q: f (τ ) = qh

∑∞
n=−∞ anqn .

By ‘meromorphic at i∞’ we mean that all but finitely many negative n have an = 0,
so f has a pole of finite order at q = 0; by ‘holomorphic at i∞’ we mean h ≥ 0 and
an = 0 for all negative n. Meromorphicity or holomorphicity at the other cusps is implied
by that at i∞, because of (2.2.2) and the fact that all cusps lie in the same SL2(Z)-
orbit.

For the significance, which is considerable, of the condition that f be meromorphic at
the cusps, see Question 2.2.1. The moduli spaces M1,0, M1,1 and M0,4 all are SL2(Z)\H.
The cusps Q ∪ {i∞} of H correspond to pinched tori or spheres (Section 2.1.4). Mero-
morphicity at the cusps says f respects this surface degeneration in the appropriate
way.

If the weight k is an integer, the multiplier μ will necessarily be a one-dimensional
representation of �; when k is rational, μ will be a projective representation. We define
projective representations, and explain what to do with them, in Section 3.1.1. An intrigu-
ing implication for fractional k is described in Section 2.4.3.

The function f is called a modular form because f (τ ) d−k/2τ is a holomorphic (−k/2)-
form on the space SL2(Z)\H; by contrast, a modular function f is a meromorphic function
on the space SL2(Z)\H.

The easiest examples of modular forms of weight k ≥ 4 (k even) are the Eisenstein
series Gk defined in equation (0.1.5). It is conventional to normalise them as follows:

Ek(τ ) := 1

2ζ (k)
Gk(τ ) = 1− 2k

Bk

∞∑
n=1

σk−1(n) qn ∈ Z[q], (2.2.3a)
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where Bk are the Bernoulli numbers, defined by the generating function x
ex−1 =∑∞

k=0 Bk
xk

k! , and where σk−1(n) and the Riemann zeta function ζ (s) are defined by

σm(n) =
∑
d|n

dm, (2.2.3b)

ζ (s) =
∞∑

n=1

n−s =
∏

p prime

(1− p−s)−1 (2.2.3c)

(see Section 2.3.1). The Ek and Gk have multiplier μ ≡ 1.
Indeed, the Eisenstein series generate all modular forms for SL2(Z) with trivial multi-

plierμ. More specifically, the span of all such modular forms (over all k) is a ring graded
by k (i.e. the product of modular forms of weight k and k ′ is one of weight k + k ′). This
ring is generated (over C) by the Eisenstein series E4(τ ) and E6(τ ) – that is, any level
k modular form f can be written as a polynomial (homogeneous in the obvious sense)
in E4 and E6. Moreover, E4 and E6 are algebraically independent, so that polynomial
is unique. Using this we can readily compute the dimension of (and find a basis for) the
space of weight k modular forms. For instance, a basis for the weight 24 modular forms
is {E4

6 , E2
6 E3

4 , E6
4}.

The definition of modular forms seems fairly arbitrary. For example, one may ask how
significant the upper half-plane H is, or where the factor (cτ + d)k in (2.2.2) comes from.
We confront this in Section 2.4.1. But for now note that Definition 2.2.1 (like Definition
0.1 before it) also makes perfect sense if SL2(Z) is replaced by any Fuchsian group �
that sends the cusps Q ∪ {i∞} to themselves. The only (minor) complication is that the
cusps may not lie in the same orbit. See, for example, [352] for the proper definition. We
are interested in � commensurable with SL2(Z), that is, � ∩ SL2(Z) has finite index in
both � and SL2(Z). Typical choices for � are the congruence subgroups

�(N ) :=
{(

a b
c d

)
∈ SL2(Z) |

(
a b
c d

)
≡ ±

(
1 0
0 1

)
(mod N )

}
, (2.2.4a)

�0(N ) :=
{(

a b
c d

)
∈ SL2(Z) | c ≡ 0 (mod N )

}
, (2.2.4b)

for any N ∈ N. Incidentally, for N > 1, �(N )/{±1} is always free (i.e. isomorphic to
some Fm), while �0(N ) may or may not be free.

It is not at all obvious that modular forms and functions should be interesting, but in
fact they are unavoidable in modern number theory. For example, consider the question
of writing numbers as sums of squares. We can write 5 = 12 + (−2)2 = (−1)2 + 12 +
02 + 12 + (−1)2, to give a couple of trivial examples. Let Nn(k) be the number of ways
we can write the integer n as a sum of k squares, counting order and signs. For example,
N5(1) = 0 (since 5 is not a perfect square), N5(2) = 8 (since 5 = (±1)2 + (±2)2 =
(±2)2 + (±1)2), N5(3) = 24, etc. Their generating functions are:5

∞∑
n=0

Nn(k) xn = θ (x)k,

5 A fundamental principle in mathematics is: whenever you have a subscript with an infinite range, make a
power series (called a generating function) out of it.
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where

θ (x) = 1+ 2x + 2x4 + · · · =
∑
n∈Z

xn2

is called a theta function. It turns out that θ transforms nicely with respect to SL2(Z),
once we make the change-of-variables x = exp[π iτ ] (what we usually call

√
q). Write

θ3(τ ) for θ (x). Then θ3 is clearly invariant under the action of

(
1 2
0 1

)
, and a little work

(done next subsection) shows that

(
0 −1
1 0

)
takes θ3(τ ) to

√
τ
i θ3(τ ). Together those

two modular transformations generate the group

�θ :=
〈(

0 −1
1 0

)
,

(
1 2
0 1

)〉
=
{(

a b
c d

)
∈ SL2(Z) | ac ≡ bd ≡ 0 (mod 2)

}
.

(2.2.5)

θ3 is a modular form of weight 1
2 and nontrivial multiplier for �θ .

Jacobi introduced that important change-of-variables x = exp[π iτ ] two centuries ago,
in his analysis of elliptic integrals. His theory is poorly remembered today, which is very
disheartening considering how much of modern mathematics is touched by it. Have a
look at the book [94], written over a century ago; the style of mathematics in our time
is rather different from that in Jacobi’s, and we’ve lost a little in innocence what we’ve
gained in power. See also the beautiful book [414]. Let’s briefly sketch Jacobi’s theory.

Just as we could develop a theory of ‘circular functions’ (i.e. sine, etc.) starting from
the integral s(a) = ∫ a

0
dx√
1−x2 , so we can develop a theory of ‘elliptic functions’ starting

from the elliptic integral F(k, a) = ∫ a
0

dx√
(1−x2)(1−k2x2)

. Inverting s(a) gives a function

both more useful and with nicer properties than s(a): we call it sin(u). Similarly, for
any k the elliptic function sn(k, u) is defined by u = F(k, sn(k, u)). Just as we can
define a numerical constant π by sin( 1

2π ) = 1 (i.e. 1
2π =

∫ 1
0

dx√
1−x2 ), we get a function

K (k) = ∫ 1
0

dx√
(1−x2)(1−k2x2)

. Just as sin(u) has period 4( 1
2π ), so sn has u-period 4K (k). sn

also turns out to have u-period 4i K (k ′) where k ′ = √1− k2 – today we take this as the
starting point and define an elliptic function to be doubly periodic or, what is the same
thing, to be a function on a torus (Section 2.1.3).

Theta functions aren’t elliptic functions, but they are closely related, as we see in
Section 2.1.3. In Jacobi’s language, we have

θ3

(
i K (k ′)
K (k)

)
=
√

2K (k)

π
.

The ‘modular transformation’ τ �→ −1
τ

interchanges the ‘modulus’ k with the ‘comple-
mentary modulus’ k ′, and is completely natural in Jacobi’s theory. The important formula
θ3(−1

τ
) = √

τ
i θ3(τ ) is trivial here. Closely related to this is Poincaré’s remarkable path

to modular functions (Section 3.2.4).
Surprisingly, many seemingly innocent questions can be dragged (usually with effort)

into the richly developed realm of elliptic curves and modular forms, where they are often
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solved. For instance, we all know the ancient Greeks were interested in Pythagorean
triples: integer solutions a, b, c to a2 + b2 = c2, or equivalently right-angle triangles
with rational side-lengths (Section 2.1.1).

There are two ways of pushing this. One is to ask which n ∈ Z can arise as areas of
these rational right-angle triangles. It turns out n = 5 is the smallest one: a = 3

2 , b = 20
3 ,

c = 41
6 works (5 = 1

2 ( 3
2 )( 20

3 ) and ( 3
2 )2 + ( 20

3 )2 = ( 41
6 )2). This is a hard problem – just try

to show n = 1 cannot work. The number n = 157 works, though the simplest triangle
has a and b as quotients of integers of size around 1025, and c as the quotient of integers
around 1047. Although this problem was studied by the ancient Greeks and also by the
Arabs in the tenth century, it was finally cracked in the 1980s by first translating it into
the question of whether the elliptic curve y2 = x3 − n2x has infinitely many rational
points.

The other extension of Pythagorean triples is more famous: find all integer solutions
to an + bn = cn . 350 years ago Fermat wrote in the margin of a book he was reading (the
book was describing at that point Diophantus’classification of Pythagorean triples) that
he had found a ‘truly marvelous’ proof that for n > 2 there are no nontrivial solutions, but
that the margin was too narrow to contain it. This result came to be known as ‘Fermat’s
Last Theorem’6 and despite considerable effort no one has succeeded in rediscovering his
proof. Most people believe that Fermat soon realised his ‘proof’ wasn’t valid, otherwise
he would have alluded to it in later letters. In any case, a very long and complicated proof
was finally achieved in the 1990s: the ‘Taniyama–Shimura conjecture’ says that a certain
function associated with any elliptic curve over Q will be modular; if an + bn = cn

for some n > 2 and nonzero integers a, b, c, then the elliptic curve y2 = x3 + (an −
bn)x2 − anbn will violate that conjecture; finally, Wiles proved the Taniyama–Shimura
conjecture.

A certain interpretation of modular functions also indicates their usefulness, and
explains the adjective ‘modular’. The moduli space of tori is SL2(Z)\H (Section 2.1.4).
So if we have a complex-valued function F on the set of all tori, which associates the
same value to conformally equivalent tori (an example is the genus-1 partition function
(4.3.8b) in conformal field theories), then F is a function F : H → C, symmetric with
respect to SL2(Z).

Likewise, suppose we are interested in meromorphic functions f : �→ C living on
some surface �.We know from the last section that almost every surface � is a quotient
� = �\H, for some Fuchsian group �. Then f can be lifted to a meromorphic function
on H with symmetry �.

What is the meaning of the Fourier expansion? Think of the parameter q as the local
coordinate about the cusp i∞. The Fourier expansion is simply the local expansion of
f about that cusp. There is a similar expansion about any other cusp x ∈ Q. In the case
of SL2(Z), all cusps are equivalent, but for smaller groups the cusps typically fall into

6 It was called his ‘Last Theorem’ because it was the last of his 48 margin notes to be proved by other
mathematicians – a different margin note is discussed in Section 1.7. The story of Fermat’s Last Theorem is
a fascinating one, but alas this footnote is too small to do it credit. See for instance the excellent book [508].
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several distinct orbits, and the corresponding expansions carry independent information.
These coefficients are often quite interesting (e.g. they may give the numbers of solutions
to various equations, or the dimensions of certain subspaces). The modular form f is a
holomorphic interpolation between this local information.

2.2.2 Theta and eta

Two modular forms that appear throughout the following are the Jacobi theta function
θ3 and the Dedekind eta function η:

θ3(τ ) := 1+ 2
∞∑

m=1

qn2/2 =
∞∏

n=1

(
1+ q (2n−1)/2)

)2
∞∏

n=1

(1− qn), (2.2.6a)

η(τ ) := q1/24
∞∏

n=1

(1− qn) = q1/24
∞∑

m=−∞
(−1)mq (3m2+m)/2. (2.2.6b)

The equality in (2.2.6a) comes from the denominator identity (3.4.5b) for A(1)
1 , while that

in (2.2.6b) comes from Euler’s pentagonal identity; in both cases the first expressions are
more important. We saw θ3 last subsection. Unlike the Eisenstein series, its modularity is
not obvious. It can be established though in a number of ways, the most familiar perhaps
being Poisson summation. This says that for any rapidly decreasing smooth function
g : R → C (g is in the Schwartz space S(R) of Section 1.3.1),∑

n∈Z

g(n) =
∑
m∈Z

ĝ(m), (2.2.7a)

where ĝ is the Fourier transform of g:

ĝ(y) =
∫ ∞

−∞
e−2π ixy g(x) dx . (2.2.7b)

Choose g(x) = e−π t x2
with t ∈ R, so τ = it ∈ H; then ĝ(y) = √1/t e−πy2/t and we

obtain (by analytic continuation to all τ ∈ H) the transformation formula for θ3 under
τ �→ −1/τ :

θ3

(−1

τ

)
=
√
τ

i
θ3(τ ). (2.2.7c)

θ3 is a modular form for �θ (2.2.5) of weight 1/2 and nontrivial multiplier. Both Poisson
summation and its application to (2.2.7c) are due to Gauss. In Question 2.2.4 you are
asked to prove Poisson summation, and next subsection we try to understand what it is
saying. In Sections 2.3.1, 2.3.4 and 2.4.2 we give alternate proofs of (2.2.7c).

The modularity of η can be summarised by

η(τ + 1) = ξ24 η(τ ), (2.2.8a)

η

(−1

τ

)
=
√
τ

i
η(τ ), (2.2.8b)

where ξ24 = exp[2π i/24].
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More generally, we get the complicated transformation law

η

(
aτ + b

cτ + d

)
= μ(a, b, c, d)

√
cτ + d η(τ ), ∀

(
a b
c d

)
∈ SL2(Z), (2.2.8c)

where, for c > 0, μ(a, b, c, d) = exp(π i ( a+d
12c − 1

2 − s(d, c))) for the Dedekind sum

s(d, c) =
c−1∑
i=1

i

c

(
di

c
−
⌊

di

c

⌋
− 1

2

)
. (2.2.8d)

For c = 0, the transformation follows immediately from (2.2.8a), while for c < 0 an
analogue to (2.2.8c) holds. The denominator of the rational number s(d, c) will always
divide 6c;μwill always be a 24th root of 1. Although Dedekind sums have many special
properties [468], we find in Section 2.4.3 a much cleaner way to write (2.2.8c). In any
case, η is a modular form for SL2(Z) of weight 1

2 and nontrivial multiplier.
Once again, (2.2.8a) is immediate from the definition (2.2.6b) and isn’t deep. There

are several arguments in the literature that establish (2.2.8b), including Poisson sum-
mation applied to the series in (2.2.6b). Here is another, which is instructive for other
reasons. In the following paragraph, let’s not be distracted by mere analytic concerns,
like convergence or interchanging integrals and infinite sums.

Fix τ = it , t > 0. The expression

−1

4

∫
(θ3(ist)− 1)(θ3(is/t)− 1) ds (2.2.9a)

is manifestly invariant under the transformation t �→ 1/t . Applying the transformation
(2.2.7c) to θ3(is/t) and expanding out both θ3’s, we get

−1

4

∫ ( ∞∑
�=1

2e−πst�2

)(√
t

s

(
1+ 2

∞∑
n=1

e−π tn2/s

)
− 1

)
ds (2.2.9b)

= −
∞∑
�=1

∞∑
n=1

∫ √
t

s
e−πst�2−π tn2/sds + 1

2

∞∑
�=1

∫
eπst�2

ds − 1

2

∞∑
�=1

∫ √
t

s
e−πst�2

ds.

Now, replace the indefinite integral here with
∫∞

0 . The third term in the right-side of
(2.2.9b) is independent of t (to see this, change variables: y = ts) and so is a constant.
The second term can be evaluated explicitly:

1

2

∞∑
�=1

∫ ∞

0
e−πst�2

ds = 1

2

∞∑
�=1

1

π t�2
= 1

2π t

π2

6
= π

12t
. (2.2.9c)

To simplify the first term of (2.2.9b), replace s with x2 and apply the identity

e−2
√

ab = 2

√
a

π

∫ ∞

0
e−ax2−bx−2

dx

(this is identity 3.325 of [258]) with a = π t�2, n = π tn2. The first term becomes

−
∞∑
�=1

∞∑
n=1

1

�
e−2π t�n = −

∞∑
n=1

log(1− e−2π tn).
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Putting these together, we get

−1

4

∫ ∞

0
(θ3(ist)− 1)(θ3(is/t)− 1) ds = log η(it)+ π t

12
+ π

12t
+ C

for some constant C .
Two unfortunate remarks should probably be made regarding this calculation. First, it

would imply (2.2.8b) holds without the prefactor
√
τ/i. Second, the constant C diverges,

as does the integral in (2.2.9a). Calculations like this mellow somewhat one’s disdain for
analysis. The way to proceed is to ‘regularise’ (2.2.9a) by subtracting from the integrand
near s = 0 the term s−1 responsible for the divergence. This results in the identity

log η(it) = −1

4

∫ ∞

1
(θ3(ist)− 1)(θ3(is/t)− 1) ds − 1

4

∫ 1

0
(θ3(ist)− 1)(θ3(is/t)− 1)

−s−1 ds − π t

12
− π

12t
− 1

4
log t. (2.2.9d)

In Question 2.2.5 the reader is asked to fill in the details, proving (2.2.9d) and thus
(2.2.8b). We see from this argument that the mysterious power 1/24 in (2.2.6b), required
for the modularity of η, in fact equals ζ (2)/(2π )2.

At least in spirit, this calculation is reminiscent of the regularisation of Feynman
integrals in quantum field theory (Section 4.2.3). For example, the Dedekind eta arises
in the calculation of the one-loop partition function of a boson compactified on a circle
(see e.g. section 8 of [246]). The normalisation factor there involves the product of the
nonzero eigenvalues of the Laplacian ∂2

∂x2 + ∂2

∂y2 on the torus C/(Z+ τZ): namely the

modulus-squared |D|2 of

D(τ ) =
∏

(m,n)�=(0,0)

π

τ2
(n − τm), (2.2.10a)

where τ2 = Im(τ ) > 0. This expression diverges enthusiastically, but it is to be inter-
preted using the substitutions (zeta-function regularisation)

∞∏
n=1

a = aζ (0) = a−
1
2 ,

∞∏
n=1

nα = e−αζ
′(0) = (2π )α/2,

∞∏
n=1

an = aζ (−1) = a−
1
12 ,

(2.2.10b)
where ζ here is the Riemann zeta function (2.2.3c). It is found that

D(τ ) = 2τ2 η(τ )2. (2.2.10c)

In this ‘derivation’ of η, the exponent 1/24 in (2.2.6b) equals−ζ (−1)/2. Since the values
ζ (−1) and ζ (2) are related by the functional equation (2.3.2), they are indeed equiva-
lent. Also, note that (2.2.10a) obeys D(τ + 1) = D(τ ) and D(−1/τ ) = D(τ )/τ , while
(2.2.10c) obeys D(τ + 1) = eπ i/6 D(τ ) and D(−1/τ ) = −iD(τ )/τ . Thus the identifi-
cations (2.2.10b) don’t preserve modular behaviour. It is somewhat reminiscent of the
−s−1 regularisation in (2.2.9), which breaks the t ↔ 1/t symmetry.

Prefactors qm as in (2.2.6b) are very common, as we shall see later with the characters
of Kac–Moody algebras or vertex algebras. In Monstrous Moonshine, this is the q−1 with
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which the j-function begins. These factors are a little mysterious – for example, why
start the grading in (0.3.1) at−1 rather than 0 – and there are several explanations (Sec-
tions 3.1.2, 3.2.3 and 5.3.4). The point of our little digression into string theory is to intro-
duce its term conformal anomaly for this factor qm . In physics, an anomaly is a symmetry
of a classical system that is broken in its quantisation. Here, the τ �→ τ + 1 symmetry
(an aspect of conformal invariance) of D(τ ) is broken by regularisation, an anomaly.

We see in (2.2.3a) that the coefficients of the q-expansion of Eisenstein series are
interesting. In fact, we are usually more interested in the coefficients of a modular form
than in the function itself. A classic example of this is the theta series of a lattice. Let
L ⊂ Rn be any n-dimensional positive-definite lattice (Section 1.2.1), and choose any
vector t ∈ Rn . Define

t+L (τ ) :=
∑

x∈t+L

qx ·x/2. (2.2.11a)

In words, the coefficient of qr is the number of vectors in t + L with length
√

2r . For
example, Z = θ3. Let L be rational (i.e. for all u, v ∈ L we have u · v ∈ Q) and t have
finite order m in L (i.e. mt ∈ L). Then Poisson summation again yields

t+L

(−1

τ

)
= (τ/i)n/2

√|L|
m−1∑
k=0

ξ k
m ks+L0 (τ ), (2.2.11b)

where (as always) ξm := exp[2π i/m], s ∈ L∗ satisfies s · t ≡ 1
m (mod 1) (why must such

a vector s always exist?) and where L0 = {u ∈ L∗ | u · t ∈ Z}. In particular,

L

(−1

τ

)
= (τ/i)n/2

√|L| L∗ (τ ). (2.2.11c)

Definition 2.2.2 Let I be a finite set, and suppose for each i ∈ I we have a function
fi (τ ) meromorphic in H and with q-expansion fi (τ ) =∑

r∈Q ar,i qr , such that for each
N only finitely many r < N have nonzero coefficients ar,i . We call the set { fi (τ )}i∈I a
vector-valued modular function for SL2(Z) with multiplier ρ : SL2(Z) → GLI (C) if, for
each A ∈ SL2(Z) and i ∈ I, we have

fi

(
aτ + b

cτ + d

)
=
∑
j∈I

ρ(A)i j f j (τ ).

The strange condition on the ar,i simply says that each fi is meromorphic at τ = i∞.
Vector-valued modular forms are studied in, for example, [350]. By the usual argument,
ρ will be a ‖I‖-dimensional representation of SL2(Z). We are interested in the case
when the matrices ρ(A) are unitary. In this case, at least when the functions fi (τ )
are linearly independent, a vector-valued modular function for SL2(Z) defines a flat,
holomorphic, Hermitian vector bundle over M1,0: namely, the diagonal quotient (H×
span{ fi (τ )})/PSL2(Z). The fibre above any point in M1,0 will be ‖I‖-dimensional,
except possibly for the singular points [i] and [eπ i/3]. The fi are holomorphic sections
of this bundle.
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A classical property of theta functions, apparently due in this generality to Hecke
in 1940, anticipates beautifully what we see later in this book in more and more
generality.

Theorem 2.2.3 Let L ⊂ Rn be any n-dimensional positive-definite lattice.
(a) Suppose for all v ∈ L that v · v ∈ Q. Let t ∈ Rn be any vector with finite order in

L: i.e. mt ∈ L for some nonzero m ∈ Z. Then the theta series L+t (τ ), divided by
η(τ )n, is a modular function for some �(N ).

(b) Suppose further that L is an even lattice (i.e. all v · v lie in 2Z), and let L∗ be its dual.
Write ti + L, i = 1, . . . , M, for the finitely many cosets in L∗/L. Define a column
vector !χL (τ ) with i th component ti+L (τ )/η(τ )n. Then !χL forms a vector-valued
modular function for SL2(Z).

For the proof of part (a), see theorem 20 of [456]. Part (b) follows quickly from (2.2.11b)
and (2.2.8). This theorem can be interpreted as being a special case of Theorem 3.2.3
below, when g is the affinisation of the reductive (abelian) Lie algebra Cn . Note, however,
that the functions in (2.2.11a) are linearly dependent, and so the matrices ρ(A) are not
uniquely defined by (b). The easiest way to get linear independence is by adding variables
(Section 2.3.2).

The Leech lattice� (Section 1.2.1) is to lattices much as the Moonshine module V � is
to VOAs (see Section 7.2.1 below). It has no length-squared 2-vectors, and has precisely
196 560 length-squared 4-vectors – a number remarkably close to the monstrous 196 883.
Indeed its theta function�(τ ), when divided byη(τ )24, equals J (τ )+ 24. Is this another
example of Moonshine, on par with McKay’sequation (0.2.1a)?

Indeed it is. However, for the Leech lattice �, we can quickly identify �(τ ) in terms
of J (τ ) (see Question 2.2.7). Although the 196 560 ≈ 196 884 coincidence is thus easy
to explain, it nevertheless turns out to be an instructive example of Moonshine.

2.2.3 Poisson summation

Theta series (2.2.11a) are sums, over periodic sets, of the exponential of a quadratic
polynomial. According to the argument given last subsection, two ingredients go into
their modularity: together with Poisson summation (2.2.7a), we also needed the fact
that the Fourier transform of the Gaussian e−t x2

is essentially itself. Poisson summation
requires the infinite periodic sum. There are many other simple functions f that are
likewise nearly invariant under Fourier transform: for example, the Fourier transform
over R2 of f (x, y) = eix3/y y−2/3sign(y) is i f (x,−y/27). For several other examples,
see [176]. To see how to use this to get ‘cubic’ analogues of theta functions (which will
transform nicely with respect to SL3(Z)), as well as possible applications to physics, see
the intriguing review [462] and references therein.

What is the other ingredient, Poisson summation, really saying? Meaning arises from
a natural embedding of the particular into a more general context, so let’s try to generalise
Poisson summation.
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First, let G be a group – we require it to be a topological group (separable and locally
compact). As defined in Section 1.5.5, its unitary dual Ĝ consists of all unitary irreducible
representations. For example, the unitary duals of R and Z can be identified with R and
S1, respectively, while the unitary dual of compact groups (like finite G or G = S1)
consists of a discrete set of points. When the group is abelian, the representations π ∈ Ĝ
are all one-dimensional; the dual Ĝ itself forms an abelian group, and Pointrjagin duality

says that the double-dual ˆ̂G is isomorphic to G. For example, the representations in R̂
look like ψλ(x) = e2π iλx for each λ ∈ R, so R̂ ∼= R. When G is non-abelian, Pointrjagin
duality becomes the more abstract Tannaka–Krein duality of Section 1.6.2.

Let us begin with abelian groups. Let � be a (discrete) subgroup of an abelian group
G, such that the quotient �\G is compact. The theta series modularity arguments last
subsection correspond to the choices G = R and � = Z and, more generally, G = Rn

and � = L; of course the circle Z\R and the n-torus L\Rn are compact.
The Fourier transform f �→ f̂ for the group G – explicitly, f̂ (ψ) = ∫

G f (x)ψ(x) dx –
is a unitary map taking Schwartz functions on G to Schwartz functions on the dual Ĝ.
Incidentally, the integrals here and below are with respect to the invariant Haar measure
(Section 1.5.4). Then the classical Poisson summation (2.2.7a) becomes∫

�

f (γ ) dγ =
∫
�⊥

f̂ (ψ) dψ, (2.2.12)

where �⊥ consists of all ψ ∈ Ĝ such that ψ(γ ) = 1 for all γ ∈ �. The integrals here
reduce to sums, thanks to discreteness. It is through �⊥ that the dual lattice L∗ enters
into (2.2.11c). Since Z⊥ = Z, we find that (2.2.12) is indeed a generalisation of (2.2.7a).

(2.2.12) is too easy a generalisation to help us much.The meaning of Poisson summa-
tion, and of (2.2.12), becomes a little clearer when we generalise to non-abelian groups.
Let � now be an arbitrary discrete closed subgroup of a separable locally compact group
G. G and � may or may not be abelian. For simplicity we assume that the coset space
�\G is compact. Then �\G has a finite invariant measure, and the space L2(�\G) of
square-integrable functions forms a Hilbert space (Section 1.3.1). The regular represen-
tation R of G on L2(�\G) is defined by (R(x) f )(y) = f (yx), as usual, and is unitary.
This representation decomposes as a direct sum of irreducible unitary representations:

L2(�\G) = ⊕π∈Ĝmππ,

where the numbers mπ ≥ 0 are the (finite) multiplicities.
Even though R is infinite-dimensional, we can define a character for it as follows. For

any sufficiently nice function φ on G (e.g. φ smooth and of compact support), define the
operator R(φ) = ∫

G φ(y) R(y) dy on L2(�\G) by

(R(φ) f )(x) =
∫

G
φ(y) f (xy) dy.

This assignment φ �→ R(φ) forms a representation of the algebra of smooth functions
with compact support, with multiplication given by convolution φ ∗ φ′. The trace of an
operator is defined to be the sum of its eigenvalues. It can be shown that the trace tr R(φ)
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exists, and in fact equals∑
π∈Ĝ

mπ trπ (φ) =
∑
γ∈T

vol(�γ \Gγ )
∫

Gγ \G
φ(x−1γ x) dx, (2.2.13)

where T is a set of conjugacy class representatives in �, and �γ and Gγ are the sta-
bilisers of γ in � and G, respectively (e.g. �γ = {g ∈ � | gγ g−1 = γ }). The left side of
(2.2.13) is obviously spectral, that is involves eigenvalues. The right side is geometric;
the integral over Gγ \G is called an ‘orbital integral’. Equation (2.2.13) has an immediate
generalisation: replace the regular representation R of G on L2(�\G) with any represen-
tation of G induced from a finite-dimensional unitary representation ρ of �. The trivial
representation of � yields the regular representation R. [20] gives the straightforward
proof of (2.2.13) as well as other generalisations.

In the abelian case (e.g. G = Rn, � = L), all mπ = 0 or 1 and �⊥ consists of all
π ∈ Ĝ with mπ = 1, and (2.2.13) reduces to (2.2.12). In effect we have reinterpreted
the Fourier transform f̂ (ψ) by fixing ψ ∈ Ĝ and varying the function f , as a sort
of character value for the (possibly infinite-dimensional) irreducible representation ψ .
Another special case of (2.2.13) is to take the group G to be finite, in which case it
reduces to Frobenius reciprocity. Interesting finite group applications are described in
chapters 22–25 of [522].

Equation (2.2.13) is called the Selberg trace formula; there is a more complicated
version (due in fuller generality to Arthur) when �\G is noncompact (in which case
there are continuous parts to the spectrum). Selberg (a 1950 Fields medalist) was most
interested in the case where G = SL2(R) and, for example, � = SL2(Z), which has
noncompact quotient. For this G he found explicit expressions for the orbital integrals,
and the resulting trace formula has powerful consequences.

The Selberg trace formula (2.2.13) can be thought of as an expression for the character
of the regular representation of G on L2(�\G). This expression is geometric in the
sense that for typical groups, the quantities on the right-side typically have geometric
interpretations (e.g. for G = SL2(R), and� a Fuchsian group acting without fixed points,
the orbital integrals can be expressed using lengths of closed geodesics on the compact
Riemann surface�\H). Of course these orbital integrals, and hence much of the potential
geometry, are trivial in the abelian group case used last section.

Although Poisson summation, and its generalisations like the Selberg trace formula,
play a central role in the theory of automorphic forms and Langlands programme, they
have only played sporadic roles so far in Moonshine and conformal field theory. For
example, [130] applies the Selberg trace formula to string theory, to find the trace of
the heat kernel. Orbital integrals also play a fundamental role in the approach [346] to
understand group representations via coadjoint orbits; I. Frenkel extended this method
to express the characters of affine Kac–Moody algebras as orbital integrals [198], and
in this way obtained new proofs of the Macdonald identities. It seems unlikely though
that Poisson’s and Selberg’s formulae can provide a unified explanation of all modu-
larity proofs in Moonshine. A rigorous proof in mathematics may be too slick, much
as a painting can be too photographic. It seems to this author that, although Poisson
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summation permits a quick proof of theta function modularity, it doesn’t tell us why it’s
true. A conceptual proof should open the door to natural generalisations of the given
theorem, by underscoring the confluence of properties needed for that theorem to hold.

2.2.4 Hauptmoduls

Let’s identify the orbit space SL2(Z)\H, by studying the fundamental domain D of
Figure 2.3. Apart from the boundary of D, every SL2(Z)-orbit will intersect D in one and
only one point. But what should we do about the boundary? Well, the edge Re(τ ) = − 1

2
gets mapped by the translation T : τ �→ τ + 1 to the edge Re(τ ) = 1

2 , so we should
identify these, i.e. glue them together. The result is a cylinder running off to infinity,
with a strange lip at the bottom. The inversion S : τ �→ −1/τ tells us how we should
close that lip: identify ieiθ and ie−iθ . This seals the bottom of the cylinder, so we get an
infinitely tall cup with a strangely puckered base. In fact the top of this cup is also capped
off, by the cusp i∞. So what we have (topologically speaking) is a sphere. It inherits
the smoothness of H except for conical singularities at the fixed points i and eπ i/3. The
cusps are responsible for compactness. This interpretation of SL2(Z)\H means that a
modular function for SL2(Z) can be reinterpreted as a meromorphic complex-valued
function on this sphere. There is a canonical sphere in complex analysis, namely the
Riemann sphere P1(C) = C ∪ {∞}. The meromorphic functions on the Riemann sphere
must be rational, that is of the form f (w) = some polynomial P(w)

some polynomial Q(w) , where w is the complex
parameter on the Riemann sphere. So a modular function f (τ ) for SL2(Z) is simply some
rational function P/Q evaluated at the change-of-local-parameters, or at the uniformising
function w = c(τ ) that maps us from our sphere �\H to the Riemann sphere. There are
many different choices for this function c(τ ), but the standard one is the j-function:7

j(τ ) :=
(
1+ 240

∑∞
n=1 σ3(n) qn

)3

q
∏∞

n=1(1− qn)24
= E8 (τ )3

η(τ )24
= q−1 + 744+ 196 884 q + · · ·

(2.2.14)
(see also (0.1.8)), where σ3 is in (2.2.3b), E8 is the theta series of the E8 root lattice
(2.2.11a) and η is the Dedekind eta (2.2.6b). Thus, any modular function for SL2(Z) can
be written as a rational function f (τ ) = P( j(τ ))/Q( j(τ )) in the j-function. Conversely,
any such function is modular.

This is analogous to (and much stronger than) saying that any function g(x) periodic
under x �→ x + 1 is really a function on the unit circle S1 ⊂ C evaluated at the uni-
formising function x �→ e2π ix , and hence has a Fourier expansion

∑
n gn exp[2π inx].

We can generalise the argument that led to j . Recall (2.2.4).

Definition 2.2.4 Call a discrete subgroup � of SL2(R) a congruence subgroup if it
contains some �(N ). Call it of moonshine-type if it contains some �0(N ), and obeys(

1 t
0 1

)
∈ � ⇒ t ∈ Z. (2.2.15)

7 Historically, j was the standard choice, but in Monstrous Moonshine the preferred choice would be the
function J = j – 744 with zero constant term.
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The congruence subgroups are relatively rare among finite index subgroups of SL2(Z),
but their theory is much better developed. Let f be a modular function for a congruence
subgroup �. Then we can expand f as a Laurent series in q1/N . We analyse this as
before: look at the orbit space � = �\H; because � is not too big, � will be a Riemann
surface; because � is not too small, � will be compact.

We call � ‘genus g’ if its surface� has genus g. If � is a subgroup of �(1) = SL2(Z),
and without loss of generality we have −I ∈ �, then the genus is given by

g = 1+ n

12
− n2

4
− n3

3
− n∞

2
, (2.2.16)

where n is the index ‖�(1)/�‖ of � in �(1), and where nk (k = 2, 3,∞) is the number
of �-orbits of order-2k fixed points. For the easy proof from the Hurwitz formula, see
proposition 1.40 of [505]. Note that n∞ is the number of punctures of�\H. For example,
for � = SL2(Z) we have n = 1 = n2 = n3 = n∞ and we recover our result that the
genus is 0. The values n, n2, n3, n∞ for all �(N ) and �0(N ) are given in Section 1.6
of [505].

For example, � = �0(2) and � = �0(25) are both genus 0 (with 2, respectively 6,
punctures), while �0(50) is genus 2 with 12 punctures and �0(24) is genus 1 with 7
punctures. Once again, we are interested here in the genus-0 case. As before, this means
that there is a uniformising function J� that is a modular function for �, and all other
modular functions for � can be written as a rational function in it. Because of (2.2.15),
we can choose J� to look like

J�(τ ) = q−1 + a1(�) q + a2(�) q2 + · · ·
So J� , the Hauptmodul for �, plays exactly the same role for � that J := j − 744 plays
for SL2(Z). For example, �0(2), �0(13) and �0(25) are all genus 0, with Hauptmoduls

J2(τ ) = q−1 + 276 q − 2048 q2 + 11202 q3 − 49152 q4 + 184024 q5 + · · · ,
(2.2.17a)

J13(τ ) = q−1 − q + 2 q2 + q3 + 2 q4 − 2 q5 − 2 q7 − 2 q8 + q9 + · · · , (2.2.17b)

J25(τ ) = q−1 − q + q4 + q6 − q11 − q14 + q21 + q24 − q26 + · · · (2.2.17c)

The smaller (sparser) the modular group, the smaller the coefficients of the Hauptmodul.
In this sense, the j-function is optimally bad among the Hauptmoduls: for example, for
it a23 ≈ 1025.

In Theorem 2.1.5 we see what happens in genus > 0: two generators, not one, are
needed, although they will be polynomially related.

As is mentioned in Chapter 0, Monstrous Moonshine is interested directly in genus-0
groups. We construct certain functions associated with the Monster, and it turns out
unexpectedly that these functions are actually Hauptmoduls.

An obvious question is, how many genus-0 groups (equivalently, how many Haupt-
moduls) are there? It turns out that �0(p) is genus 0, for a prime p, iff p − 1 divides 24.
Thompson [526] proved that for any g, there are only finitely many genus-g groups of
moonshine type. Cummins [121] has shown that there are in fact exactly 6486 genus-0
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groups of moonshine type. 616 of these have Hauptmoduls with integer coefficients
ai (�), and all of the remainder have q-coefficients in some cyclotomic field.

Question 2.2.1. How important are the conditions at the cusps for the definition of
modular functions or forms? For example, describe all functions f holomorphic on C,
symmetric with respect to SL2(Z) (i.e. f (γ.τ ) = f (τ ) for all γ ∈ SL2(Z)), but which
need not be holomorphic or even meromorphic at the cusps (i.e. f may have an essential
singularity there).

Question 2.2.2. Show that if f is a modular form of weight k, and 3 doesn’t divide k,
then f (e2π i/3) = 0.

Question 2.2.3. Suppose f is a modular form, not identically 0, for some �, with multi-
plier μ and integral weight k. Prove that μ must be a one-dimensional representation of
�. Where does the proof go wrong if k is fractional?

Question 2.2.4. Prove Poisson summation (2.2.7a). (Hint: x �→ f̃ (x) =∑
n∈Z f (n + x)

is periodic, so can be Fourier expanded. Compute f̃ (0) in two different ways.)

Question 2.2.5. By modifying slightly the argument beginning with (2.2.9a), prove
(2.2.9d) and thus (2.2.8b).

Question 2.2.6. Let L be any self-dual positive-definite lattice. Then L (τ ) is a polyno-
mial in θ3(τ ) and E8 (τ ) (you can assume this, which is proved for instance in [503]).
Using this fact, show that the theta function for any self-dual positive-definite lattice of
dimension < 24 is uniquely determined by the numbers N1, N2 of norm-squared 1- and
2-vectors.

Question 2.2.7. Let L be a positive-definite 24-dimensional even self-dual lattice. Prove
that L (τ )/η(τ )24 = J (τ )+ cL for some constant cL . Find that constant.

Question 2.2.8. Find the genus of �(2), using (2.2.16).

2.3 Further developments

2.3.1 Dirichlet series

One of the most remarkable formulae in science is surely

1+ 2+ 3+ 4+ · · · = − 1

12
. (2.3.1)

Of course the right side is the value at s = −1 of the Riemann zeta function (2.2.3c).
The expressions in (2.2.3c) converge absolutely when Re(s) > 1, where ζ is then holo-
morphic, and ζ has a unique holomorphic extension to all of C, except for a simple pole
at s = 1 (the harmonic series). Equation (2.3.1) is used in quantum field theory in the
context of zeta function regularisation (2.2.10); it is related to the q1/24 in the Dedekind
eta function (2.2.6b) and the normalisation C/12 in Lie brackets (3.1.5a) of the Virasoro
algebra.
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The equality of the infinite sum and product in (2.2.3c) is merely an analytic reformu-
lation of unique factorisation in Z, but it shows crucially the relation between ζ (s) and
the primes. For a trivial example, taking logs of (2.2.3c) quickly gives the divergence of∑

1/p.
As important as analytic continuation and the product expansion are, more important

for us is the functional equation

�(1− s) = �(s), (2.3.2)

where �(s) := π−s/2�(s/2) ζ (s), using the Gamma function

�(s) := (2π )s
∫ ∞

0
e−2πy ys−1dy.

Indeed, Hecke discovered that (2.3.2) is equivalent to modularity (2.2.7c).

Theorem 2.3.1 (Hecke, 1936) Let f (τ ) =∑∞
n=0 ane2π inτ/d and φ(s) =∑∞

n=1 ann−s ,
where |an| < Cnc for some constants d,C, c. Define �(s) = (2π/d)−s�(s)φ(s). Then
the following two statements are equivalent:
(i) f (−1

τ
) = (

τ
i

)k
f (τ );

(ii) �(k − s) = �(s), and �(s)+ a0
s + a0

k−s is holomorphic and bounded in each
vertical strip in H.

Proof: The key idea of the proof is that �(s) and f (τ ) are related by the Mellin
transform:

�(s) =
∫ ∞

0
xs−1 ( f (ix)− a0) dx, (2.3.3a)

f (ix)− a0 = 1

2π i

∫
Re(s)=a

x−s �(s) ds, (2.3.3b)

for any constant a > 0 sufficiently large.
To prove (ii) from (i), write

∫∞
0 = ∫ 1

0 +
∫∞

1 in (2.3.3a), so we get the sum �(s) =
�0 +�∞. Note that�∞(s) is clearly holomorphic everywhere, andφ0(s) is holomorphic
when Re(s) is sufficiently large. Then, using (i), for those s

�0(s) =
∫ 1

0
xs−1 ( f (ix)− a0) dx =

∫ ∞

1
x−s−1xk f (ix) dx − a0

s

= �∞(k − s)− a0

s
− a0

k − s
.

Therefore �0(s) extends holomorphically everywhere, except for simple poles at s = 0
and s = k, and �0(s) = �∞(k − s)− a0s−1 − a0(k − s)−1 holds ∀ s �= 0, k. Thus

�(k − s) = �0(k − s)+�∞(k − s)

=
(
�∞(s)− a0

k − s
− a0

s

)
+
(
�0(s)+ a0

s
+ a0

k − s

)
= �(s).
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To prove (i) from (ii), shift the vertical contour Re(s) = a > 0 in (2.3.3b) to the left,
to Re(s) = b < 0, and pick up residues −a0 at s = 0 and x−ka0 at s = k:

f (ix)− a0x−k = 1

2π i

∫
Re(s)=b

x−s�(s) ds = 1

2π i

∫
Re(s)=k−b

x−(k−s)�(s) ds

= x−k ( f (i/x)− a0).

Therefore f (i/x) = xk f (ix), and (i) follows by analytic continuation.

When f is a modular form, we callφ the Dirichlet series or L-function corresponding to
f (the term L-function is usually reserved for thoseφwhich also have product expansions
as in (2.2.3c)). The modular form corresponding to the Riemann zeta function ζ (s) is
f (τ ) = 1

2θ3(τ ). Theorem 2.3.1 applies with k = 1
2 , d = 2 and�(2s) = �(s), and relates

(2.3.2) directly to (2.2.7c). Another famous example, due to Ramanujan, is f = η24. Its�
is holomorphic everywhere and its φ has a product form

∏
p(1− τ (p)p−s + p11−2s)−1,

where τ here is the so-called Ramanujan tau-function (see e.g. (3.4.6)).
Mysteriously, we can associate Dirichlet series to many of the basic objects of arith-

metic – modular forms, number fields, algebraic varieties, etc. – in such a way that
basic operations performed on, and relations between, the Dirichlet series correspond to
natural operations on, and relations between, the arithmetic objects. In its most general
form, this is Langlands functoriality. For a famous special case, given an elliptic curve E
defined over Q, its L-function keeps track of the number of points on E as we vary its field
of definition from Q to the finite fields. The Taniyama–Shimura Conjecture states that E
is modular, i.e. that this L-function is the Dirichlet series of a modular form of weight 2.
As we know, Wiles et al. proved Taniyama–Shimura and hence Fermat’s Last Theorem.

See [456] for a clear treatment of the material of this subsection. We have been hurried
since there is at this point no evidence for its direct relevance to Moonshine. There are
many generalisations of Theorem 2.3.1. Let us mention one. Generators for the groups
SL2(Z) and�θ are given in (2.2.1a) and (2.2.5), so Theorem 2.3.1 gives a Dirichlet series
characterisation for f to be a modular form for those groups. When � is smaller (say
� = �(N )), to which Dirichlet series conditions does the modularity of f translate? The
list of generators is far more complicated. An answer is provided by Weil’s Converse
Theorem (Section 2.3.3).

2.3.2 Jacobi forms

The general quadratic polynomial in one variable x looks like ax2 + bx + c, so we
might try to generalise θ3(τ ) by replacing n2τ with an2τ + bnz + cu. Consider then the
function

θ3(τ, z, u) =
∑
n∈Z

eπ iτn2+2π izn+2π iu, (2.3.4)

where τ, z, u ∈ C. We’ve seen these kinds of functions before in (2.1.7a). The 2π i’s in
front of z and u are conventional. As before, convergence requires τ ∈ H. Obviously,
the u-dependence is rather trivial and is retained only for book-keeping.
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Fix τ ∈ H and u ∈ C, and consider this as a function of z ∈ C. It has period 1 and
quasi-period τ :

θ3(τ, z + mτ + �, u + mz + m2τ/2) = θ3(τ, z, u), ∀m, � ∈ Z, (2.3.5a)

and thus is a function living (projectively) on the torus C/(Z+ τZ).
Next, fix z, u ∈ C and consider θ3 as a function of τ ∈ H. Completing the square τn2 +

2nz = τ (n + z
τ

)2 − z2

τ
and restricting τ, z to the imaginary axis, Poisson summation

(2.2.7a) and analytic continuation gives us

θ3(τ, z, u) =
√

i

τ
θ3

(−1

τ
,

z

τ
, u − z2

2τ

)
, (2.3.5b)

valid for all τ ∈ H and z, u ∈ C.

Definition 2.3.2 [170] By a Jacobi form for SL2(Z) of weight k and index m we mean
a holomorphic function f : H× C → C satisfying

f

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)k exp

[
2π i

mcz

cτ + d

]
f (τ, z), (2.3.6a)

f (τ, z + �τ + n) = exp[−2π im (�2τ + 2�z)] f (τ, z), (2.3.6b)

for all

(
a b
c d

)
∈ SL2(Z) and �, n ∈ Z. Moreover, f must have a Fourier expansion of

the form

f (τ, z) =
∑
n∈N

∑
r∈Z, r2≤4mn

cn,r e2π i (nτ+r z). (2.3.6c)

Similarly, we call θ3(τ, z, 0) a Jacobi form of weight 1
2 and index 0 for�θ . The Weierstrass

p-function p(τ, z) in (2.1.6a) is a Jacobi form for SL2(Z) of level 2 and index 1 (Question
2.3.1). A Jacobi form is a natural blend of the notions of modular form and elliptic
function: the parameter τ ∈ H tells us where on the moduli space of tori we are, and the
parameter z lives on that torus. Given such classical examples, it is hard to understand
why their theory was developed only in the 1980s. The introduction of the index m in
Definition 2.3.2 may be somewhat unexpected, but is explained in Section 2.4.1.

We can generalise the example (2.3.4) to lattices (and in fact to translates of lattices).
Let L be an n-dimensional lattice in Rn . Define

L (τ, z, u) =
∑
v∈L

exp[π iτ v · v + 2π i z · v + 2π iu], (2.3.7)

where z ∈ Cn , u ∈ C and τ ∈ H. The z-periods of L fill out the dual lattice L∗, and the
z-quasi-periods fill out τ L∗. Provided L is a rational lattice, we get the obvious analogue
of (2.2.11c), again from Poisson summation. To make L into a Jacobi form for some
�(N ) at weight n and index 0, it suffices to embed z ∈ C into Cn along any nonzero dual
weight vector u∗ ∈ L∗: i.e. L (τ, zu∗, 0) will be a Jacobi form.

As any string theorist knows, there are several different lattices L , L ′ that have the
same theta function: L (τ ) = L ′ (τ ). Perhaps the most famous example of this is the

https://doi.org/10.1017/9781009401548.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401548.003


144 Modular stuff

pair of even self-dual lattices of dimension 16 (namely, D+
16 and E8 ⊕ E8 [113]). Actually

there are lattice examples in every dimension ≥ 3 [108]. However, their Jacobi forms
are unique in the strongest form possible (see Question 2.3.2).

Writing theta functions as Jacobi forms is crucial to their interpretation as heat kernels,
or using Heisenberg groups, as we see in Sections 2.3.4 and 2.4.2. In Theorem 3.2.3 we
find that the characters of affine Kac–Moody algebras are Jacobi forms of weight and
index 0. Indeed, they are rational functions of lattice Jacobi forms (2.3.7).

An obvious question to ask is, to any modular form f (τ ), is there a Jacobi form
f (τ, z) for the same group and at the same weight such that f (τ, 0) = f (τ, z)? And
if so, is this Jacobi form unique? It turns out that every weight-k modular form f , at
least for SL2(Z), can be lifted to a Jacobi form for the same weight and group, at index
m = 1. This Jacobi form is far from unique, even at m = 1. In fact, the redundancy has
the same dimension as the space of weight-k + 2 cusp forms for SL2(Z). This fact is a
consequence of theorem 3.5 in [170].

2.3.3 Twisted #2: shifts and twists

Recall the classical Jacobi theta functions θ1 = θ 1
2 ,

1
2
, θ2 = θ 1

2 ,0
, θ3 = θ0,0, θ4 = θ0, 1

2
,

using the notation of (2.1.7a). These obey simple modular transformation rules, most
concisely stated in vector notation as⎛⎜⎜⎝

θ1

θ2

θ3

θ4

⎞⎟⎟⎠ (τ + 1, z) =

⎛⎜⎜⎝
eπ i/4 0 0 0

0 eπ i/4 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠
⎛⎜⎜⎝
θ1

θ2

θ3

θ4

⎞⎟⎟⎠ (τ, z), (2.3.8a)

⎛⎜⎜⎝
θ1

θ2

θ3

θ4

⎞⎟⎟⎠(−1

τ
,

z

τ

)
= eπ iz2/τ

√
τ

i

⎛⎜⎜⎝
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝
θ1

θ2

θ3

θ4

⎞⎟⎟⎠ (τ, z). (2.3.8b)

That is, these θi define a vector-valued Jacobi form for SL2(Z) (Definition 2.2.2). The q-
expansions of θ1 and θ4 have negative coefficients; we can make ‘positive’ combinations
of these theta functions that have almost as nice transformations under SL2(Z):

θ[0](τ, z) = θ3(τ, z)+ θ4(τ, z)

2
= 1+ q2(r2 + r−2)+ q8(r4 + r−4)+ · · · ,

(2.3.9a)

θ[1](τ, z) = θ1(τ, z)+ θ2(τ, z)

2
= q1/8r1/2(1+ qr−2 + q3r2 + q6r−4 + · · · ),

(2.3.9b)

θ[2](τ, z) = θ3(τ, z)− θ4(τ, z)

2
= q1/2((r + r−1)+ q4(r3 + r−3)+ · · · ),

(2.3.9c)

θ[3](τ, z) = θ2(τ, z)− θ1(τ, z)

2
= q1/8r1/2(r−1 + qr + q3r−3 + q6r3 + · · · ),

(2.3.9d)
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where r = e2π iz . Note that θ[i] has the geometric interpretation as the theta series (2.2.11a)
of the translate 2Z+ i

2 .
We regard θ1, θ2, θ4 as Z2-twists and -shifts of θ3. More generally, the parameter

r ∈ 1
N Z in θr,s corresponds to a ZN -shift, and s ∈ 1

N Z to a ZN -twist. A far-reaching
generalisation of this simple construction is studied in Section 5.3.6; the analogue there
of the positive combinations (2.3.9) is the characters for a vertex operator algebra. In
Monstrous Moonshine the twists of J (τ ) are the McKay–Thompson series Jg(τ ), and its
more general shifts and twists are the Norton series of Maxi-Moonshine (Section 7.3.2).
Physically, this corresponds to the orbifold construction (Section 4.3.4). There, the pos-
itive linear combinations have the direct interpretation as graded dimensions of sectors
of the conformal field theory.

As always, the clearest example is provided by lattices (Section 1.2.1). Let L be an
integral positive-definite lattice and let r, s be two vectors in Q⊗ L . As in (2.1.7a), write

L;r,s(τ, z) =
∑
x∈L

eπ iτ (x+r )·(x+r )eπ i (z+s)·(2x+r ), (2.3.10a)

where as before z ∈ C⊗ L . Then L;r,s will be a Jacobi form for some subgroup of
SL2(Z), as is (2.3.7). In fact, if L is even and self-dual, we can be much more explicit.

For any r, s ∈ Q⊗ L , and any

(
a b
c d

)
∈ SL2(Z), we have

L;r,s

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)n/2 exp

[
π i

cz

cτ + d

]
L;ar+cs,br+ds(τ, z),

(2.3.10b)
where n is the dimension of L .

As usual, certain positive combinations of theseL;r,s have a direct (geometric) inter-
pretation. Again let L be self-dual, and suppose the vector s ∈ Q⊗ L has order m in L
(so ms ∈ L). Then there will be a vector s ′ ∈ L such that s · s ′ ≡ 1

m (mod 1). For any
integer k, and vector r ∈ Q⊗ L , we get this generalisation of (2.3.9):

1

m

m−1∑
j=0

exp

[
2π i j

(
s · r − k

m

)]
L;r, js = L0+r+ks ′ , (2.3.10c)

the theta series of a translate of the lattice L0 = {v ∈ L | v · s ∈ Z}.
In the orbifold construction of vertex operator algebras and chiral conformal field

theory, the role of vectors r, s is played by automorphisms g, h in some group G, and
the role of the sublattice L0 in (2.3.10c) is played by the vertex operator subalgebra VG

fixed by G. However, as we see in Section 4.3, full conformal field theory or string theory
involves the interplay of two vertex operator algebras; the orbifold construction there
involves in addition a reconstruction of a new full conformal field theory from VG . We
address this further in Sections 4.3.4 and 5.3.6.

This reconstruction is again beautifully illustrated by lattices. Let L be any rational
lattice and T = {ti } be a finite set of vectors in Q⊗ L . Then by L{T } we mean the set

L{T } =
{

x +
∑

i

�i ti | �i ∈ Z, x ∈ L ,

(
x +

∑
i

�i ti

)
· t j ∈ Z ∀ j

}
.
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Then L{T } is a lattice rationally equivalent to L (i.e. there is an orthogonal transfor-
mation T : Q⊗ L{T } → Q⊗ L). Conversely, if L1 and L2 are rationally equivalent
integral lattices, then there is a finite set T = {t1, . . . , tm} ⊂ Q⊗ L1 such that L1{T } is
isomorphic to L2 [238]. Clearly the theta series of L{T } is the average of L;r,s for a
finite number of r, s in the Z-span of T . The important special case is when L is self-dual;
then L{T } will also be self-dual provided all ti · t j ∈ Z. In this case,

L{T } =
⋃
�i∈Z

(
L0 +

∑
i

�i ti

)
,

where L0 = {x ∈ L | x · ti ∈ Z}. Call two self-dual lattices L1, L2 neighbours if there is
some vector t with integer length-square t · t such that 2t ∈ L1, and L2 and L1{t} are iso-
morphic. Then any two self-dual lattices, with equal dimensions n+ + n− and signature
n+ − n−, will be neighbours of neighbours of · · · of neighbours of each other [238].

Another way to collect some of these results is through Dirichlet characters, which are
important in the classical theory of modular forms. A Dirichlet character is a function
χ : Z → C, with some period N , such that χ (a) �= 0 iff a is coprime to N , and for
all a, b ∈ Z χ (ab) = χ (a)χ (b). Dirichlet introduced these χ in his proof that there are
infinitely many primes in any arithmetic series a, a + b, a + 2b, . . . , provided only that
a and b are coprime (clearly a necessary condition). He proved this by twisting the
Riemann zeta function (2.2.3c) by χ :

L(χ, s) =
∞∑

i=1

χ (n) n−s =
∏

p

(1− χ (p)p−s)−1. (2.3.11)

Given the lesson of Section 2.3.1, it should also be interesting to Dirichlet-twist modular
forms.

Modular forms and functions for the principal congruence subgroup �(N ) can be
defined as in Definitions 2.2.1 and 0.1, except now there are several orbits of cusps, and

we have invariance under only

(
1 N
0 1

)
, so the q-expansion takes the form

f (τ ) =
∑
n∈Z

ane2π i nτ/N =
∑
n∈Z

anqn/N . (2.3.12)

Given any Dirichlet character χ , we can twist this function f and obtain

fχ (τ ) =
∑
n∈Z

χ (n) anqn/N . (2.3.13)

Then if f is a modular form for �(N ), fχ will be a modular form of the same weight for
some �(M). It isn’t very deep that modularity should be preserved – see Question 2.3.4
for one such argument. Theorem 14 in [456] provides a generalisation. The Dirichlet
twist takes on a clear algebraic significance in the context of automorphic representations
(Section 2.4.1).

A deeper use of Dirichlet twists is Weil’s Converse Theorem (see e.g. theorem 17 of
[456] or page 64 of [90]), which characterises modular forms for �(N ) by generalising
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Theorem 2.3.1, using infinitely many Dirichlet twists. It is a ‘converse’ in that it gener-
alises the converse of (i)⇒ (ii). Applications of this are given in sections 1.9 and 1.10
of [89].

A more surprising example of twisting is by Galois automorphisms. Let FN be the
space (in fact field) of all modular functions for �(N ), with q-expansion as in (2.3.12),
where each coefficient ai lies in the cyclotomic field Q[ξN ] (recall Section 1.7.3). This
field FN is explicitly constructed in section 6.2 of [505]. Clearly, j(τ ) lies in each FN . It
can be shown that FN is a Galois extension over Q( j), with Galois group

Gal(FN/Q( j(τ ))) ∼= GL2(ZN )/{±1} (2.3.14a)

(see Section 1.7.2 for definitions). For any matrix A ∈ GL2(ZN ), we can find an

integer � ∈ Z×N (namely � = det(A)) and a matrix B =
(

a b
c d

)
∈ SL2(Z) such that

A = B

(
1 0
0 �

)
(mod N ). Then the action of A ∈ GL2(ZN ) on a modular function f (τ )

is given by

A. f (τ ) = (σ� f )

(
aτ + c

bτ + d

)
, (2.3.14b)

σ�
∑
n∈Z

anqn/N =
∑
n∈Z

σ�(an) qn/N , (2.3.14c)

where σ� ∈ Gal(Q[ξN ]/Q) sends ξN to ξ�N . This Galois action plays a technical but
important role in both Moonshine (e.g. Question 7.3.3) and rational conformal field
theory (e.g. Section 6.1); see Section 6.3.3 for some speculation.

2.3.4 The remarkable heat kernel

Various topological proofs of modularity, inspired by conformal field theory, have arisen
in recent years. For instance [24], [203] and section 6 of [502] all provide proofs for
η(τ ). These suggest the thought that, more generally, modularity – hence Moonshine –
may be a topological effect (Section 7.2.4). The oldest and perhaps most fundamental
observation along these lines is the relation between theta function modularity and the
heat kernel.

Fourier determined that the rate of flow of heat energy in a material is proportional
to the gradient of the temperature, and thus wrote down the diffusion or heat equation,
which in one dimension looks like

∂

∂t
u(t, x) = 1

4π

∂2

∂x2
u(t, x), ∀x ∈ R, ∀t > 0 (2.3.15a)

(the harmless normalisation 1/4π is introduced for later convenience). Suppose that
the initial distribution of heat in the infinite rod is f (x) = limt→0u(t, x). Then Fourier
analysis tells us how to find a solution u(t, x) for all times t . Letting

û(t, α) = 1

2π

∫ ∞

−∞
u(t, y) e−iαy dy, f̂ (α) = 1

2π

∫ ∞

−∞
f (y) e−iαy dy,
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the equation to be solved has been transformed to ∂ û/∂t = −α2û/4π , with initial con-
dition f̂ , which has the solution û(t, α) = f̂ (α) e−α

2t/4π . We can now find u by using
the inverse transform:

u(t, x) = 1

2π

∫ ∞

−∞
eiαx−α2t/4π

∫ ∞

−∞
f (y) e−iαy dy dα.

But

1

2π

∫ ∞

−∞
eiαz−α2t/4πdα = t−1/2e−π z2/t =: K (t, z).

Thus u(t, x) is given by the convolution

u(t, x) =
∫ ∞

−∞
K (t, x − y) f (y) dy. (2.3.15b)

We see that K (t, x) is itself a solution to the heat equation, with initial condition f (x) =
δ(x), the Dirac delta. Physically, K corresponds to an infinitely hot spot placed at position
x = 0 at time t = 0, on an otherwise uniform, infinitely long rod. This fundamental
solution K (t, x) is called the heat kernel or propagator for R.

What has this to do with the theta function? Consider the specialisation θ3(it, x), where
t, x ∈ R, t > 0. Note that

∂

∂t
θ3(it, x) = 1

4π

∂2

∂x2
θ (it, x),

so θ3 is a solution to the heat equation. Also, in the t → 0 limit, θ3(0, x) becomes the
distribution

∑∞
n=−∞ δ(x − n) (this is proved by evaluating limt→0

∫ 1
0 θ3(it, x) f (x) dx ,

but is merely the statement that
∑

n e2π imx =∑
m δ(x − m)). Thus θ3 plays the same role

on the circle R/Z that K (t, x) played on the line R: θ3 is the heat kernel for the circle.
But we can obtain this kernel in another way, by averaging the heat kernel K (t, x) for
R:

∞∑
n=−∞

t−1/2e−π (x−n)2/t = t−1/2e−πx2/tθ3

(
i

t
,

x

it

)
.

Equating this to θ3(it, x) recovers (2.3.15b).
As with Poisson summation, the notion of heat kernel can be generalised considerably.

For example, let M be a compact n-dimensional Riemannian manifold and let � be the
Laplacian. In local coordinates,

�(x) = −
n∑

i, j=1

gi j (x)
∂2

∂xi∂x j
,

where gi j (x) is the metric. The heat equation on M is

∂

∂t
u(t, x) = −�u(t, x), x ∈ M, t > 0,

with initial condition f (x) = limt→0u(t, x). This can be solved formally by the expres-
sion u(t, x) = e−t� f (x). In fact e−t� makes sense as an operator on L2(M), for any t ∈ C
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with Re(t) > 0. By the heat kernel K (t, x, y) for M we mean as before the solution to
the heat equation with initial condition δ(x, y), or equivalently K (t, x, y) generates the
solution (e−t� f )(x) = ∫

M K (t, x, y) f (y) dy to the heat equation with arbitrary initial
condition f . The heat kernel always exists and is unique, and is analytic for t > 0. In
fact the heat kernel can be expressed as

K (t, x, y) =
∑

n

e−λn t φn(x)φn(y),

where λn ≥ 0 are the (discrete) eigenvalues of the Laplacian � with (orthonormal)
eigenfunctions φn ∈ C∞(M) ⊂ L2(M). Incidentally, K is the kernel of the operator
e−t� in the sense of the Schwartz kernel theorem. For t small,

K (t, x, y) = (4π t)−n/2e−d(x,y)2/4t
∞∑

i=0

t i fi (x, y)

where d(x, y) is the distance between x, y ∈ M , and fi are certain functions. In the
language of quantum field theory, the heat kernel K (t, x, y) equals 〈x |e−t�|y〉. The heat
kernel stores geometric information on M , and interpolates between the identity operator
of L2(M) at t = 0 and the projection onto the kernel of � as t →∞.

For example, for M = Rn the heat kernel is K (t, x, y) = (4π t)−n/2 exp[−|x −
y|2/4t], so for any n-dimensional lattice L ⊂ Rn the heat kernel of the n-torus Rn/L is

(4π t)−n/2
∑
v∈L

exp[−|x − y − v|2/4t].

But it also equals (normalising the arguments appropriately) 1√|L|L∗ , and so we recover
the modularity of (2.3.7).

The natural generalisation of the M = Rn calculation is performed by [231]. In partic-
ular, let G be a connected, noncompact reductive Lie group, let K be a maximal compact
subgroup, and let � be a discrete subgroup of G such that the quotient �\G is compact.
Then two expressions for the heat kernel, and its trace, on the space�\G/K are obtained.
In the special case of G = Rn and � being a lattice, the trace formula reduces to the
usual formula expressing L (−1/τ ). The naturality of this construction �\G/K will be
clear after reading Section 2.4.1. Moreover, [181] proves the Macdonald identities using
the heat equation on compact Lie groups.

Further generalisations are possible (see e.g. [52]). For example, degree 1 and 0 terms
can be added to the Laplacian�, and we can consider more generally differential opera-
tors on sections of line bundles over M , rather than on M . Heat kernel techniques can be
used to prove various formulations of the Atiyah–Singer Index Theorem, and equivariant
analogues of the theory yield the Atiyah–Bott fixed-point theorem. The strategy typically
followed by these applications is to consider the integral I (t) = ∫

M K (t, f (y), x) dy for
some map f : M → N , where K is the heat kernel on N . The t → 0 limit collapses the
integral to an integral or sum over f −1(x). But a global expression for I (t) can often
be found, for example using representation theory or geometry; taking its t → 0 limit
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yields an identity between the local integral
∫

f −1(x) and some global data of M and N .
See, for example, [389]. Question 2.1.7 is essentially an example of this strategy – what
we call K (g, h) there is the heat kernel at t = 0 of the finite group G.

Some of the many applications and occurrences of the heat kernel are collected in
[320]. But can the heat kernel be directly relevant to Moonshine? This seems very
possible. After all, the Atiyah–Bott fixed-point theorem yields an elegant proof of the
Weyl character formula for compact Lie groups. In the conformal field theories associated
with Lie groups (namely, the Wess–Zumino–Witten models), the heat kernel is used to
explicitly construct the flat Knizhnik–Zamolodchikov connection on spaces of chiral
blocks [288] (more on this starting in Section 3.2.4). This is significant because, according
to conformal field theory, it is the monodromy of the Knizhnik–Zamolodchikov equation
that is responsible (in genus 1) for the modularity of the affine algebra characters.

To this author’s knowledge, heat kernel methods have never been used directly in the
context of Monstrous Moonshine, but surely they can be used to prove at minimum the
modularity of the McKay–Thompson series, and to help us understand a little better
the geometry of Monstrous Moonshine. It seems possible that equivariant heat kernel
methods could provide a geometric umbrella under which herd the more interesting
examples of Moonshine.

2.3.5 Siegel forms

Vaughn Jones considered how one von Neumann algebra can be embedded in another
(e.g. itself), and the result – subfactor theory – is profoundly interesting. This success
suggests the following analogue of Galois theory:

The Jones Programme Study the ways in which one infinite beast can be embedded
in another.

Let’s probe this thought with the simplest infinite beast this author can think of: lattices
(Section 1.2.1). Let L ⊂ Rn, L ′ ⊂ Rn′ be lattices of dimension n and n′, respectively. Fix
bases {x (1), . . . , x (n)}, {y(1), . . . , y(n′)} and construct the n × n matrix M , whose columns
are the x (i). An embedding of L ′ into L is a linear map ϕ : L ′ → L that preserves all
inner-products. It is determined by the values ϕ(y( j)) =∑

i ϕ j i x (i). The coefficients ϕ j i

all lie in Z and form an n′ × n matrix (ϕ). Now, ϕ preserves all inner-products, iff
ϕ(y(i)) · ϕ(y( j)) = y(i) · y( j) ∀i, j , iff

(ϕ) Mt M (ϕ)t = Mt M. (2.3.16)

Let N (L ′, L) be the number of these embeddings, i.e. the number of n′ × n Z-matrices
(ϕ) satisfying (2.3.16). This number will be 0 unless n′ ≤ n.

For example, N (Z, L) equals the number of unit vectors in L . Thus, if L is integral,
the generating function

∑∞
k=0 N (

√
kZ, L) xk is the theta function L (τ ), for x = eπ iτ .

We might hope that the numbers N (L ′, L) are coefficients of some other modular-like
function.
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Construct a multi-variable generating function as follows. Fix an n-dimensional inte-
gral lattice L . Let xi j , 1 ≤ i, j ≤ n, be variables. Consider

ThL (xi j ) :=
n∑

n′=0

∑
[L ′]

∑
Z{β1,...,βn}=L ′

N (L ′, L)

Aut(L ′)

∏
1≤i, j≤n

x
βi ·β j

i j . (2.3.17a)

The sum over [L ′] is of all isomorphism classes of n′-dimensional even lattices. For each
of these classes, fix a representative L ′ ⊂ Rn . The {βi } run over all possible ordered
n-tuples of lattice vectors that span L ′. There is an equivalent but cleaner way to write
(2.3.17a). Let An be the set of all n × n positive semidefinite matrices A with integer
entries and even integers down the diagonal. These are precisely the matrices Ai j =
βi · β j . Then

ThL (xi j ) =
∑

A′∈An

N (L ′, L)
∏

1≤i, j≤n

x
A′i j

i j , (2.3.17b)

where L ′ is any lattice realising the matrix A′ of inner-products.
In any case, this generating function ThL , after making the change-of-variables xi j =

eπ iTi j , is a Siegel modular form! We return to it shortly.
Let’s try to find a version of modular forms where H is replaced by a higher-

dimensional space. Start with L (τ, z) in equation (2.3.7), but reinterpret this as a
function of the complex matrix T := τ A, with entries Ai j = b(i) · b( j) for a basis b(i)

of the lattice L . We thus get

(T, z) :=
∑
n∈Zn

exp[π in · T n + 2π in · z]. (2.3.18)

How far can we extend the domain T ? We may as well restrict to symmetric matrices T .
For which symmetric matrices T does (2.3.18) converge to a holomorphic function? We
know from (2.3.7) that it does whenever T = x A + iA for any positive-definite matrix A
and real number x , but there is no need to restrict to such T . Indeed, it is straightforward
to obtain that (2.3.18) converges to a holomorphic function for any z ∈ Cn and any T in
the Siegel upper half-space Hn defined in Section 2.1.4.

Of course, (2.3.18) is quasi-periodic in the z variable:

(T, z + m) = (T, z), ∀m ∈ Zn (2.3.19a)

(T, z + T m) = exp[−π i m · T m − 2π i m · z](T, z), ∀m ∈ Zn. (2.3.19b)

The Siegel theta function (T, z) is an easy generalisation of the Jacobi theta function
(2.3.7). What makes it so remarkable is its symmetries as a function of T :

((AT + B)(CT + D)−1, (CT + D)t−1z)

= ξγ det(CT + D)
1
2 exp[π i z · (CT + D)−1z)](T, z) (2.3.20)

for all γ =
(

A B
C D

)
∈ Sp2n(Z) for which all diagonal entries of At C and Bt D are

even. Call this subgroup �n
θ , in analogy with (2.2.5). The numbers ξγ ∈ C are certain

eighth roots of unity.
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We defined Sp2n(Z) in Section 2.1.4. The modularity of (T, z) is proved much the
way that modularity of θ3 was proved. The analogue of (2.2.1a) is

Sp2n(Z) =
〈 (

I A
0 I

)
,

(
B 0
0 Bt−1

)
,

(
0 −I
I 0

)
| ∀A ∈ Mn×n(Z),

A = At , ∀B ∈ GLn(Z)

〉
. (2.3.21)

If we insist the matrices A in (2.3.21) have even diagonals, then we generate �n
θ . Ver-

ifying invariance of (T, z) under

(
I A
0 I

)
and

(
B 0
0 Bt−1

)
is routine; use Poisson

summation for

(
0 −I
I 0

)
. The argument is given in detail in chapter 2.5 of [439].

Section 2.1.4 relates Hn to Riemann surfaces of genus n. As we recall, the possible
period matrices � of a given surface form an Sp2n(Z)-orbit in Hn . The Jacobian of
the surface is Cn/(Zn +�Zn). Quasi-periodicity (2.3.19) embeds these Jacobians into
projective space. Most points in Hn (at least for n > 2) aren’t period matrices of surfaces,
and as we recall the moduli space Mn,0 can be identified with Cn/Sp2n(Z) for some subset
Cn in Hn .

We should thus regard(T, z), Sp2n(Z) and Hn as the genus n versions of θ3, SL2(Z) ∼=
Sp2(Z) and H, where τ becomes an n × n matrix. The hyperbolic geometry of H becomes
symplectic geometry on Hn (see e.g. section 4 of [395]). As mentioned in footnote 1 of
this chapter, the future will find Moonshine expanding into higher genus. The calculations
will be far more complicated, and this is presumably the reason for the delay. One of the
only explicit works in this direction is [533], which looks at the lattice↔ theta function
example of Figure 0.1 (or equivalently the bosonic string compactified on a torus) at
genus 2. As expected, Siegel modular forms play a dominant role. See also [9] for
some calculations with multi-loop heterotic strings, which heavily involve Siegel theta
functions.

Definition 2.3.3 Let � ⊂ Sp2n(Z) (n > 1) have finite index. Then a Siegel modular
form of weight k and level � is a holomorphic function f on Hn such that

f ((AT + B)(CT + D)−1) = det(CT + D)k f (T ), ∀
(

A B
C D

)
∈ �.

A growth condition at the cusps (requiring holomorphicity) is automatically satisfied
when n > 1. Another simplification of higher genus is that any subgroup� ⊂ Sp2n(Z) of
finite index includes some congruence group �n(N ) := {A ∈ Sp2n(Z) | A ≡ I (mod N )}
with finite index.

For example, (T, z)2 is a modular form of weight 1 and level �n(4). Eisenstein
series for Sp2n(Z) can be defined in the obvious way, as a sum of det(CT + D)−2k over
appropriately defined pairs {C, D} of matrices (see e.g. section 14 of [395] for details).
A final example plays the same role for (T, z) that L (τ ) played for θ3(τ ): let L be
any m-dimensional rational lattice and let A be its Gram matrix, then

L (T, Z ) :=
∑

N

exp[π i tr(N t T N A)+ 2π itr(N t Z )],
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where T ∈ Hn , Z is an n × m complex matrix, and the sum is over all n × m Z-matrices.
This is a specialisation of  for Sp2nm(Z), and is a Siegel modular form of weight m/2
for some �n(M) (see e.g. chapter 2.6 of [439]). We met L in (2.3.17).

Finally, let us describe the analogue of Fourier expansion here. For convenience take�
to be Sp2n(Z). Then a modular form f for � obeys the periodicity f (T + B) = f (T ) for
all n × n Z-matrices B. Together with holomorphicity, this means f has an expansion

f (T ) =
∑
M≥0

a(M) exp[2π i tr(T M)], (2.3.22)

where the sum is over all positive-semidefinite symmetric n × n matrices M with entries
Mii ∈ Z and Mi j ∈ 1

2 Z. These numbers a(M) play the role of Fourier coefficients here.
For example, (2.3.17b) gives the Fourier expansion of L (T ).

Question 2.3.1. Prove that the Weierstrass p function (2.1.6a) is a Jacobi form for SL2(Z)
with weight k = 2 and index m = 1.

Question 2.3.2. Let L , L ′ be two n-dimensional rational lattices in Rn , and let u, u′ ∈ Rn

be vectors of finite order for L and L ′, respectively.
(a) Prove: If L+u(τ, z) = L ′+u′ (τ, z) for all τ ∈ H, z ∈ Cn , then L + u = L ′ + u′ as
sets.
(b) Prove that L and L ′ are isomorphic (Section 1.2.1) iff there exists an orthogonal map
T ∈ On(R) such that L (τ, z) = L ′ (τ, T z) for all τ ∈ H, z ∈ Cn .

Question 2.3.3. Let L be any integral lattice of dimension n. For each m = 0, 1, 2, . . . , let
L (m) denote all the vectors u ∈ L with norm-squared u · u = m. Each automorphismω of
L permutes the vectors in L (m), so for each m we get a ‖L (m)‖-dimensional representation
α(m) of Aut(L) by permutation matrices. Thus, for each ω ∈ Aut(L), we can twist L as
follows: define


(ω)
L (τ ) :=

∞∑
m=0

χ(m)(ω) exp[π iτm],

where χ(m) is the character of the representation α(m). For example, (id)
L = L and


(−id)
L (τ ) = 1. Prove that, for each ω ∈ Aut(L), (ω)

L will be a modular form for some
�(N ) and some weight 0 ≤ k ≤ n/2, and that k = n/2 iff ω = id.

Question 2.3.4. Let f be a modular form of weight k, for some �(N ).
(a) Prove that, for each choice of r ∈ Q, the function g(τ ) := f (τ + r ) is a modular
form of level k, for some �(M) (M depending on r ).

(b) For any field F, prove that SL2(F) is generated by the matrices

(
1 r
0 1

)
, for r ∈ F,

together with

(
0 −1
1 0

)
. From this, prove that if f is a modular form for�(N ) of weight

k, then for any

(
a b
c d

)
∈ SL2(Q), the function h(τ ) := f ( aτ+b

cτ+d ) will be a modular form

of weight k for some �(M) (M depending on a, b, c, d).
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2.4 Representations and modular forms

According to I. M. Gel’fand, mathematics of any kind is representation theory.8

This section applies this beautiful strategy to modular forms.

There are at least formal similarities between quantum theory and modular forms. Wigner
taught that a particle should be identified with a unitary representation of SL2(C) or
SL2(R), in (3+ 1)- or (2+ 1)-dimensional space-time, respectively. In this section we
associate modular forms to unitary representations of SL2(R), and the picture generalises
naturally to, for example, SL2(C). Could there be some cross-fertilisation between the
methods and ideas of quantum field theory and modular forms?

In the 1962 International Congress of Mathematicians, I. M. Gel’fand remarked some-
what cryptically that there is an intriguing analogy between the scattering matrix of quan-
tum mechanics and zeta functions. Ten years later the idea was exploited and clarified
by Faddeev and Pavlov, who applied the Lax–Phillips scattering theory to the theory of
automorphic forms. For example, poles of the scattering matrix (which in quantum field
theory would correspond to particles) correspond to zeros of the Riemann zeta function.
Their work is generalised in [371], where we find for instance a new proof of the Selberg
Trace Formula for SL2. These applications are significant, and hopefully a small hint of
things to come. See also [562].

2.4.1 Automorphic forms

Definitions 0.1 and 2.2.1 of modular functions and forms for SL2(Z) should seem very
arbitrary. In mathematics we attack arbitrariness through generalisation. A good gener-
alisation helps us to see the meaning of each feature, and puts the whole theory into a
broader perspective. Of course we can generalise these definitions by replacing SL2(Z)
with other Fuchsian groups � < SL2(R), but this is too obvious to be helpful.

Much more valuable is to understand the relation between H and G = SL2(R). In
particular, an easy calculation shows that our action of G on H is transitive. That is,
any point in H can get mapped to any other point in H by a matrix in G. In particular,

γx+iy =
(√

y x/
√

y
0 1/

√
y

)
∈ G sends i to x + iy. We call H a homogeneous space for G.

Moreover, the subgroup of G fixing i ∈ H, say, is K = SO2(R). Thus

H ∼= SL2(R)/SO2(R) = G/K . (2.4.1a)

More precisely, we have the Iwasawa decomposition(
a b
c d

)
= y−1/2

(
y x
0 1

)(
cos θ sin θ

− sin θ cos θ

)
, (2.4.1b)

x + iy = ai+ b

ci+ d
, eiθ = d − ic

|d − ic| . (2.4.1c)

In fact SO2(R) is the unique (up to conjugation) maximal compact subgroup of G.

8 See the quotation on page 840 of Proc. ICM (American Mathematical Society, Providence 1987), edited by
A. M. Gleason.
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In mathematics we try to find hidden structure, and that is the spirit in which (2.4.1a)
should be read. The key here was the transitive action: an expression like (2.4.1a) arises
whenever one has a homogeneous space. Note that the action γ.τ of G on H now reduces
to matrix multiplication: γ γτ K .

Do modular forms respect (2.4.1a)? Can we lift modular forms f : H → C into func-
tions φ f : G → C? Yes, and in fact we gain something in the process. Use (2.4.1b):

φ f

(
a b
c d

)
= f

(
ai+ b

ci+ d

)
(ci+ d)−k = f (x + iy) yk/2 eiθk, (2.4.2a)

where k is the weight of f . Then for any A ∈ SL2(Z) and α ∈ R, we get

φ f

(
A

(
a b
c d

)(
cos α sin α

− sin α cos α

))
= φ f

(
a b
c d

)
e−ikα. (2.4.2b)

The point of multiplication by (ci+ d)−k is now clear: it makes φ f left-invariant with
respect to SL2(Z) = �. Thus we’ve sacrificed K -invariance and �-covariance, for K -
covariance and �-invariance. This is significant, because compact Lie groups like K are
much easier to handle than infinite discrete groups like SL2(Z).

In particular, we find that the right multiplication in (2.4.2b) defines a one-dimensional
representation of K on Cφ f . We know that the finite-dimensional irreducible K -
representations are parametrised by a nonnegative integer, and all are one-dimensional.
Thus we get an algebraic interpretation for the parameter k in Definition 2.2.1: it is the
highest weight of a representation of the maximal compact subgroup SO2(R) of SL2(R).

We also get a representation of SL2(R) on the left side, given by φ f �→ φ f ◦ γ−1.
The vector space here is the infinite-dimensional function space given by the C-span of
the SL2(R)-orbit of φ f . The result is an irreducible representation of SL2(R), which is
constant on � = SL2(Z). This representation is unitary – in fact it is a subrepresentation
of the regular representation of G on the Hilbert space L2(�\G).

As an aside, note that everything generalises very naturally to Siegel modular
forms. There, G is Sp2n(R), � is Sp2n(Z) or a similar discrete group like �n

θ , and
K = SO2n(R) ∩ Sp2n(R) ∼= Un(C). Once again, Hn

∼= G/K . For Jacobi forms, G is a
semi-direct product of SL2(R) with the Heisenberg group (it is constructed next subsec-
tion), and K is SO2(R)× S1: once again G/K ∼= H× C, as it should. The weight k and
index m in Definition 2.3.2 parametrise the irreducible one-dimensional representations
of SO2(R) and S1, that is to say K . Thus the index of a Jacobi form has a natural algebraic
interpretation, as it should.

So the generalisation of modular forms and functions is starting to be clearer. We are
looking for functions on the space �\G, for discrete subgroups � of real Lie groups
G, and we should study them via the representation of G they generate. The relation
between modular forms and representation theory was accomplished in the 1950s by
Gel’fand and Fomin. Let’s make it more precise.

The unitary irreducible representations of G = SL2(R) were classified by Bargmann
[44]. His motivation was physics (the Lorentz group). Of course there is the one-
dimensional identity representation. The remaining irreducible unitary representations
are all infinite-dimensional, and fall into three series: the principal series P±s for s ∈ R,
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the complementary series Cs for 0 < s < 1, and the discrete series D±n for n = 2, 3, . . .
In addition, G has many irreducible non-unitary representations. See, for example, chap-
ter 1.3 of [243] for explicit realisations of all the unitary representations. For example,
the discrete series D+n consists of holomorphic functions f on H, with Peterssen Her-
mitian form 〈 f, g〉 = ∫H f (τ )g(τ )yn−1dx dy, and action f �→ (−cτ + a)−n f

(
dτ−b
−cτ+a

)
.

Obviously our G-representation associated with� f is isomorphic toD+k . What f ’s come
from the other G-representations?

Associated with the principal series are functions such as this analogue of the Eisen-
stein series, called a Maass form:

E(τ, s) =
∑

m,n∈Z

′ ys

|mτ + n|2s
, s ∈ C.

This may look less strange when one considers the formula Im(γ.τ ) = y/|cτ + d|2.
For fixed τ ∈ H, the Maass form is absolutely convergent for Re(s) > 1 and has a
meromorphic extension to all s ∈ C. For fixed s ∈ C, it is invariant under SL2(Z). It is
not a holomorphic function of τ , and so cannot be a modular form in the usual sense, but
holomorphicity in Definitions 0.1 and 2.2.1 is a feature we must be prepared to lose, since
most real Lie groups G aren’t complex manifolds. In fact we lost the holomorphicity of
f when we wrote (2.4.2a). What takes its place?

What is holomorphicity, other than the solution to differential equations (the Cauchy–
Riemann equations, or the Laplacian ∂2

∂x2 + ∂2

∂y2 on R2)? The Maass forms aren’t holo-

morphic, but they are eigenfunctions of the Laplacian on H, namely−y2 ( ∂2

∂x2 + ∂2

∂y2 ). By
the Laplacian on H we mean a second-order differential operator that is invariant under
all isometries SL2(R).

We are thus led to the role of differential operators. These can be understood as follows.
Whenever we have a Lie group representation, we also get an associated action of the
Lie algebra (the derived module of Section 1.5.5). The Lie algebra will typically act as
first-order differential operators; on L2(G) it acts by Lie derivatives. More precisely, to

X ∈ sl2(R) we get the action f (g) �→ d
dt f (get X )|t=0. For example,

(
0 1
−1 0

)
∈ sl2(R)

corresponds to ∂
∂θ

, using the parametrisation of (2.4.1a). An action of sl2(R) implies an
action of the universal enveloping algebra U (sl2(R)), in our case simply by composing
differential operators to get ones of higher order. As always, the centre Z (U (sl2(R)))
naturally plays a fundamental role. Here, it is generated by the second-order operator

y2

(
∂2

∂x2
+ ∂2

∂y2

)
− y

∂2

∂x ∂θ
.

This is how the Laplacian arises, algebraically. By definition, it commutes with all oper-
ators, so studying its eigenspaces helps decompose L2(�\G) – we used a similar idea
in decomposing Lie algebra modules into weight-spaces. Understanding that decompo-
sition is essentially equivalent to understanding the space of modular forms for �, and
can be called the harmonic analysis of automorphic forms.
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We have only scratched the surface, but this discussion and the following definition
should give the reader a glimpse of the resulting theory.

Definition 2.4.1 Let � be a discrete subgroup of a real semi-simple Lie group G, and
let K be a maximal compact subgroup of G. Let χ be a one-dimensional representation
of K . We call a smooth function f : G → C an automorphic form for � if:

(i) f (γ gk) = χ (k) f (g) for all γ ∈ �, g ∈ G, k ∈ K ;
(ii) f is an eigenfunction of every operator in Z (U (g));

(iii) f obeys a certain growth condition.

The term ‘automorphic form’ (going back to Klein in 1890) is much older than this
definition. Here, g is the Lie algebra of G and Z (U (g)) is the centre of its universal
enveloping algebra, which will be isomorphic to a polynomial algebra in r variables,
where r is the rank of g. As mentioned above, the differential equations in (ii) take
the place of holomorphicity. The growth condition is too technical to give here, but
for SL2(Z) it reduces to holomorphicity at the cusps. For more on the relation between
automorphic forms and representations, see, for example, [89].

All modern material on automorphic functions uses the language of adèles and idèles,9

which unify and simplify the theory (at the expense of making it more abstract). How-
ever, since they have no role in the remaining material of this book, we only sketch
their motivation, and remain true here to the spirit of this not-completely-self-contained
subsection.

Projective or inverse limits are the way algebra ‘integrates’ an infinite tower of struc-
tures into a single structure. A classic – and relevant – example is divisibility by powers
of primes. We say that a given integer n is divisible by pa if the canonical projection
Z → Zpa (‘reduce mod pa’) sends n to 0. Now, the rings Zpa and Zpb are related by a
homomorphism Zpa → Zpb , provided a ≥ b. So we get a tower

· · · → Z/p3Z → Z/p2Z → Z/pZ → 0.

The corresponding integrated structure is the projective limit lim←Zpa =: Ẑp, the p-adic
integers, which can be realised as formal power series

∑∞
a=0 an pn , ai ∈ Z/pZ. Doing

arithmetic on them amounts to treating all Z/paZ simultaneously – in this sense it is the
integration of all Zpa . For example,

√
2 = 3+ 1 · 7+ 2 · 72 + 6 · 73 + · · ·

in Ẑ7. The p-adic rationals Q̂p are the field of fractions of Ẑp, or equivalently the formal
Laurent series

∑∞
i=−N ai pi , pi ∈ Z/pZ. They are to the ordinary rationals much as

R =: Q̂∞ is: a completion, on which calculus can be defined. For a readable introduction
to the p-adics, see [257]. Projective limits play a huge role in Section 6.3.3.

The more intuitive notion of limit, namely the injective or direct limit, arises when all
arrows are reversed (i.e. when we have a sequence of embeddings rather than projections),

9 Idèles were introduced by Chevalley in 1935 to remove some of the analysis being used with L-functions,
etc. The word comes from ‘ideal’. Adèles were introduced in 1945 as an additive version of idèles.
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and is the algebraic analogue of taking derivatives. The prototypical example is the
space of smooth functions FM (U ) on an open patch of a manifold M : the direct limit
lim→FM (U ), as U → {p}, is isomorphic to the space of germs at p.

The modern theory of automorphic forms collects together the Q̂p into the additive
group of adèles A and multiplicative group of idèles A×. The adèles are defined to
be the group of all sequences (x∞, x2, x3, x5, . . . , x p, . . .), where x∞ ∈ R, x p ∈ Q̂p,
and for all but finitely many p, x p ∈ Ẑp. The idèles are defined similarly, and we
obtain

A× ∼= Q× × R×> ×
∏

Ẑ×p ,

where
∑∞

i=0 ai pi ∈ Z×p if a0 �= 0. The rationals Q embed in each Q̂p, and so embed

diagonally in A (r �→ Ẑp for any prime p not dividing the denominator of r ). There
are many generalisations of A and A×, for example we can replace Q by other number
fields. But what good are they? What have they to do with modular forms?

There are many situations where the level of a modular form is variable. For example,
any A ∈ SL2(Q) takes a modular form for �(N ) to one for some other �(N ′) (see
Question 2.3.4). We have natural maps from the surface �(n)\H to any �(d)\H, when
d divides n. Collecting together this tower of surfaces �(n)\H into a single structure
amounts to taking the limit space Ĥ := lim←�(n)\H. Functions on Ĥ include ratios f/g
of modular forms of the same weight but different levels. Much as

lim←R/nZ ∼= A/Q

as topological groups, we get

Ĥ ∼= SL2(Q)\SL2(A)/K∞, (2.4.3)

where K∞ consists of all sequences of matrices (A, I2, I2, . . .) where A ∈ SO2(R) ⊂
SL2(R) and the I2’s are the identity matrices in each SL2(Q̂ p). In Section 4.3.3 we
discover Ĥ naturally in nonperturbative string theory.

Similarly, a Dirichlet character (see Section 2.3.3) can be thought of as a continuous
one-dimensional representation on Q×\A×, and the Galois group of a finite abelian
extension of Q can be thought of as a subgroup of Q×\A×.

The Langlands conjectures suggest that the n-dimensional representations of the abso-
lute Galois group Gal(K/K) of a field K (such as Q) correspond to ‘automorphic repre-
sentations’ of GLn(A), where A here is the group of adèles of K. This correspondence
can be seen through the corresponding L-functions. For GL1 and K = Q, this correspon-
dence involves the Kronecker–Weber Theorem and Dirichlet characters. For GL2 this
relates two-dimensional representations of Galois groups to modular forms. A recent
accessible introduction to the Langlands Programme is [90]. Although there are hints
of some sort of relation between the Langlands conjectures and Moonshine in its more
general sense, these are still too speculative to go into here. However, Section 6.3.3 may
whet one’s appetite.
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2.4.2 Theta functions as matrix entries

The relationship between representation theory and modular forms discussed last section
is quite democratic in the sense that it exists at the level of the vector space of modular
forms. Democracy is all well and good, but we are not equally interested in all modular
forms – some have names!

The Jacobi theta function θ3(τ, z) is the unique quasi-periodic entire function, in the
sense that any entire function f : C → C obeying f (z + 1) = f (z) and f (z + τ ) =
a e−2π iz for some constants τ ∈ H and a ∈ C is a constant multiple of the function

f (z) = 1+
∞∑

n=−∞
eπ i (n2−n)τa−ne2π inz .

For an elementary analytic proof see section 1.1 of [439]. From this uniqueness, all
properties of θ3 can be quickly derived. In this section we sketch a striking algebraic
version of this argument.

Starting in the 1960s, theta functions were interpreted as matrix entries in a represen-
tation of the Heisenberg group. The motivation was pure Moonshine:

A force d’habitude, le fait que les séries thêta définissent des fonctions modulaires
a presque cessé de nous étonner. Mais l’apparition du groupe symplectique comme
un deus ex machina dans les célèbres travaux de Siegel sur les formes quadratiques
n’a rien perdu encore de son caractère mystérieux. Le but de ce mémoire, et de ceux
qui lui feront suite, n’est pas, bien entendu, d’élucider définitivement la question,
mais de jeter un peu de lumière sur certains aspects de cette théorie qui étaient
restés dans l’ombre jusqu’à présent. [555a]10

The resulting explanation of the transformation θ3(−1/τ ) = √
τ
i θ3(τ ) can be extended

to many other functions arising in Moonshine. First let us sketch the basic idea, before
giving details and generalisations.

The starting point is the thought of realising special functions as matrix entries of
Lie group representations. An elementary example of this involves the representation of
S1 = U1(R) as rotations in R2:

θ �→
(

cos θ sin θ

− sin θ cos θ

)
. (2.4.4)

The basic properties of sin(θ ) and cos(θ ) (e.g. angle-sum formulae, or even-oddness)
can quickly be derived from this. We want to do something similar with θ3.

Begin by recalling the full variable dependence of θ3(τ, z, u), given in (2.3.4). For
fixed u we get a Jacobi form, and for fixed τ and u we get an elliptic function for the

10 ‘By force of habit, the fact that theta series define modular forms has nearly ceased to amaze us. But the
appearance of the symplectic group as a deus ex machina in the famous work of Siegel on quadratic forms
has still lost none of its mysterious character. The goal of this paper, and of those which follow it, is not of
course to clarify definitively the question, but rather to shed a little light on certain aspects of this theory
which have remained in the dark up to now.’
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torus C/(Z+ Zτ ). This leads us to consider two translation operators on the space of
(say) entire functions f : C → C, as follows. Fix τ ∈ H and define

(Sb f )(z) = f (z + b), (2.4.5a)

(Ta f )(z) = exp[π ia2τ + 2π iaz] f (z + aτ ), (2.4.5b)

for any a, b ∈ R. In this way, for each fixed τ ∈ H, R2 acts on the space of entire
functions – the role of τ being primarily to parametrise different isomorphisms between
the additive groups R2 and C. However, an easy calculation shows that Ta and Sb don’t
commute, rather Sb ◦ Ta = exp[2π i ab] Ta ◦ Sb. So the group 〈Ta, Sb〉 generated by all
Ta’s and Sb’s is the semi-direct product of S1 with R2, consisting of all pairs [λ, x] for
λ ∈ C, |λ| = 1 and x = (x1, x2) ∈ R2, and operation

[λ, x] · [μ, y] = [λμ exp[2π ix2 y1], x + y].

This group is called the Heisenberg group H . Then (2.4.5) says that θ3 is a vector in a
space carrying a representation of H . Now, it turns out that all irreducible representations
(π,H) of H are essentially isomorphic. A more natural and useful way to see θ3 in any
such representation (π,H) is by defining a vector fτ ∈ H and distribution μZ such that
the Hermitian product

〈π[1,x] fτ , μZ〉 = c eπ ix1 (τ x1+x2) θ3 (τ, x1τ + x2) (2.4.6)

for some nonzero constant c. The exponential factor on the right side of (2.4.6) simplifies
the quasi-periodicity of the right side.

We will see that SL2(R) acts as automorphisms on the Heisenberg group H . Hence
for any γ ∈ SL2(R), we get a new representation πγ of H by [λ, x] �→ πγ.[λ,x]. This
representation must be isomorphic toπ , so there is a (unitary) operator Rγ onH such that
πγ.[λ,x] = Rγ ◦ π[λ,x] ◦ R−1

γ . The assignmentγ �→ Rγ defines a projective representation
of SL2(R) on H. Modularity of θ3 now follows from the calculation

〈π[1,x] fτ , μZ〉 = 〈Rγ π[1,x] fτ , Rγ μZ〉 = 〈πγ.[1,x] Rγ fτ , Rγ μZ〉, (2.4.7)

together with the computation of Rγ fτ and Rγ μZ for the γ ∈ �θ < SL2(Z). Let us now
fill in the details.

For reasons that will be clear shortly, it is preferable to work instead of [λ, x] with the
realisation of the group H given by all pairs (λ, x) with operation

(λ, x) · (μ, y) = (λμ exp [π i (x1 y2 − x2 y1)] , x + y) .

The isomorphism between these realisations of H is given by the correspondence

(λ, x) ←→ [λ−1 exp[π ix1x2], x].

This group H is a three-dimensional real Lie group corresponding to the Heisenberg Lie

algebra Heis defined in (1.4.3). It is a quotient by Z ∼=
〈⎛⎝ 1 0 1

0 1 0
0 0 1

⎞⎠〉 of the group H̃
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of upper-triangular matrices ⎛⎝ 1 a c
0 1 b
0 0 1

⎞⎠ ∈ SL3(R).

H̃ is the (unique) simply-connected Lie group with Lie algebra Heis; it isn’t important
that we’re focusing on H rather than its universal cover H̃ . The group H and its (2n + 1)-
dimensional versions (the obvious extension of R2n by S1) were studied originally in the
context of quantum mechanics, hence their name.

The representation theory of these groups was established around 1930. Let π be a
unitary irreducible representation of H , in a Hilbert space H. Recall from Section 1.5.5
that this means π is a homomorphism from H into the group of unitary operators of
H; moreover, for each f ∈ H, the map from H to H given by (λ, x) �→ π(λ,x) f is
continuous. First note that by Schur’s Lemma (the analogue here of Lemma 1.1.3), the
central element (λ, 0) ∈ H will act in H by a scalar multiple λn for some n ∈ Z.

Theorem 2.4.2 (Stone–von Neumann) Let π be a unitary irreducible representation
of H, obeying π(λ,0)( f ) = λn f .
(i) If n �= 0, then π is infinite-dimensional and any other unitary irreducible

representation π ′ of H obeying π ′(λ,0)( f ) = λn f will be unitarily equivalent to π .
(ii) If n = 0, then π is one-dimensional and unitarily equivalent to (λ, x) �→ ei a·x ∈ C

for some vector a ∈ R2.

We’re interested in the case n = 1; see, for example, theorem 1.2 in [440] for a proof
of this special case. There are many different realisations for this unique irreducible
representation. The simplest (sometimes called the Schrödinger representation) uses the
Hilbert spaceH = L2(R). The action of (λ, x) ∈ H on f ∈ L2(R) is given by the unitary
operator U(λ,x) defined by

(U(λ,x) f )(y) = λ exp [π i (2yx2 + x1x2)] f (y + x1).

This is (essentially) the exponential of the defining representation (4.2.5) of Heis. Inci-
dentally, the action of Sb, Ta in (2.4.5) on entire functions extends to an n = −1 repre-
sentation of H ; this representation is anti-linearly equivalent to the Schrödinger repre-
sentation.

We want to recover the theta function naturally from the n = 1 representation. As
always, ‘natural’ means free of arbitrary choices, such as a specific realisation of the
n = 1 representation, or a specific basis of the underlying Hilbert space. Begin with any
realisation (π,H) of the n = 1 representation of H .

As we see in Section 1.5.5, a unitary representation U of a Lie group G on a space H
induces a representation δU (the derived module) of the corresponding Lie algebra g on
a dense subspace H∞ of H by anti-Hermitian operators. For example, the representation
(2.4.4) of U1(R) acts on the Hilbert spaceH = L2(S1)⊕ L2(S1) of all pairs

( f (θ )
g(θ )

)
. To see

how the corresponding Lie algebra u1(R) = R acts, decompose (2.4.4) into irreducibles
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(i.e. diagonalise):(
cos θ sin θ

− sin θ cos θ

)
=
(

1 i
i 1

)−1 ( eiθ 0
0 e−iθ

)(
1 i
i 1

)
.

Thus the Lie algebra u1(R) acts as

x �→
(

1 i
i 1

)−1 ( ix d
dθ 0

0 −x i d
dθ

)(
1 i
i 1

)
=
(

0 −x d
dθ

x d
dθ 0

)
.

The domain of these operators isn’t the whole of the Hilbert space H, but it does contain
the dense subspace consisting of the infinitely differentiable functions.

Similarly, our representation π of H on H induces an anti-Hermitian represen-
tation δπ of Heis on a dense subspace H∞ of H. If we write ex1 A = (1, (x1, 0)),
ex2 B = (1, (0, x2)) and etC = (e2π it , 0), then using the Baker–Campbell–Hausdorff for-
mula (1.4.6), these generators obey [A, B] = C, [A,C] = [B,C] = 0. As an example,
in the Schrödinger n = 1 representation on spaceH = L2(R), these become the ‘momen-
tum operator’ δUA f = d f

dx , the ‘position operator’ (δUB f )(x) = 2π ix f (x) and the cen-
tral term δUC f = 2π i f . In this example, the dense subspace H∞ is the Schwartz space
S(R) (Section 1.3.1) consisting of infinitely differentiable, rapidly decreasing functions.

We are now ready to define the two vectors fτ , eZ in (2.4.6). Consider the subspace
Wτ consisting of all f ∈ H for which (δπA − τδπB) f is defined, and equals 0. This can
be thought of as a holomorphicity condition ∂

∂ z̄ f = 0 (recall τ corresponds to
√−1).

We know that Wτ will be one-dimensional for our choice of π , since it manifestly is for
the Schrödinger representation U : there, Wτ = Ceπ iτ y2

. Choose any nonzero fτ ∈ Wτ .
The map σ (n) := ((−1)n1n2 , n) defines a homomorphism Z2 → H , and obeys (ρ ◦

σ )(n) = n for the obvious projection ρ : H → R2 – we say ρ ‘splits over Z2’. Define
V to be the common 1-eigenspace of all Uσ (n). More precisely, let V consist of all
(tempered) distributions μ ∈ H∗

0 with the property that, for all n ∈ Z2 and all f ∈ H∞,
〈πσ (n) f, μ〉 = 〈 f, μ〉. For example, in the Schrödinger representation, we must have
e2π in2 yμ(y + n1) = μ(y) for all n ∈ Z2. Note that μ(y) = �n∈Zδ(y + n) satisfies that,
and using test functions f (y) = e2π imy it quickly follows that thisμ is unique up to scalar
multiplication. Therefore, for our representation π , V will also be one-dimensional.
Choose any nonzero μZ ∈ V . It encodes quasi-periodicity.

Thus we obtain, in the Schrödinger representation,

〈U(1,x) fτ , μZ〉 =
〈

eπ i (2yx2+x1x2)eπ iτ (y+x1)2
,
∑

n

δ(y + n)

〉
,

which simplifies to the right side of (2.4.6) with c = 1. Therefore, by uniqueness of π
and basis independence of the Hermitian product〈 , 〉, we get that (2.4.6) holds regardless
of the realisation (π,H) and vectors fτ , μZ we choose.

The reader can verify that quasi-periodicity is automatic (Question 2.4.3). The mod-
ularity is of course more difficult (and more interesting). To do this, we need to describe
the action of SL2(R) on the space H (which we can take to be L2(R)).

https://doi.org/10.1017/9781009401548.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401548.003


Representations and modular forms 163

Any γ ∈ SL2(R) defines an automorphism of H by (λ, x) �→ (λ, γ.x), by

γ.x =
(

0 −1
1 0

)−1 ( a b
c d

)(
0 −1
1 0

)(
x1

x2

)
=
(

dx1 − cx2

−bx1 + ax2

)
. (2.4.8)

The precise form of this action is chosen so that (2.4.10a) below will involve the usual
Möbius action of SL2(R) on H. We can twist by γ and thus get a new representation
(π ′,H) of H , defined by π ′(λ,x) f = π(λ,γ.x) f . Obviously π ′ is also irreducible and has
central parameter n = 1, so by the Stone–von Neumann Theorem must be unitarily
equivalent to π . That is, there exists a unitary operator Rγ on the Hilbert space H that
intertwines π and π ′: Rγ π = π ′Rγ . The assignment γ �→ Rγ is only defined up to a
constant, and so we get a projective representation of SL2(R) on H. As we learn in
Section 3.1.1, projective representations become true representations when we centrally
extend. In particular, we get a true representation when we replace SL2(R) with a double-
cover called the metaplectic group Mp2(R).

The metaplectic group is the unique connected double-cover of SL2(R). It can be
thought of as a way of keeping track of which branch of the square-root we’re on in
equations like (2.3.5b), and this provides its easiest realisation. Define Mp2(R) to be
the set of all pairs (γ, s), where γ ∈ SL2(R) and s = s(τ ) is a choice of holomorphic
square-root of cτ + d . Since there are two choices for s (differing by a sign), this is
indeed a double-cover. The group operation is

(γ, s(τ ))(γ ′, s ′(τ )) = (γ γ ′, s(γ ′.τ ) s ′(τ )), (2.4.9)

as can be seen by calculating from (2.3.6) with k = 1/2.
Returning to the γ -twistπ ′ of the representationπ of H , it is possible to choose unitary

operators R(γ,s), for each (γ, s) ∈ Mp2(R), such that R(γ,s)π = π ′R(γ,s) and (γ, s) �→
R(γ,s) defines a representation of the metaplectic group Mp2(R).

Recalling the definition of fτ and μZ as eigenvectors, it isn’t difficult to see that

R(γ,s) fτ = s(τ )−1 fγ.τ , ∀(γ, s) ∈ Mp2(R), (2.4.10a)

R(γ,s)μZ = μ(γ,s)eZ, ∀(γ, s) ∈ �̃θ = {(γ, s) ∈ Mp2(R) | γ ∈ �θ }, (2.4.10b)

where γ.τ is the usual action (2.1.4a) and where μ : �̃θ → C∗ is some one-dimensional
representation (with values in eighth roots of unity). See chapter 8 of [440] for the
detailed calculation. We now immediately obtain from (2.4.6) and (2.4.7) that

c eπ ix1 (τ x1+x2)θ3 (τ, x1τ + x2) = 〈π(1,γ .x) Rγ fτ , Rγ μZ〉 = s(τ )−1〈π(1,γ .x) fγ.τ , μ(γ,s)eZ〉
= c s(τ )−1μ(γ,s) exp

[
π i (dx1 − cx2)

(
aτ + b

cτ + d
(dx1 − cx2)+ (−bx1 + ax2)

)]
× θ3

(
aτ + b

cτ + d
, (dx1 − cx2)

aτ + b

cτ + d
+ (−bx1 + ax2)

)
, (2.4.11)

for all γ =
(

a b
c d

)
∈ �θ , which simplifies down to the desired modularity (2.3.5b).

Last subsection we learned that SL2(R) acts transitively on H. Using this and (2.4.10a),
we can refine (2.4.6) and write θ3 as a matrix entry of a unitary representation of the
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obvious semi-direct product of Mp2(R) with H . We obtain

c eπ ix1 (τ x1+x2) θ3 (τ, x1τ + x2) = √ci+ d 〈π(1,x) R(γ,s) fτ , μZ〉, (2.4.12)

where τ = bd+ac+i
c2+d2 , for γ =

(
a b
c d

)
∈ SL2(R).

This argument is far longer and more technically difficult than the other proofs of
theta function modularity given in this chapter, and it is easy to get lost in the details.
But it is a remarkable argument, and much more conceptual than, for example, Poisson
summation. The modular group SL2(Z) (or rather its subgroup �θ ) arises here as a group
of automorphisms of H transforming in a controlled way the vectors fτ and μZ. The
intrinsically algebraic nature of the argument means it generalises easily, and with little
extra effort we could have given the proof for Siegel theta functions. (Nonholomorphic)
Eisenstein series can also be constructed and studied in a similar way (by first lifting
to SL2(R)). But as with the previous modularity proofs, new ideas would be needed to
generalise it beyond these classical functions into a general device providing uniform
proofs of modularity for Moonshine functions. In the next subsection though we explain
why it might after all have something to do with Moonshine.

2.4.3 Braided #2: from the trefoil to Dedekind

The decomposition (2.4.1b) says that SL2(R) is topologically homeomorphic to R2 × S1,
i.e. the interior of a solid torus (or if one prefers, the complement of S1 in R3). In
remarkable work in the context of computing k2(Z) (see Section 2.5.1), Quillen showed
that the space SL2(Z)\SL2(R) is naturally diffeomorphic to the complement of the trefoil
knot in the sphere S3 (see pages 84–5 of [419] for the elementary argument). Namely,
the Eisenstein series a = G4, b = G6 in (0.1.5) identify the space GL2(Z)\GL2(R) of
two-dimensional lattices with the complement of the complex curve 20a3 − 49b2 = 0
(which corresponds to degenerate lattices); the intersection of 20a3 − 49b2 = 0 with the
sphere |a|2 + |b|2 = 1 in C2 (to get instead SL2(Z)\SL2(R)) is then identified with the
trefoil (the (2,1)-torus knot, drawn in Figure 1.10). Now, in Section 2.4.1 we lift modular
forms for SL2(Z) to the space L2(SL2(Z)\SL2(R)): thus, for example, the j-function
is a complex-valued function on the complement of the trefoil. More generally, as we
will see later, the characters of an affine algebra, or vertex operator algebra, or rational
conformal field theory, are vector-valued functions on the complement of the trefoil. The
cusps of H can be interpreted as rational points on the trefoil. Can modular forms and
functions somehow see this topological trefoil? The answer is yes!

First, the fundamental group of the complement of the trefoil is easy to compute using
the Wirtinger presentation (Section 6.2.5), and is naturally isomorphic to the braid group
B3. This suggests the following picture. Write G for SL2(R), G̃ for its universal cover
and � for SL2(Z). Then

G̃
π−→G

q−→�\G. (2.4.13)
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Of course π is surjective and has kernel π1(G) ∼= Z. G̃ is also the universal cover of
the trefoil-complement �\G, and the kernel of this surjective map q ◦ π is the central
extensionπ1(�\G) ∼= B3 of the modular group SL2(Z). The mapB3 → SL2(Z) is simply
the reduced Burau representation (1.1.11b) specialised to w = −1 (recall (1.1.10a)).

So what does this mean for modular forms? Recall from Section 2.2.1 that modular
forms for SL2(Z) have multiplier μ that carries a projective representation of SL2(Z) –
it will be a true representation only when the weight k is an integer. As we emphasise in
Section 3.1.1, projective representations become true representations when one centrally
extends. Especially when the weight is fractional, the role of SL2(R) really should be

played by the more fundamental Lie group S̃L2(R), and likewise the modular group
SL2(Z) should be replaced by its central extension B3.

For a good example, recall the Dedekind eta function η(τ ) of (2.2.6b). As we see
in (2.2.8), it is a modular form for SL2(Z) of weight 1

2 , whose multiplier μ is quite
complicated as a function on SL2(Z). But B3 is the more fundamental transformation
group underlying η(τ ). Indeed, in terms of B3, the multiplier is trivial to describe:

μ(β) = exp

[
2π i

24
degβ

]
, (2.4.14)

where the degree of a braid is the length of its word in σ1, σ2 (Section 1.1.4). More
generally, the multiplier for any modular form for SL2(Z) will be similar, with ‘24’
replaced by some other rational. Surely this algebraic interpretation of Dedekind sums
in terms of B3 is related to the topological interpretation of Dedekind sums reviewed and
explored in [24]; see also [23], [43].

Of course the multiplier of η is almost as trivial if we write

(
a b
c d

)
∈ SL2(Z) as

a monomial in the generators S, T , but finding that monomial isn’t easy. On the other
hand, finding ‘degβ’ by looking at the braid β is easy: just count the crossings in β, with
signs. The multiplier, as a function of β, is far simpler than as a function of a, b, c, d .
Our topological considerations have been rewarded!

Likewise, the multiplier in the vector-valued Jacobi form (2.3.8) (again of weight
1
2 ) defines a four-dimensional projectivere presentation of SL2(Z), given by the tensor
product of the one-dimensional representation exp[2π i degβ/8] of B3, with a true four-
dimensional representation of SL2(Z).

Of course the metaplectic group was introduced last subsection for essentially the

same reason (Mp2(R) is also a quotient of S̃L2(R)). Indeed, since most modular forms
arising in the literature have weight in 1

2 Z, the metaplectic group is a large enough central

extension, and S̃L2(R) may seem like overkill. But modular forms with fractional weight
exist in abundance for arbitrarily large denominator (see e.g. [303] for examples). The
important ‘one-point functions on a torus’ (Section 4.3.2) in conformal field theory
(CFT), to which family the Moonshine functions naturally belong, can form vector-
valued modular forms of arbitrary rational weight. We will see in Section 7.2.4 how
nicely the CFT machinery accommodates this universal B3 action, and also how other
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considerations in (Monstrous) Moonshine are trying to focus our attention on the relation
of B3 to modular functions.

The braid group B3 is at least as relevant for the nonholomorphic automorphic forms
of SL2(Z), alluded to in Section 2.4.1. For a simple example, [379] studies the Maass
cusp forms u(τ ) (with weight 0), identifying them with ‘period functions’ ψ(z); the
exact symmetry u(−1/τ ) = u(τ ) becomes ψ(1/z) = z2sψ(z), where s is the ‘spectral
parameter’ of u. This transformation of the ψ’s, with the factor z2s , is what one would
expect from the braid group (compare (7.2.4)).

We should regard B3 as the universal symmetry of (not necessarily holomorphic)
modular forms for SL2(Z). If instead we have modular forms for some subgroup � of
SL2(Z), then the role of B3 is replaced by its subgroup that projects (via the reduced
Burau representation (1.1.11b) specialised to w = −1) to �. For instance, the principal
congruence subgroup�(2) corresponds to the pure braid groupP3. It would be interesting
to find the topological interpretation of �0(p)+ in (7.1.5) and the other modular groups
appearing in Monstrous Moonshine.

The lesson of Section 2.4.1 is that, whenever we have some sort of modularity for,
for example, SL2(Z), we should lift the domain to that of the relevant Lie group (e.g.
SL2(R)). This should be especially valuable for providing perspective and clarity when
we are investigating a new modular-like phenomenon. To give one example among many,
[519] introduces nonholomorphic deformations of familiar modular forms relevant to
strings on a pp-wave background (a 1-parameter deformation of flat space-time). Of
more direct relevance to us is the question: Is it natural to regard the modular functions
(characters) of RCFT, VOAs and Moonshine as functions on SL2(R)?

The lesson of this subsection is that an SL2(Z)-action may become simpler when
lifted to its central extension B3. The braid group provides a clean universal formulation
especially appropriate when metaplectic groups or other central extensions of SL2(Z)
arise. Mathematics thrives on having alternate interpretations for the same phenomemon:
here we replace the matrix group SL2(Z) (or its subgroups) with the topologically defined
B3 (or its subgroups). Some things will be easier in one formalism, and presumably other
things in the other (e.g. the multipliers μ are much easier for B3). It is tempting to apply
this to the so-called S-duality of superstrings (Section 3.2.5). Are there other ways
modular forms for SL2(Z) see the trefoil?

The modularity argument of Section 2.4.2 has never been applied to Monstrous Moon-
shine, to this author’s knowledge. But one hint that it might be the shadow of such a
device is that the braid group lurks here. In particular, there is an action of B3 on G × G,
for any group G (Question 2.4.4); the action (2.4.8) of SL2(Z) on H is really this action
of B3 on R2 – it factors through to SL2(Z) because R2 is abelian. In Section 7.3.3
we use this same action, this time applied to M×M, to identify the group-theoretic
property of the Monster M that could be responsible for the genus-0 properties of the
McKay–Thompson series Tg .

Another hint, perhaps more substantial, of its relevance to Moonshine-like phenomena
is the repeated appearance of Maslov indices in the study of gluing anomalies in three-
dimensional topological field theory (see chapter IV of [534]). This suggested to Turaev
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an intimate relation of topological field theory with the Segal–Shale–Weil representations
of the metaplectic groups. These representations also appear in the context of braids and
subfactors [252] – metaplectic representations arise naturally there when constructing
knot invariants from braids. Much of the mathematical background is developed in [387],

where we also learn that the universal cover S̃L2(R) can easily be expressed using Maslov
indices.

Question 2.4.1. Use the decomposition (2.4.1b) to find a (noncanonical) group structure
on H, inherited from that of SL2(R).

Question 2.4.2. Show that uniqueness of the representation in Theorem 2.4.2 fails if
H is replaced with infinitely many coupled Heisenberg groups. (This is a major com-
plication for quantum field theory, as we see in Section 4.2.2 in the context of Haag’s
Theorem.)

Question 2.4.3. Verify that any function of the form F(x) = 〈π(1,x) f, μZ〉, for any f for
which F is defined, necessarily obeys F(x + n) = (−1)n1n2 eπ i (n1x2−n2x1) F(x). HenceμZ

is responsible for the quasi-periodicity (2.3.5a) of θ3.

Question 2.4.4. (a) Let G be a finite group. Verify that we obtain a right braid group B3

action on the Cartesian product G × G × G, by defining

(g, h, k).σ1 = (ghg−1, g, k), (g, h, k).σ2 = (g, hkh−1, h), (2.4.15a)

where σi are the usual generators of B3 (recall (1.1.9)). Also, verify that there is a right
B3-action on G × G, generated by

(g, h).σ1 = (g, gh), (g, h).σ2 = (gh−1, h). (2.4.15b)

(b) Let C ⊆ G × G consist of all pairs (g, h) where gh = hg. Show that this B3 action
takes C to itself, and that its restriction to C actually defines an action of SL2(Z)
on C .
(c) Extend the B3 actions of (a) to Bn actions on Gn and Gn−1.

Question 2.4.5. (a) Show that SL2(R) is isomorphic to the group

SU1,1(C) :=
{(

α β

β α

)
∈ SL2(C)

}
,

by showing they are conjugate in SL2(C).
(b) Verify that SU1,1(C) is isomorphic to the set of all pairs (γ, θ ), where |γ | < 1 and
−1 < θ ≤ 1, with group operation (γ, θ )(γ ′, θ ′) = (θ ′′, θ ′′) where

γ ′′ = γ + γ ′e−2π iθ

1+ γ γ ′e−2π iθ
, θ ′′ = θ + θ ′ + 1

2π i
log

γ + γ ′e−2π iθ

1+ γ γ ′e−2π iθ
(mod 2).

(c) Using (b), realise the universal cover S̃L2(R) of SL2(R).

(d) Realise B3 as a subgroup of S̃L2(R).
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2.5 Meta-patterns in mathematics

2.5.1 Twenty-four

There are lots of ‘meta-patterns’ in mathematics, i.e. collections of seemingly different
problems that have similar answers, or structures that appear more often than we would
have expected. Once one of these meta-patterns is identified it is always helpful to under-
stand what is responsible for it, to see what simple structure or basic lemma underlies it.
Why are groups so important in mathematics and science? Because they are the devices
through which we ‘act’ on sets, spaces, etc. Mathematics is not above metaphysics;
like any area it grows by asking questions, and changing one’s perspective – even to a
metaphysical one – should suggest new questions.

To give a trivial example, years ago while the author was writing up his PhD thesis
he noticed in several places the numbers 1, 2, 3, 4 and 6. For instance cos(2πr ) ∈ Q for
r ∈ Q iff the denominator of r is 1, 2, 3, 4 or 6. Likewise, the theta function Z+r (τ ) for
r ∈ Q can be written as

∑
aiθ3(biτ ) for some ai , bi ∈ R iff the denominator of r is 1, 2,

3, 4 or 6. This pattern is easy to explain: they are precisely those positive integers n with
Euler totient φ(n) ≤ 2, that is there are at most two positive numbers less than n coprime
to n. The various incidences of these numbers can usually be reduced to this φ(n) ≤ 2
property. For example, the number field Q[cos(2π a

b )] (see Section 1.7.1), considered as
a vector space over Q, has dimension φ(b)/2.

A more interesting meta-pattern involves the number 24 and its divisors (especially
8). One sees 24 wherever modular forms naturally appear. For instance, we see it in
the critical dimensions in string theory: the bosonic string lives in a background space-
time of dimension 24+ 2, while the fermionic string lives in 8+ 2 dimensions. Another
example: the dimensions of even self-dual positive-definite lattices must be a multiple
of 8 (e.g. the E8 root lattice has dimension 8, while the Leech lattice has dimension 24).
The meta-pattern 24 is also easy to understand: the fundamental problem for which it
is the answer is the following one. Fix n, and consider the congruence x2 ≡ 1 (mod n).
Certainly in order to have a chance of satisfying this, x and n must be coprime. The
extreme situation11 is when every number x coprime to n satisfies this congruence: that
is,

gcd(x, n) = 1 ⇐⇒ x2 ≡ 1 (mod n). (2.5.1)

The reader can try to verify the following simple fact: n obeys this extreme situation
(2.5.1) iff n divides 24. What does this congruence property have to do with these other
occurrences of 24? The elementary argument for even self-dual positive-definite lattices
involves the construction L{T } of Section 2.3.3 and is sketched in Question 2.5.1.

The ‘24’ appearing in the q1/24 of η is the same as the 24 in c/24 appearing in,
for example, (3.1.10); in both cases they come from ζ (−1) = −1/12 or equivalently

11 This is a standard trick in mathematics: when some sort of bound is established, look at the extremal cases
that realise that bound. If your bound is a good one, it should be possible to say something about those
extremal cases, and having something to say is always of paramount importance. This strategy is used, for
instance, in the definition of normal subgroup in Section 1.1.1 and of simple-currents in Section 6.1.1.
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ζ (2) = π2/6. Are these the same as the 24 in (2.5.1)? Note from the right side of (2.2.6b)
that

η(τ ) = Z+ 1
12

(12τ )−Z+ 5
12

(12τ ).

Using this identity, the fact that η(τ + 1) is a constant multiple of η(τ ) is indeed related
to (2.5.1). Moreover, this ‘1/24’ is directly related to the abelianisation

SL2(Z)/[SL2(Z),SL2(Z)] ∼= Z12 (2.5.2)

of SL2(Z): writing η(−1/τ )2 = aτη(τ )2 and η(τ + 1)2 = bη(τ )2, the multiplier s �→
a, t �→ b must define a one-dimensional representation of SL2(Z), since η2 has weight
1 (recall Question 2.2.3); for any group G, and in particular SL2(Z), the abelianisation
G/[GG] is isomorphic to the group of all one-dimensional representations of G. This
argument forces b to be some12th root of unity, and a to be b3.

Perhaps the most intriguing ‘24’ occurs as a K-theoretic invariant of the integers. K -
theory is a generalised (co)homology theory, and as such associates a sequence of abelian
groups Ki (X ) to the object X , which can capture some subtle aspects of X . When X is
a ring, the definition of these invariants Ki (X ) is quite involved, and their calculation
is very difficult (see e.g. [419] – for example, for X = Z the groups are known only
for 0 ≤ i ≤ 5, where they equal Z,Z2,Z2,Z48, 0,Z, respectively. K0(Z) ∼= Z says that
the projective Z-modules are the free Z-modules Zn , while K1(Z) ∼= Z2 tells us that the
Euclidean domain Z has only two units (namely, ±1). The first interesting group in this
list is Z48, which arises naturally here as an extension of Z24. Thus 24 (or 48) is a number
intimately associated with Z. This author knows no direct connection with our definition
(2.5.1) of 24, but there is a conjectural relation of ‖K4n−2(Z)torsion‖/‖K4n−1(Z)torsion‖
with values ζ (1− 2n) of the Riemann zeta function (see e.g. [230a]). In particular,
K3(Z) ∼= Z48 is related to ζ (−1) = − 1

12 , which in turn is related to our 24.

2.5.2 A–D–E

A much deeper and still not-completely-understood meta-pattern is called A–D–E (see
[16] for a discussion and examples). The name comes from the simply-laced Lie algebras,
i.e. the simple finite-dimensional Lie algebras whose Coxeter–Dynkin diagrams – see
Figure 1.17 – contain only single edges (i.e. no arrows). These are the A�- and D�-series,
along with the E6, E7 and E8 exceptionals. The observation is that many other problems,
which don’t have anything directly in common with simple Lie algebras, have a solution
that falls into this A–D–E pattern. Of course, for an object to be meaningfully labelled
X� at least some of the data associated with the algebra X� should reappear in some form
in that object. Let’s look at some examples.

Consider any even positive-definite integral lattice L (Section 1.2.1). The smallest
possible nonzero length-squareds in L will be 2, and the vectors of length-squared 2 are
special and are called roots (Question 1.2.5). It is important in lattice theory to know
the lattices that are spanned by their roots; it turns out these are precisely the orthogonal
direct sums of lattices called An , Dn and E6, E7 and E8 (Theorem 1.2.2). They carry
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those names for a number of reasons. For example, the lattice called Xn has a basis
{α1, . . . , αn} with the property that the Gram matrix Ai j := αi · α j is the Cartan matrix
(see Section 1.4.5) for the Lie algebra Xn . Also, the group generated by reflections in
the roots of the lattice Xn is naturally isomorphic to the Weyl group of the Lie algebra
Xn . Moreover, to any simple Lie algebra there is canonically associated a lattice called
the root lattice; for the simply-laced algebras, these are isomorphic to the lattice of the
same name. Incidentally, the root lattices for the non-simply-laced simple Lie algebras
are (up to rescalings) orthogonal direct sums of the simply-laced root lattices.

A famous A–D–E example is due to McKay.12 Consider any finite subgroup G of
the Lie group SU2(C) (i.e. the 2× 2 unitary matrices with determinant 1). For example,
there is the cyclic group Zn of n elements generated by the matrix

Mn =
(

exp[2π i/n] 0
0 exp[−2π i/n]

)
.

There are also the (doubles of) dihedral groups Dn , and the binary tetrahedral, binary
octahedral and binary icosahedral groups of orders 24, 48 and 120, respectively. Let
Ri be the irreducible representations of G. For instance, for Zn , there are precisely n
of these, all one-dimensional, given by sending the generator Mn to exp[2π ik/n] for
each k = 1, 2, . . . , n. Now consider the tensor product G ⊗ Ri , where we interpret G ⊂
SU2(C) here as a two-dimensional representation. By Theorem 1.1.2 we can decompose
that product into a direct sum ⊕ j mi j R j of irreducibles (the mi j here are multiplicities).
Now create a graph with one node for each Ri , and with the i th and j th nodes (i �= j)
connected with precisely mi j directed edges i → j . If mi j = m ji , we agree to erase the
double arrows from the mi j edges. Then McKay [411] observed that this graph, for any
of these finite G < SU2(C), is a distinct extended Coxeter–Dynkin diagram of A–D–E
type (these are all listed in Figure 3.2). For instance, the cyclic group with n elements
yields the extended graph of An−1.

How was McKay led to his remarkable correspondence? He knew that the sum of the
labels ai = 1, 2, 3, 4, 5, 6, 4, 2, 3 associated with each node of the extended E8 diagram
(Figure 3.2) equals 30, the Coxeter number of E8. So what do their squares add to?
120, which he recognised as the cardinality of one of the exceptional finite subgroups of
SU2(C), and that got him thinking . . .

A deep example of A–D–E , due to Arnol’d, are the simple singularities. A singularity
or critical point of a smooth function f : Cn → C is a point z ∈ Cn where all first partial
derivatives ∂i f vanish. For example, f (z) = zk+1 has a singularity at z = 0 for any integer
k ≥ 1. We identify singularities if locally they merely differ by a change-of-coordinates –
see, for example, [19] for details. For example, any singularity of f : C → C is equivalent
to one of the form f (z) = zk+1. A simple singularity is an isolated singularity and behaves
like the poles f (z) = z−n of usual complex analysis – again see [19] for the precise
definition. For example, z2

1 + zk+1
2 is simple but z4

1 + 3z2
1z2

2 + z4
2 is not (the coefficient

‘3’ can be deformed, yielding a continuum of inequivalent singularities).

12 He is the same John McKay we celebrated in Chapter 0.
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Table 2.2. The simple singularities in C2

Name Ak Dk E6 E7 E8

Representative x2 + yk+1 x2 y + yk−1 x3 + y4 x3 + xy3 x3 + y5

Table 2.2 lists the simple singularities in C2 up to equivalence. In higher dimensions we
get the same list, with the extra variables coming in as z2

3 + · · · + z2
n . These singularities

can be related to McKay’s A–D–E as follows. The group SU2(C) acts on C2 in the
obvious way (matrix multiplication). If G is a discrete subgroup of SU2(C), then consider
the ring of polynomials in two variables w1, w2 invariant under G. It turns out it will
have three generators x(w1, w2), y(w1, w2), z(w1, w2), which are connected by one
polynomial relation (syzygy). For instance, take G to be the cyclic group Zn , then
we’re interested in polynomials p(w1, w2) invariant under w1 �→ exp[2π i/n]w1, w2 �→
exp[−2π i/n]w2. Any such invariant p(w1, w2) is clearly generated by (i.e. can be written
as a polynomial in) w1w2, wn

1 and wn
2 . Choosing instead the generators x = wn

1−wn
2

2 ,

y = w1w2, z = i w
n
1+wn

2
2 , we get the syzygy yn = −(x2 + z2). For any G, generators

x, y, z can always be found so that the syzygy will be one of the polynomials in Table 2.2
(with ‘+z2’appended), and this will give the equation of the algebraic surface C2/G as a
two-dimensional complex surface in C3. For example, the complex surfaces C2/Zn and
{(x, y, z) ∈ C3 | x2 + y2 + zn = 0} are equivalent.

There are other ways these singularities can be associated with A–D–E . Given a
surface � ⊂ C3 with a single singularity, a resolution �̃ is a smooth surface without
singularities that agrees with � away from the singularity (again see [19] for details). A
minimal resolution is one through which any other resolution must factor. The minimal
resolution exists and is unique. For example, the A1 singularity x2 + y2 + z2 = 0 has
the resolution

�̃ = {(x, y, z, (a, b)) ∈ C3 × P1(C) | x2 + y2 + z2 = 0, xb = ya}.
For (x, y) �= (0, 0), xb = ya uniquely determines the homogeneous coordinates (a, b),
but the singularity (x, y) = (0, 0) is blown up into the sphere P1(C); the points on the
sphere parametrise the different (complex) directions in which the singularity can be
approached.

More generally, given a minimal resolutionπ : �̃→ � of a simple singularity,π−1(0)
will be a union of r spheres ∪Ci . duVal [165] noticed that these classes [Ci ] form a basis
of the homology group H2(�̃,Z), on which there is defined a Z-valued intersection form;
this form makes H2(�̃,Z) into a negative-definite lattice isomorphic (up to a factor of√−1) to the root lattice of Xr , where [Ci ] map to a basis of simple roots. The Weyl
group of Xr is isomorphic to the so-called monodromy group of the singularity (see [19]
for details).

Incidentally, the McKay correspondence refers to the strategy of describing the geom-
etry of the resolution of the orbifold singularities Cn/G for finite subgroups G of SLn(C),
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Fig. 2.9 The connected multigraphs with largest eigenvalue 2.

through the representation theory of G. See [254] for the n = 2 story (i.e. for the sim-
ple singularities) and [471] for fascinating speculations on what happens in dimension
n > 2.

Arguably the first A–D–E classification goes back to Theaetetus, who classified the
regular solids in 400 b.c. For instance, the tetrahedron can be associated with E6 while
the cube is matched with E7. This A–D–E is only partial, as there are no regular solids
assigned to the A-series, and to get the D-series one must look at ‘degenerate regular
solids’, that is the regular polygons.

The closest we have to an explanation of the A–D–E meta-pattern would seem to
be graphs of small eigenvalues. Consider any multigraph G – that is, we allow multiple
edges (there can be more than one edge connecting two vertices) and loops (an edge
running from a node to itself), but all edges are undirected. We can also assume without
loss of generality that G is connected. Assign a positive number ai to each node. If this
assignment has the property that for each i , 2ai =

∑
a j where the sum is over all nodes

j adjacent to i (counting multiplicities of edges), then we call it ‘pf2’. The column
vector (a1, . . . , an)t will be a strictly positive eigenvector (called the Perron–Frobenius
eigenvector) of the adjacency matrix of G, with eigenvalue 2. A multigraph has a pf2
assignment iff the eigenvalue λ of its adjacency matrix with largest absolute value |λ| is
λ = 2 (see Theorem 2.5.1 below). For instance, for the multigraph ◦=◦, corresponding

to adjacency matrix

(
0 2
2 0

)
, the assignment a1 = 1 = a2 is pf2 but the assignment

a1 = 1, a2 = 2 is not. The question is, which multigraphs have a pf2 assignment? The
answer is given in Figure 2.9. The names An

(1) to E6
(1) there come from Figure 3.2;

the names 0A0
n and D0

n are invented. We see that the pf2 multigraphs without loops
are precisely the extended Coxeter–Dynkin diagrams of A–D–E type, and their pf2
assignments are unique (up to constant proportionality) and are given by the labels ai of
the corresponding affine algebra (i.e. the numbers attached to the graphs in Figures 2.9
and 3.2).
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The unextended diagrams have a similar depiction. For them, we assign positive
numbers ai to each node so that 2ai ≥

∑
j a j , where as before we sum over all adjacent

j . We also require that for at least one vertex i , we don’t get an equality. Call this a
pf2− assignment. A multigraph G has a pf2− assignment iff the absolute value |λ| of
each eigenvalue λ of its adjacency matrix is < 2. In Figure 1.4 we list all multigraphs
for which there is a pf2− assignment.

Perron–Frobenius theory studies the eigenvectors/eigenvalues of nonnegative matri-
ces. We revisit this theory elsewhere in the book. The basic result is:

Theorem 2.5.1 (Perron–Frobenius) Let A be an n × n matrix with real nonnegative
entries Ai j ≥ 0 (1 ≤ i, j ≤ n).
(a) Let ρ(A) := maxλ|λ| be the maximum of the absolute values of the eigenvalues of A.

Then ρ(A) is itself an eigenvalue of A, called the ‘Perron–Frobenius eigenvalue’, and
it has an eigenvector (a1, . . . , an)t ≥ 0 (i.e. each ai ≥ 0), called a ‘Perron–Frobenius
eigenvector’.

(b) If it is not possible to simultaneously permute the rows and columns of A so that A
takes the form

A =
(

B C
0 D

)
for submatrices B,C, D (such a matrix A is called ‘irreducible’), then the Perron–
Frobenius eigenvector is strictly positive and is unique up to scalar multiples.

(c) Suppose A is irreducible in the sense of (b), and B is an n × n matrix obeying
0 ≤ Bi j ≤ Ai j ∀i, j . Then ρ(B) ≤ ρ(A), with equality iff B = A.

See, for example, [420] for a proof and further results of this kind. In our case A is the
adjacency matrix of a connected multigraph and so, being symmetric, is irreducible in
the sense of (b). The classification of all pf2 and pf2− multigraphs follows by repeatedly
applying Theorem 2.5.1(c) (see Question 2.5.2).

What do eigenvalues have to do with the other A–D–E classifications? Consider a
finite subgroup G of SU2(C). Take the dimension of the equation G ⊗ Ri = ⊕ j mi j R j :
we get 2di =

∑
j mi j d j , where d j = dim(R j ). Hence the dimensions of the irreducible

representations define a pf2 assignment for each of McKay’s graphs, and hence those
graphs must be of A–D–E type (provided we know mi j = m ji and mii = 0).

Or consider lattices: let αi be a basis of a positive-definite lattice, with all norm-
squareds αi · αi = 2. Then by the Cauchy–Schwarz inequality, αi · α j ∈ {0,±1} for
i �= j . For i < j , if αi · α j = +1 then replace α j with α j − αi . What this means is that
we can assume that each αi · α j ∈ {0,−1} for i �= j . Put Ai j = αi · α j and B = 2I − A.
Then B is a symmetric N-matrix with zeros down the diagonal, and is easily seen to have
Perron–Frobenius eigenvalue < 2. Thus B falls into the A–D–E pattern.

Suggestion There are two different, though related, fundamental A–D–E patterns:
namely, the pf2 and pf2− multigraph classifications. Any other instance of an A–D–E
pattern reduces to one or the other of these.
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Fig. 2.10 The tree corresponding to p = 3, q = 4, r = 5.

This suggestion should be treated with some caution – as simple singularities illustrate,
the same area may realise both types of A–D–E patterns, depending on the specific ques-
tions asked. In particular, duVal corresponds to Figure 1.4 and McKay to Figure 2.9.
What relates these is that one of the nodes in the McKay graph (namely, that correspond-
ing to the identity) is distinguished, and when it is deleted duVal’s graph is recovered.
We return to singularities in Section 3.2.5.

We encounter other A–D–E’s later in this book. One of these (Theorem 6.2.2) is the
only instance of A–D–E known to this author that hasn’t yet been related to pf2 or
pf2−.

Incidentally, it is commonly suggested that a possible explanation for A–D–E may
be the set of all triples p, q, r ∈ N for which

1

p
+ 1

q
+ 1

r
> 1. (2.5.3)

Then (1, q, r ), (2, 2, r ) and (2, 3, 3), (2, 3, 4), (2, 3, 5) (corresponding to Aq+r−1,

Dr+2, E6,7,8, respectively) exhausts all solutions except for p = 1, q �= r . However, this
is not as fundamental as the graph explanation suggested above. In particular, given any
triple obeying (2.5.3), construct the tree consisting of three strings leaving a common
central vertex, of lengths p − 1, q − 1, r − 1, respectively (see Figure 2.10). Give this
graph the assignment indicated in the figure – that is, label the i th vertex from the end of
the first (respectively second, third) string i

p (respectively i
q ,

i
r ). Then inequality (2.5.3)

is precisely the statement that this assignment is pf2−, and thus that the graph will be
of (unextended) A–D–E type. The reverse implication, showing that any pf2− graph G
will necessarily correspond to a triple obeying (2.5.3), is much less elementary.

What comes after A–D–E? Natural candidates should be the graphs with largest
eigenvalue ρ = 3, say. For the same reason that those with ρ = 2 arise in so many
contexts, those with ρ = 3 surely will too. The difference is that the number and variety
of graphs grows dramatically with the largest eigenvalue ρ. The list of graphs with
ρ = 2 has such a simple and tight structure that different situations will automatically
share a family resemblance, provided only that they depend critically on graphs with
ρ = 2. For instance, the eigenvalues of any graph with ρ = n must be character values
of an n-dimensional representation of SUn , if the graph is to have a chance at being the
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McKay graph of a finite subgroup of SUn; although this is automatic for n = 2, it is a
severe constraint for n ≥ 3. A different ρ = 3 situation can carry with it its own severe
constraints, which would thus overwhelm the presence of the ρ = 3 graphs. We could
say that ρ = 2 is a dominant gene, while ρ = 3 is recessive; this is why A–D–E is so
ubiquitous, and why there seems to be no effective successor meta-pattern to A–D–E .
(But see Section 6.3.2.)

For a final meta-pattern, consider ‘modular functions’. After all, they appear in many
places and disguises. Maybe we shouldn’t regard their ubiquity as fortuitous. Instead,
perhaps there’s a deeper common ‘situation’ that is the source for that ubiquity. Two-
dimensional lattices, perhaps? Riemann surfaces? The braid group B3?

Question 2.5.1. Let L ⊂ Rn be an even self-dual n-dimensional lattice. Assume there
exists an orthonormal basis ei of Rn and a number k such that the orthogonal lattice
2k(Ze1 ⊕ · · · ⊕ Zen) is a sublattice of L (this is true for any self-dual L – see theorem 3.15
of [238]).
(a) Let L ′ be the orthonormal lattice Ze1 ⊕ · · · ⊕ Zen . Then the abelian group L/(L ∩

L ′) must be isomorphic to Z2k1 × · · · × Z2km for 0 < km ≤ · · · ≤ k1 ≤ k. Generators
ω1, . . . , ωm ∈ L for it can be chosen so that ωi = 1

2ki

∑
j ωi j e j , where ωi j ∈ Z, such

that
∑

i ciωi ∈ L ′ for ci ∈ Z iff 2ki divides ci for each i . Prove that there exist vectors
r1, . . . , r j ∈ L ′ such that ri · ω j ≡ 1

2ki
δi j (mod 1).

(b) Let x =∑
i 2ki−km r2

i ωi = 1
2km

∑
j x j e j , so x ∈ L and x j ∈ Z. Prove that each x j is

odd (Hint: consider
∑

i ωi j r j − ei ).
(c) Conclude from (2.5.1) that 8 must divide the dimension n.

Question 2.5.2. Using Theorem 2.5.1(c), prove that the multigraphs in Figures 1.4 and
2.9 exhaust all connected multigraphs whose eigenvalues λ all obey |λ| ≤ 2.

Question 2.5.3. Why are there no loops in the McKay graph corresponding to any finite
subgroup of SL2(C)? Why don’t these McKay graphs have directed edges?

Question 2.5.4. The classifications in Figures 1.4 and 2.9 depend on the requirement
that the matrices be symmetric, i.e. that the multigraphs have no arrows. Find all 2× 2
nonnegative integer matrices whose eigenvalues λ all obey |λ| ≤ 2.
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