
Cite this article: Vuillod, B., Panettieri, E., Hallo, L., Montemurro, M. (2023) ‘Preliminary Design of Non-Linear 
Systems Based on Global Sensitivity Analysis and Modelica Language’, in Proceedings of the International Conference 
on Engineering Design (ICED23), Bordeaux, France, 24-28 July 2023. DOI:10.1017/pds.2023.293

ICED23 2925

 
 
INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED23 
24-28 JULY 2023, BORDEAUX, FRANCE 

ICED  

 

 

PRELIMINARY DESIGN OF NON-LINEAR SYSTEMS BASED 
ON GLOBAL SENSITIVITY ANALYSIS AND MODELICA 
LANGUAGE 
 
Vuillod, Bruno (1,2); 
Panettieri, Enrico (2); 
Hallo, Ludovic (1); 
Montemurro, Marco (2) 
 
1: French Atomic Energy Commission, Route des Gargails, BP2, Le Barp Cedex, France; 
2: Arts et Metiers Institute of Technology, Univ. Bordeaux, CNRS, Bordeaux INP, Hesam Universite, 
I2M, UMR 5295, F-33400 Talence, France 
 

ABSTRACT 
In the last few years, the growing need of highly reliable and time-effective strategies to perform 
preliminary design of complex systems has led industries to adopt the Model Based System Engineering 
(MBSE) approach. In MBSE, systems are split into multiple sub-systems and the relevant physical 
phenomena are described via analytical or numerical models. When a significant number of design 
variables are to be considered, a smart approach to reduce the number of analyses to perform would be 
to make use of the Global Sensitivity Analysis (GSA) to higlight those variables that have a more 
significant influence on the system output. Moreover, an even more significant reduction of 
computational cost to perform the GSA can be achieved if the complex system modelled via the MBSE 
approach is exported under the Functional Mock-Up Interface (FMI) norm. In this context, this paper 
proposes an original approach to address the study of two constructive solutions of an acceleration 
measuring device typically used on airbags for which the use of a new solution characterized by a porous 
material is compared with a classical one. 
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1 INTRODUCTION
When dealing with the design of complex systems, one of the main issues is to determine the influence
of each design variable on the outputs of the system. Global sensitivity analysis (GSA) methods can help
the designer to achieve this task. In the last two decades, several methods for GSA have been developed
(Saltelli et al., 2008; Razavi et al., 2021). GSA methods can be grouped in four classes as presented
by Razavi et al. (2021): a) the derivative-based approaches, which are multi-local techniques firstly
introduced by Morris (1991); b) the distribution-based approaches, which consist in studying condi-
tional model output variances, based on the Hoeffding (1948) decomposition and introduced by Sobol
(1993) (the so-called Sobol’s indices); c) the variogram-based approaches, linking derivative-based
and distribution-based approaches (Razavi and Gupta, 2016a,b); d) the regression-based approaches
Kleijnen (1995).
In the literature, one can find several algorithms to perform GSA based on the notion of Sobol’s indices
(Tissot and Prieur, 2012; Tarantola et al., 2006). The most popular ones are those developed by Saltelli
et al. (Saltelli, 2002; Saltelli et al., 2010). Today, they are available in classical Python libraries, together
with other strategies, like the Fourier Amplitude Sensitivity Test (FAST) (Cukier et al., 1973). The main
difference between Saltelli’s algorithms and FAST method is related to the calculation of the Sobol’s
indices: the former relies on the standard analysis of variance (ANOVA), while the latter is based on
a frequency analysis of the output. Saltelli’s algorithms are more accurate than FAST method, but at
the price of a higher computational effort. Consequently, in this work, the FAST algorithm is used as a
compromise between accuracy, computational cost and reliability (Vuillod et al., 2023).
A sound alternative to perform GSA is the algorithm proposed by Goda (2021), which is based on the
Shapley’s effect. This concept is derived from the game theory (Shapley, 1953): by considering a team
playing to a game to achieve a certain goal, the aim is to quantify the role of the single player in achiev-
ing this goal. As discussed by Iooss and Prieur (2019) and by Goda (2021), Shapley’s indices can be
used for systems characterised by independent or dependent design variables and provide informations
complementary to those related to Sobol’s indices. For a deeper insight in the matter, the interested
reader is addressed to the work by Goda (2021).
In this paper, GSA is applied to a multiple-input-single-output (MISO) system that represents the
behaviour of a device which allows producing a signal from a specific acceleration value. Its common
use is to trigger airbags in cars: it is constituted of a piston in a chamber oil-fill, blocked by a pre-loaded
spring. Depending on the variation of the acceleration, the piston motion triggers a sending of a signal
when a certain position is reached. Two different cases will be analysed in this paper, corresponding to
two piston architectures. In the first case, the piston has a standard configuration, i.e., it is a cylinder
with a centre hole allowing fluid motion inside it. In the second case, the piston is made of a full fill
porous material.
One of the main issues of GSA methods is that they require a large number of simulations. In a recent
paper, Zhou et al. (2022) propose alternative methods to reduce the computational cost associated with a
GSA. However, these source codes are not available because they are still under development or unpub-
lished. Thus, the present work, which deals with open access GSA algorithms, uses another strategy to
reduce the computational cost by acting directly on the numerical description of the model: the Model-
Based Systems Engineering (MBSE) approach, through the Modelica language, complemented by the
Functional Mock-up Interface (FMI) standard. The former allows a lighter physical 0D model and the
latter a significant reduction in computational costs.
The objective of this paper is to present the GSA - MBSE methodology on simple study cases to get
useful information about the influence of the input variables (and on their interaction) on the output
responses on the whole design space. Furthermore, the methodology can be extended to more complex
systems, where Design of Experiments (DOE) cannot be conveniently applied. Therefore, the goal of
this methodology is twofold. On the one hand, GSA based on both Sobol’s indices and Shapey’s effect
will be carried out on both configurations to determine the influence of the design variables on the
system output. On the other hand, by exploiting the results of the GSA, the aim is to design the second
configuration of the piston to obtain (at least) the same performance of the first one.
The paper is organised as follows. Section 2 provides a brief overview of the theoretical and numerical
tools used in this work, i.e., Sobol’s indices, Shapley’s effect, MBSE approach and the FMI norm.
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Sections 3 and 4 present the classical airbag model and the one including porous material, respectively.
Lastly, section 5 ends the paper with conclusions and prospects.

2 THEORETICAL AND NUMERICAL TOOLS

2.1 Global sensitivity analysis: the Sobol's indices

Consider a MISO system whose transfer function is M : ζ ⊆ Rn
−→ y ⊆ Rm, where n is the number

of input variables, ζ = (ζ1, . . . ,ζn) is the vector of input variables, y is the considered output. As widely
discussed in Saltelli et al. (2010), the generic Sobol’s index Su is defined as:

Su :=
Var(Mu(ζu))

Var(y)
, (1)

which represents the ratio of the variance due to the interaction between the components of ζu (for
u ∈ S) to the total variance of the output. Sobol’s indices can be defined also for orders higher than one.
Of course, the Sobol’s indices satisfy the following relationship:∑

u∈S
u 6=0

Su =

n∑
i=1

Si(ζi)+
∑

1≤i<j≤n

Si,j (ζi,ζj )+ ·· · + S1,...,n(ζ ) = 1. (2)

According to Equation 1, the first-order Sobol’s index Si(ζi), also referred to as elementary Sobol’s
index provides a measure of the influence of the single input variable ζi on the output y. However, the
elementary Sobol’s index does not provide any information about the influence of the variable ζi on the
output y when interacting with other input variables ζk, k ∈ S, k 6= i.
Thus, the 2n

− 1 Sobol’s indices can provide precious informations for the GSA, but their computation
can be prohibitive when a large number of variables is considered. To this end, a measure often referred
to as the “total Sobol’s index”, STi , is used (Saltelli, 2002). This index provides a measure of the contri-
bution to the output variance of ζi, including all variance caused by its interactions, of any order, with
the other input variables. The total Sobol’s index related to the input variable ζi can be defined as:

STi :=
∑
u∈S

i∈u 6=0

Su. (3)

Due to its definition, unlike the elementary indices Si, the sum of the total Sobol’s indices can be greater
than or equal to one, i.e.,

∑n
i=1 STi ≥ 1. This is due to the fact that the interaction between two variables,

e.g., ζi and ζj , is counted in both the associated total indices, i.e., STi and STj . The sum of the total indices
is equal to one only when the model is purely additive. According to Eq. (3), if STi ≈ 0, one can state
that the variable ζi does not influence at all the considered output.
In the following of this paper the elementary Sobol’s indices are indicated as Si. For a deeper insight in
the matter the interested reader is addressed to (Saltelli et al., 2010).

2.2 Global sensitivity analysis: the Shapley's effect

Recently, Owen (2014) has proposed a GSA method for systems characterised by dependent input vari-
ables based on Shapley’s effect, a concept taken from the game theory (Shapley, 1953). Nevertheless,
since in this work only non-linear systems characterised by independent input variables are considered,
only the formulation of the Shapley’s indices for this type of systems is briefly recalled here below.
According to (Iooss and Prieur, 2019), in the case of independent input variables, the Shapley’s index
related to the generic input ζi is defined as:

SHi :=
∑
u∈S

i∈u 6=0

Su

nu
, (4)

where nu is the cardinality of the array u collecting the indices uk ∈ S used to compute the elementary
index Su, i.e., nu = 1 if uT

= (1), nu = 2 if uT
= (1,2), etc. Shapley’s indices are characterised by
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two main properties: they are positive semidefinite and their sum is equal to one (Iooss and Prieur,
2019). Moreover, the Shapley’s index related to the generic input variable ζi always falls between the
elementary and total Sobol’s indices associated to the same variable, i.e., Si ≤ SHi ≤ STi .

2.3 Modelica and global sensitivity analysis co-simulation

In the present work, the number of simulations required to obtain accurate results for the GSA respect the
convergence criteria of the GSA method. Therefore, in order to minimise the global computational cost
of the GSA, a modelling strategy based on the MBSE approach, via the Modelica language, is adopted.
The 0D model is then built by linking different physical components. Each of these components behaves
according to its own system of Differential Algebraic Equations (DAE). Finally, the software is able to
build up the global DEA system before solving it.
Once the Modelica model has been created and validated, a Functional Mock-up Unit (FMU) file is
exported and run in co-simulation (CS) mode, defined by the FMI standard. One of the main advantages
of this format, is the computational cost: a Modelica simulation of the studied cases requires about
5 s, while an FMU simulation requires about 10−2 s. Figure 1 illustrates the interactions between the
different tools.

Figure 1. Illustration of the interactions between the Modelica model, FMI norm and GSA codes.

3 CLASSICAL AIRBAG TEST CASE

3.1 Model description

The reference test case is a device for measuring acceleration mainly used to trigger airbags, illustrated
in Figure 2a. The system is composed of a piston with a centre hole, in motion without gap in a chamber
oil-fill. At t = 0 s, the piston displacement is x = 0 m and it is constrained by a pre-loaded spring. At
t = 0+ s, the piston motion is initiated by a sudden acceleration. This latter is due to a sudden stop of the
device, for example a car crash against an obstacle. As a consequence, the device external deceleration
induces an acceleration to the piston. The functional scheme, shown in Figure 2b, illustrates the different
forces and motions involved in this model: its behaviour can be assimilated to a mass linked to a support
through a spring in parallel of a singular pressure drop.

External deceleration

Spring

Fluid      

Piston

Chamber
(a) (b)

Figure 2. Initial airbag model: (a) its representative scheme and in (b) its functional scheme.
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The behaviour of such system can be determined by solving the second Newton’s law along the ex
axis:

Ma =
q∑

i=1

fext,i, (5)

where M is the piston mass, a its acceleration, whose component along the x axis is equal to ẍ(t), fext,i
is the generic i-th external force applied to the system and q is the total number of applied forces. The
first considered force is the one if the spring, expressed as:

fS = −k(x − L0)ex, (6)

where k is the spring constant, L0 is its unstreched length and ex is the unit vector of the x axis
(Figure 2b). At t = 0 s, the spring is pre-loaded. The second external load is the drag force that reads:

fD = sign(vint)Ap1PSingex, with1PSing =
1
2
ξρoilv2

int, (7)

where vint is the oil velocity inside the piston, 1PSing is the singular pressure loss and Ap is the area
of the piston section expressed by Ap = π

(
R2
− r2

hole

)
with R the external piston radius and rhole the

piston hole radius. Regarding the singular pressure loss expression, ξ = 0.5 is the singular pressure loss
coefficient in a regular pipe and ρoil is the oil density. The last load is the added-mass force whose
expression is:

fa = aM
(

1−
ρoil

ρsteel

)
ex, (8)

where a is the external deceleration occurring in the interval 1ta and ρsteel the steel density composing
the piston.
Moreover, we assume that inside flow is equal to equivalent flow of the piston motion. Thus, it is
possible to deduce that vint =

Ap
Aint

vp with Aint the internal section area.
To model this system, the MBSE approach is used via the Modelica language. The final model is com-
posed of four elementary blocks, corresponding to the functional scheme shown in Figure 2b (a mass, a
spring, a singular pressure loss and a support), subject to a fifth one used to apply the input force fa.

3.2 Study context

In this application, the output of interest is the time1t needed by the piston to reach the electrical contact
from its starting position, to trigger the inflation of the airbag. This distance 1x is fixed to 0.02 m and
corresponds to the end of the chamber in the scheme of Figure 2a. An admissible value of1t to achieve
this goal is lower than 0.2 s (to save car passengers without hitting them). The input variables (with the
related ranges of variation) and the constant parameters together with the reference values (that allow
satisfying the requirement on 1t) are listed in Table 1. To perform the GSA, the distribution of each
design variable in the related range follows a uniform law U .

Table 1. Constant parameters and input variables: reference values and intervals of

variation.

Constant parameter Reference value Input variable Reference value Range of variation
R [m] 0.025 rhole [m] 0.008 U([0.006,0.01])
ξ [-] 0.5 Lp [m] 0.03 U([0.02,0.04])
ρoil [kgm-3] 900 k [Nm-1] 150 U([90,210])
ρsteel [kgm-3] 8000 L0 [m] 0.03 U([0.02,0.04])
a [ms-2] 200
1ta [s] 0.05

During the FMU export step, it is necessary to define not only the inputs, outputs and constant param-
eters of the model, but also the solver type that allows the co-simulation run to be performed. In this
study, a fourth-order Runge-Kutta solver is chosen, with integration and communication time steps with
the GSA algorithm set to 10−4 s.
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3.3 Global sensitivity analysis results

The results of the GSA, considering the FAST method to compute the Sobol’s indices, are computed
with N = 212 and compared with reference values obtained with N = 222. The Shapley’s indices val-
ues, computed with the Python version of the algorithm proposed by Goda (2021) with N = 214 are
compared to the results obtained by the same algorithm by taking N = 222 samples (Vuillod et al.,
2023). These results are shown in Figure 3 where one can read also the confidence interval with a 95 %
confidence level.

Lp rhole L0 k
Variable

0

20

40

60

80

100

In
d

ex
va

lu
e

[%
]

Si

SHi

STi
Reference

Figure 3. GSA results on the airbag model. The global variance of the considered output

1t is Var(1t) = 1.08 · 10−5.

From these results, one can infer that the influence of the interaction among the design variables on
the output of the system is negligible. Indeed, the elementary and total Sobol’s indices are very close.
Quantitatively, the influence of the interaction among input variables on the output can be assessed from
Equation 2 and it is equal to 3.30 %.
From Figure 3, the most influential variable is the radius of the hole of the piston with STi = 90 %, which
is eight times greater than the second most influential variable, i.e., the piston length Lp . Conversely,
the spring constant k and its unstreched length L0 are characterised by a total index that goes to zero.
Accordingly, the behaviour of the system is strongly influenced by the singular pressure loss definition,
which is the only force involving the variable rhole. Regarding the Shapley’s indices, they fall always
between elementary and total Sobol’s indices, but the reliability offered by Goda’s algorithm is lower
than that characterising the FAST method for the computation of Sobol’s indices.
Moreover, the global variance of the considered output 1t is Var(1t) = 1.08 · 10−5 s. A new solution
to reduce the sensitivity of the system linked to solely one parameter, rhole, is studied in the following
section.

4 AIRBAG INCLUDING POROUS MATERIAL

4.1 Model description

To reduce the dependence of the piston motion to the singular pressure loss, one can imagine to change
the architecture of the piston by using a solution made of a porous material, without centre hole. Of
course, in this case one has to conceive the piston to obtain the same (or better) behaviour, in terms of
stability of the motion, of the classic configuration. Such a piston can be fabricated by AM technology
to full-fill physical requirement (porosity, void volume, etc.). To this end, this test case, schematically
shown in Figure 4a, has been modelled in Modelica environment according to functional scheme illus-
trated in Figure 4b. The external forces applied to the piston are the same as the first case, except the
singular pressure loss that is replaced by a pressure loss of a porous material. The goal is to keep the
same behaviour of the first solution, while being less sensitive to the pressure losses.
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External deceleration

Spring

Fluid flow accross a porous media

Piston

Chamber

(a) (b)

Figure 4. Airbag model including porous material with in (a) its representative scheme and in (b) its

functional scheme.

To achieve this goal, the first step is to design the porous material. Therefore, in this work, the Ergün
fluid law is considered to characterise the fluid behaviour through the porous material, taking into
account the following hypotheses (Gjengedal et al., 2020):
• the gravity does not affect the fluid behaviour;
• the Reynold number is sufficiently high. Indeed, Re = ρoilvcLc

µoil
≈ 450, where vc ≈ 1 [ms-1] is the

characteristic oil velocity, Lc ≈ 10−2 [m] the characteristic length and µoil ≈ 0.02 [Pas] the oil
dynamic viscosity;

• the porous material is made of uniform distribution of pores.
Then, as demonstrated in Gjengedal et al. (2020), the Ergün law reads:

1Pporous

Lporous
=

2αA2
spe

83 µoilvs +
β

8
Aspe

83 ρoilv2
s , (9)

where 1Pporous is the pressure loss through a porous medium, Lporous is the characteristic length of the
porous medium, α is a geometric coefficient used to fit the porous material behaviour as the first case,8
is the porosity volume fraction, β0 ∈ [1.1,5.6], a factor depending on the geometric relation used to fit
the first case behaviour, and vs, the surface velocity corresponding to the flow without any disturbances.
Aspe is the specific porous area, expressed as follows by Gjengedal et al. (2020):

Aspe =
6(1−8)

dφ
, (10)

where d is the average pore diameter and φ is a coefficient that translates the porous discontinuity. In
this case the pores are considered to be perfectly ordered and spherical. Therefore φ = 1.
Considering both the oil flow behaviour of the initial system and Equation 9 adapted to this case, the
drag force is:

fD = −sign
(
vp
)

Ap1PPorousex, with1P = 72Lpα
(1−8)2

d283 µoilvp + 0.75Lpβ
(1−8)

d83 ρoilv2
p ,

(11)

where vp is the piston velocity.
The use of a porous material also changes the expression for the added mass force. Indeed, the initial
piston mass value M is now reduced by the volume fraction of the porosity, i.e., MPorous = (1−8)M .
Consequently, the added-mass force become: fa = aMPorous

(
1− ρoil

ρsteel

)
ex.

4.2 Study context

Also in this case, the output of the system is the time 1t needed by the piston to cover the distance
1x = 0.02 m. The input variables (with the related ranges of variation) and the constant parameters
together with the reference values (that allow satisfying the requirement on 1t) are listed in Table 2.
To perform the GSA, the distribution of each design variable in the related range follows a uniform law
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U . Thus, the pores of the porous media do not follow a specific organisation, but merely a statistical
distribution.

Table 2. Constant parameters and input variables: reference values and intervals of

variation.

Constant parameter Value Input variable Reference value Range of variation
R [m] 0.025 Lp [m] 0.03 U([0.02,0.04])
ρoil [kgm-3] 900 k [Nm-1] 150 U([90,210])
ρsteel [kgm-3] 8000 L0 [m] 0.03 U([0.02,0.04])
a [ms-2] 200 8 [%] 55 U([50,60])
1ta [s] 0.05 dpore [m] 0.00175 U([0.0015,0.002])
µoil [Pas] 0.02

As in the first test case, the Modelica has been exported as an FMU file with the same parameters used
for the fourth order Runge Kutta solver.

4.3 Global sensitivity analysis results

The results of the GSA, considering the FAST method to compute the Sobol’s indices, are computed
with N = 212 and compared with reference values obtained with N = 222. The Shapley’s indices val-
ues, computed with the Python version of the algorithm proposed by Goda (2021) with N = 214 are
compared to the results obtained with the same algorithm by taking N = 222 samples (Vuillod et al.,
2023). These results are shown in Figure 5 where one can see also the confidence interval with a 95 %
confidence level.

Lp L0 k Φ dpore

Variable

0

20

40

60

80

100

In
d

ex
va

lu
e

[%
]

Si

SHi

STi
Reference

Figure 5. GSA results on the airbag model including porous material. The global variance of the

considered output 1t is Var(1t) = 1.45 · 10−5 s.

As already seen in the previous section, the values of Si and STi are very close. According to Equation 2,
the influence of the interaction between the input variables is about 10.24 %. This is slightly higher than
the first configuration of the system.
Figure 5 highlights that all variables are characterised by indices Si, STi and SHi included between 10 %
and 30 %, and the global system variance is approximately equal to 1.45 · 10−5 s. Moreover, with the
second system, sources of uncertainty could be filtered out from the system behaviour by properly acting
on the multiple design variables. Finally, since the number of design variables is higher than the classical
configuration, the design space of this second case is wider than that of the former one. Of course, the
design problems should be formulated by adding more design requirements according to the physics of
the problem at hand. In any case, the main design requirement to be included in the problem formulation
is the same of the previous formulation, i.e., 1t < 0.2 s.
As far as the Shapley indices are concerned, their values are between the elementary Sobol indices and
the total ones, except for the variable dpore, which is higher the total index. Since the proportion of
interactions is very low, i.e., the elementary and total indices are very close, this error may be due to the
issue related to the convergence of the Shapley’s code (Vuillod et al., 2023).
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5 CONCLUSIONS
In this paper, a GSA is used to study two configurations of a device reproducing the behaviour of
an airbag: a classical piston-spring-mass device and another including a porous material. A MBSE
approach, implemented via the Modelica language and exported in FMU format, is adopted as modelling
strategy. The objective is to study and to understand the influence of different input variables on the
device behaviour, and to point out the importance of this modelling approach when addressing new
design solutions.
The results show that, for the classical configuration, the centre hole radius is the variable with the
strongest influence on the system output. Indeed, its total Sobol’s index value is about 90 %, more than
8 times greater than the second influential variable, the piston length. For the porous configuration, all
indices, i.e., the Sobol’s and Shapley’s ones, are between 10 % and 30 %. Moreover, for both cases,
the global output variance is about 10−5 s and the interactions are negligible. Two conclusions can be
drawn from these results:
• The behaviour of the first device is essentially driven by one variable, the centre hole radius.
• In the second device, the desired behaviour can be obtained by different sets of parameters. This

indicates that a larger design domain can be considered to identify, if needed, an optimal solution,
or to reduce the effects of sources of uncertainty.

This work has demonstrated the potential of the MBSE approach coupled with the use of the FMU
format to perform an efficient GSA on relatively simple non-linear systems used in preliminary design.
Ongoing studies address the use of this numerical framework to perform GSA on complex multi-physics
problems where the MBSE approach is enriched with metamodels reproducing efficiently the behaviour
of those phenomena for which accurate (high-fidelity) models are needed.
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