On the completeness of sets of complex exponentials

Kevin Smith

ABSTRACT

The completeness of sets of complex exponentials $\{e^{i\lambda f(n)}: f\in\mathbb{Z}\}\$ in $L^p(-\pi,\pi), \ 1< p\leqslant 2$, is considered under Levinson's sufficient condition in the non-trivial case $\lambda\geqslant 1-(1/p)$. All such sets are determined explicitly.

1. Introduction

In 1934, Paley and Wiener [2] proved that a set of complex exponentials $\{e^{i\lambda_n\cdot}\}$, $\{\lambda_n\} \subset \mathbb{R}$, is complete on $L^2(-\pi,\pi)$ if there exists a constant $D < \pi^{-2}$ such that

$$|\lambda_n - n| \leqslant D \tag{1.1}$$

for every $n \in \mathbb{Z}$. Shortly after, Levinson [1] considered the $L^p(-\pi, \pi)$ case with 1 and <math>1/p + 1/q = 1. He proved that completeness holds on $L^p(-\pi, \pi)$ if

$$|\lambda_n - n| \leqslant D < 1/2q,\tag{1.2}$$

and that this result is optimal in the sense that completeness may fail if D = 1/2q.

In this short paper we consider the existence of solutions to Levinson's inequality (1.2) which are subsequences of the scaled integers $\lambda \mathbb{Z}$, $\lambda \in \mathbb{R}$, in other words, we consider commensurable solutions. In this case, the problem reduces to finding $f: \mathbb{Z} \to \mathbb{Z}$ such that $\lambda_n = \lambda f(n)$. The structure of the solutions and the action of f on the additive group $\mathbb{Z}/(2r+1)\mathbb{Z}$ are discussed once the reader has been introduced to the relevant concepts via a proof of the main theorem.

For $0 < \lambda < 1/q$, the existence of f is trivial because for every $n \in \mathbb{Z}$ there exists at least one $m \in \mathbb{Z}$ such that $|\lambda m - n| < \lambda/2$. On the other hand, for $\lambda \geqslant 1/q$, f is injective if it exists.

2. Main theorem

The special case p=q=2 was solved in [3] via a complicated and laborious algorithm. We shall now prove the general theorem for $1 using elementary principles from group theory, which demonstrate more clearly why the structure of the solutions is as such. Specifically (a non-trivial case being one in which <math>\lambda f(n) \ne n$ for at least one n), we shall prove the following theorem.

THEOREM 2.1. If $\lambda \geqslant 1/q$, there exists a non-trivial $f: \mathbb{Z} \to \mathbb{Z}$ such that

$$|\lambda f(n) - n| \leqslant D < 1/2q \tag{2.1}$$

if and only if $\lambda = (2r+1)/s$ is an irreducible fraction with s = 2qr + t and $1 \le t < q$.

Proof. We begin by excluding the possibility that λ is irrational or rational with an even numerator. By Kronecker's approximation theorem, the fractional parts of the set $\lambda \mathbb{Z}$ are dense in the unit interval (0,1). It follows that an irrational λ cannot solve (1.2), so $\lambda = r/s$, where $r, s \in \mathbb{N}$, and, since f is one-to-one, we must have f(r) = s, so $\lambda = r/f(r)$. To exclude the possibility that the numerator is even, suppose that $\lambda = 2r/s$ is irreducible,

Received 27 February 2010; revised 5 January 2011.

2000 Mathematics Subject Classification 42A65.

138 K. SMITH

so that $f(2r) \neq 2f(r)$. Dividing (2.1) by $\lambda n = 2rn/f(2r)$, we obtain the weaker condition

$$\left| \frac{f(n)}{n} - \frac{f(2r)}{2r} \right| \leqslant C < \frac{1}{2n}. \tag{2.2}$$

Now, since $f(2r) \neq 2f(r)$ and $f: \mathbb{Z} \to \mathbb{Z}$, we have $|f(2r) - 2f(r)| \geq 1$, so $|f(2r)/2r - f(r)/r| \geq 1/2r$, a contradiction. We must conclude that the numerator is odd, so $\lambda = (2r+1)/s$, $r, s \in \mathbb{N}$.

The fact that λ must be rational with an odd numerator means that we may replace $|\cdot| \leq D < 1/2q$ by $|\cdot| < 1/2q$, and work modulo 2r+1 because f is actually a function on the additive group $\mathbb{Z}/(2r+1)\mathbb{Z}$, that is, $f(n) = f(j(2r+1)+k) = jf(2r+1) + f(k) = f(k) \mod f(2r+1)$. Dividing (2.1) by $\lambda \geq 1/q$, we obtain the weaker condition

$$\left| f(n) - \frac{n}{\lambda} \right| < \frac{1}{2},\tag{2.3}$$

so that $f(n) = \lfloor n/\lambda + 1/2 \rfloor$ is the nearest integer to n/λ in any case.

Let s = m(2r+1) + l. Since we need only consider λ irreducible, we have (2r+1,s) = (2r+1,l) = 1 and

$$g(ks) = ks - (2r+1) \left[\frac{ks}{2r+1} + \frac{1}{2} \right]$$

$$= kl - (2r+1) \left[\frac{kl}{2r+1} + \frac{1}{2} \right]$$

$$= kl \mod 2r + 1. \tag{2.4}$$

For each $k \in [-r, r]$, the map $k \to kl$, $l \in [-r, r]$, is incongruent mod 2r + 1, and, since g is the corresponding element in the least residue system [-r, r], g defines $\phi(2r + 1) + 1$ automorphisms of the additive group $\mathbb{Z}/(2r + 1)\mathbb{Z}$. Since $\lambda \ge 1/q$ is irreducible, we have (2r + 1, s) = 1 and it follows that g takes the values $\pm r$ independently of s, so

$$\sup_{n \in \mathbb{Z}} |\lambda f(n) - n| = \sup_{n \in \mathbb{Z}} \left| \frac{g(ns)}{s} \right| = \frac{r}{s}$$
 (2.5)

and (2.1) holds if and only if s = 2qr + t, $1 \le t < q$, which completes the proof.

3. Remarks on the action of f on the additive group $\mathbb{Z}/(2r+1)\mathbb{Z}$

In the course of proving Theorem 2.1 we found that, for each solution λ , we must have $f(k) = \lfloor k/\lambda + 1/2 \rfloor$. The assertion of the theorem may be expressed as s = q(2r+1) + l, $1 - q \le l < 0$, which, on substitution into the expression for f, gives $f(k) = kq + \lfloor kl/(2r+1) + 1/2 \rfloor$. Since $k \in [-r, r]$, this implies that $f: k \to kq$ if and only if l = -1, that is, $\lfloor kl/(2r+1) + 1/2 \rfloor = 0$, which is exactly the case in which λ is the best possible rational approximation to 1/q with numerator 2r+1. It is interesting to note that this is the only case in which f is an automorphism of the additive group $\mathbb{Z}/(2r+1)\mathbb{Z}$.

For finite q, the solutions corresponding to the remaining congruences $l=-2,\ldots,1-q$ do not yield functions which preserve the structure of the group. Yet, it is interesting to note that the only possibility in the L^1 (that is, $q=\infty$) and L^2 cases are the functions $f:k\to k$ and $f:k\to 2k$, respectively, which are both automorphisms of $\mathbb{Z}/(2r+1)\mathbb{Z}$.

It also seems worth remarking that for sufficiently large r, specifically 2r+1>q, we find that there are exactly q-1 distinct non-trivial solutions, and hence q-1 distinct non-trivial functions f. Therefore, including the trivial (identity) case f(n)=n, one has $q=(1-(1/p))^{-1}$ distinct solutions. This fact easily follows from the observation that, for every $1 \le t < q$, 2rq+t is not divisible by 2r+1 if 2r+1>q.

Acknowledgements. The author wishes to thank A. Granville, J. R. Higgins, J. Morrison, T. Wesson and an anonymous referee for valuable discussions and suggestions.

References

- N. LEVINSON, 'On non-harmonic Fourier series', Ann. of Math. (2) 37 (1936) 919–936.
 R. E. A. C. Paley and N. Wiener, Fourier transforms in the complex domain (American Mathematical Society, Providence, RI, 1934).
- 3. K. SMITH, 'On complete interpolating sequences and sampling expansions', LMS J. Comput. Math. 13 (2010) 1-9.

Kevin Smith Cambridge United Kingdom

k.p.q.smith@gmail.com