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Abstract

The search space for new thermoelectric oxides has been limited to the alloys of a few known systems, such as ZnO,
SrTiO3, and CaMnO3. Notwithstanding the high power factor, their high thermal conductivity is a roadblock in
achieving higher efficiency. In this paper, we apply machine learning (ML) models for discovering novel transition
metal oxides with low lattice thermal conductivity (kL). A two-step process is proposed to address the problem of small
datasets frequently encountered in material informatics. First, a gradient-boosted tree classifier is learnt to categorize
unknown compounds into three categories of kL: low,medium, and high. In the second step, we fit regressionmodels on
the targeted class (i.e., low kL) to estimate kL with an R2 > 0:9. Gradient boosted tree model was also used to identify
key material properties influencing classification of kL, namely lattice energy per atom, atom density, band gap, mass
density, and ratio of oxygen by transition metal atoms. Only fundamental materials properties describing the crystal
symmetry, compound chemistry, and interatomic bonding were used in the classification process, which can be readily
used in the initial phases ofmaterials design. The proposed two-step process addresses the problem of small datasets and
improves the predictive accuracy. The ML approach adopted in the present work is generic in nature and can be
combined with high-throughput computing for the rapid discovery of new materials for specific applications.

Impact Statement

Discovery of new materials is a complex and challenging task. Sequential nature of experimental route of
investigating new materials makes it tedious and resource expensive. Application of data centric methods have
shown a lot of promise in the recent past in the rapid discovery of new materials. Machine learning
(ML) algorithms do not only predict the properties of interest, but also provide insight into the complex
correlations between properties of materials. But the availability of large materials database is a challenge,
which are usually required for these methods to attain high levels of predictive accuracy. In this work, a two-step
ML process has been proposed to overcome the aforementioned challenge. The proposed method has been
demonstrated using a dataset of transition metal oxides to predict their lattice thermal conductivity. Low thermal
conductivity transition metal oxides are specially attractive for high temperature thermoelectric application
because they exhibit excellent high temperature stability and have tunable electrical properties. The proposed
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method was able to provide most influencing fundamental materials properties, which can be readily used as
design parameters in the early stages of materials selection. The method can be combined with high throughput
computations to discover novel materials for specific applications.

1. Introduction

Thermoelectric effect has the potential to recover waste heat, which amounts to 50% of the global energy
usage. Currently, the usage of technology is limited to niche applications (e.g., spacecraft) due to the low
efficiency, rare elements, and toxic constituents (e.g., Bi, Te etc.) of thermoelectric (TE) materials. Oxide
ceramics (e.g., ZnO, CaMnO3, and SrTiO3) have attracted a lot of attention for high-temperature
applications, such as waste heat recovery in industrial power plants, automobiles, and so forth, due to
their excellent high temperature stability, environment friendly constituents and cheaper mass production
methods (Ovik et al., 2016; He et al., 2011; Koumoto et al., 2006). High electrical conductivity and
Seebeck coefficient can be achieved in suitable oxide TE materials by transient element doping and band
gap engineering (Ohta et al., 2008; Fergus, 2012). However, their inherent high thermal conductivity
results into low thermoelectric efficiency (ZT<0.5), which is defined as ZT=α2σT=k, where α, σ, k, and
Tare Seebeck coefficient, electrical conductivity, thermal conductivity, and temperature, respectively. For
any practical applications, TE materials with ZT>1 are required to make TE energy a commercially
viable alternative for waste heat recovery.

On the experimental side, study of oxide TE materials has mostly focused on developing phonon
glass–electron crystal structures (He et al., 2011), which allows decoupling of the electron and phonon
transport properties. Enhancing the hierarchical scattering of phonons through nanostructuring mechanisms
have been major focus in developing thermoelectric oxides. Incorporation of sintering additives has been
commonly used strategy to introduce hierarchical phonon scattering (Wang et al., 2010;Buscaglia et al., 2014;
Lan et al., 2012). Jood et al. (2011) reported a reduction upto 2W/mK in the thermal conductivity of the
Al-doped nanostructured ZnO. Azough et al. (2019) reported core-shell type of nanostructure formation
within the grains in B doped SrTiO3 ceramics leading to a low kL value of 2.75W/mK. Microstructural
anisotropy introduced through Al-induced variations in oxygen stoichiometry can also enhance phonon
scattering in preferential directions (Abutaha et al., 2013; Han et al., 2014). Hybrid superlattice type of
structures have also been experimented for enhanced scattering of phonons at the interfaces in ZnO (Giri et al.,
2016) and SrTiO3 (Abutaha et al., 2015). Alvarez-Ruiz et al. (2018) reported unit cell twinning in Ga-doped
ZnO, which start acting as phonon scattering centers. Introduction of structural defects using controlled
synthesis methods can also help reduce kL. Magnéli phases of TiO2 have intrinsic, layered nanostructures
defined by crystallographic shear planes,which act as scattering centers (Kieslich et al., 2016). Takemoto et al.
(2014) reported the formation of a dense structure of three-dimensional (3D) stacking faults along the basal
and pyramidal planes lowering kL values upto 1.7Wm/K in ZnO codoped with In and Ga. Zihua et al. (2018)
introduced another level of nanostructuring by incorporating organic nanoparticles in the Co-doped ZnO.

In addition to experimental research, there are continuing efforts to bridge the gaps in our understand-
ing of phonon scattering mechanisms using multiscale simulations to bring in the next generation of
advances. Wu et al. (2016) applied first principle lattice dynamics to understand heat conduction
mechanism in pure w-ZnO. Lower thermal conductivity of ZnO was attributed to smaller phonon group
velocities, larger three-phonon scattering phase space, and larger anharmonicity in ZnO. It was also
shown that ZnOpossesses anisotropic thermal conductivity along the [1000] and [0001] directions, which
has also been observed experimentally (Liang and Wang, 2020). Duda et al. (2012) conducted none-
quilibrium molecular dynamics simulations to understand the effect of ordering of solid solutions. The
results showed that ordering of solid solutions leads to change in the dominant scattering mechanism from
impurity scattering to Umklapp three-phonon scattering. Wu et al. (2019) calculated the thermal conduc-
tivity of Silicon rich oxide layers inserted ZnO superlattice using the reverse nonequilibrium molecular
dynamicsmethod. Reduction in kL was attributed to the phonon scattering at the ZnO/Si interface as well as
the grain boundaries. Wang et al. (2017) studied the thermal conductivity of 2D ZnO monolayer and its
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anomalous temperature dependence using first principle density functional theory (DFT) simulations.
Abnormally, slower fall in kL with increasing T was found due to the significant contribution of optical
phonon modes in overall thermal transport. Zhang and Koumoto (2013) showed that the thermal conduc-
tivity of SrTiO3 superlattice decreases with decreasing grain size due to enhanced interface scattering.

High dimensionality of design space of thermoelectric materials makes the optimization of design
parameters a nontrivial task. It is evident from the literature analysis that the class ofmaterials explored for
TE applications has been rather limited so far and our understanding of electronic and phonon transport of
crystalline alloys is fairly limited (Minnich et al., 2009). On the other hand, rapid developments in the field
of materials informatics has helped researchers explore new class of promising materials and establish
correlations between design parameters and the thermoelectric properties (Wang et al., 2019). Wang et al.
(2011) used high-throughput ab-initio calculations combined with regression analysis to show a positive
correlation between power factor and the band gap and the charge carrier effective mass. Materials with
large number of atoms per unit cell tend to have high power factor. Gaultois et al. (2013) conducted a data
centric review of TE research literature creating a database of over 18,000 data points from over
100 publications. They used elaborate visualization techniques to extract the information of materials
with promising thermoelectric properties along with their nature resource availability. They also designed
a web-based recommendation engine based on random forest algorithm, which takes Seebeck coefficient,
electrical conductivity, thermal conductivity, and band gap to evaluate the TE potential of a material
(Oliynyk et al., 2016). High-throughput materials modeling combined with machine learning
(ML) methods showed that large lattice parameter, band gap, and effective mass of holes are the key
properties for high TE efficiency of nanograined half-heusler compounds (Carrete et al., 2014). Novel
semiconductors with ultralow kL values were proposed for further experimental studies (Carrete et al.,
2014). McKinney et al. (2017) conducted high-throughput computational search for low Lorentz number
materials for TE application. In addition to confirming existing TE materials, several new classes of
materials were found, such as Zintl compounds and n-type ternary diamond-like semiconductors. Iwasaki
et al. (2019) used supervised ML models to establish the key physical parameters controlling spin driven
thermoelectric effect and proposed a novel material showing promising results. Oliynyk et al. (2016)
found that electron count of B and difference in the atomic sizes of A and B are the most influential
parameters in AB2C type of compounds using random forest ML algorithm. Hou et al. (2019) used
ML-based methods to optimize the Al/Si ratio in off-stochiometric Al23.5+xFe36.5Si40�x compounds for
achieving highest power factor. Miller et al. (2017) used high-throughput computations to screen
735 oxide materials for their thermoelectric properties and identified SnO as a potential n-type TE
material. Measurements showed an extremely low k of 0.75W/mK at moderate temperatures and ZT
values of 0.22 in synthesized samples.

Application ofML algorithms on small datasets frequently encountered inmaterials science has been a
key issue in materials informatics. Zhang and Ling (2018) proposed to include a crude estimate of the
target property using low fidelity models as a way to improve the accuracy ofMLmodels applied on small
datasets. They achieved a high accuracy in predicting kL by including empirical slack model values of kL
as a descriptor in the ML model. Singh and coworkers (Juneja et al., 2019; Juneja et al., 2020a; Juneja
et al., 2020b) combinedMLwith high-throughput computing to build regressionmodels for predicting the
kL of inorganic compounds. They also used maximum phonon frequency and integrated Gruneisen
parameter as descriptors to build MLmodels for predicting kL. Both theMLmodels to predict the kL used
complex derived properties as descriptors in their ML models, which restricts their utility in the initial
phases of material selection and design. ML models based on characteristic materials properties are
required to be used effectively in the discovery of new materials and reduce the time of design cycle.

In this work, we have applied a two-step ML-based process to first classify low kL transition metal
oxides and then predict their kL values using regressionmethods. The proposed two-step process has been
showed to be able to accurately predict the kL values using a small dataset of transition metal oxides
comprising 315 compounds. In this process, we were also able to define key fundamental material
properties, which can be used for the screening of low kL compounds in the initial stages of material
design. The ML process has been described in detail in Section 2 and results are discussed in Section 3.
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2. Computational Methods

In this paper, the statistical methods employed are propelled mainly by the data gathered fromAutomatic-
FLOW (AFLOW) for Materials Discovery database. The details of the database can be found elsewhere
(Curtarolo et al., 2012). AFLOW uses the Gibbs implementation of quasiharmonic Debye–Gruneisen
model to calculate the lattice thermal conductivity (kL) of the compounds (Toher et al., 2017). First
principle-based DFT calculations are performed for calculating the acoustic Debye temperature and
Slater-Gammamethod is used to calculate the Gruneisen parameter, which are then used in the calculation
of kL. Oxides and oxide alloys of transition metals, that is elements of groups 3–11 and periods 4–6 were
considered in the present study as they have shown promise for high temperature thermoelectric
applications (Ovik et al., 2016; Yin et al., 2017). The compounds considered in the present study had
kL ranging from 0.017 to 59.63W/mK. The aim of the current study was to identify the most influencing
fundamental properties affecting kL of these compounds aswell as buildML-basedmultifidelity surrogate
models to predict the kL of the transition metal oxides.

In order to do so, we implemented a two-step process (Figure 1): classification and regression. In the
first step, we built a ML classifier to screen out unknown compounds having low kL (<5). The same
classifier model was also used to shortlist the most influencing fundamental material properties. The
second step was to build a regression-based predictive model, which can be used to determine the
numerical values of kL of a compound. In the following, we describe both of these steps in detail.

2.1. Classification

The successful application ofML approaches on themodeling ofmaterial properties requires the selection
of an appropriate set of modeling variables, namely the descriptors for the property of interest. In general,
the descriptors are expected to be capable of both sufficiently distinguishing each of the modeled
compounds/materials and determining the targeted property.

Chemistry

Crystal
Structure

Interatomic
Bonding

Chemistry

FUNDAMENTAL MATERIALFUNDAMENTAL MATERIAL

PROPERTIESPROPERTIES

MACHINE LEARNINGMACHINE LEARNING

CLASSIFIERCLASSIFIER

MULTI FIDELITY SURROGATEMULTI FIDELITY SURROGATE

MACHINE LEARNINGMACHINE LEARNING

REGRESSION MODELREGRESSION MODEL

THERMALTHERMAL

CONDUCTIVITYCONDUCTIVITY

Low KL

Medium KL

High KL

Figure 1. Two-step machine learning process, where the first step filters low kL compounds using only
fundamental material properties, such as details about crystal structure, interatomic bonding, and

compound chemistry. In the second step, a multifidelity machine learning surrogate regression model is
built to predict numerical kL values.
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In order to select the most influential features, we used following fundamental materials properties to
build a classification model: mass density (ρm), ratio of oxygen to transition metal atom (O/M ratio),
Bravias lattice type, atom density (ρn), electronic energy band gap (Eg), lattice energy per atom (eL), point
group order (O), and c/a ratio. Above mentioned parameters describe the crystal structure, compound
chemistry, and interatomic bonding of an alloy. The idea was to use only fundamental crystal and
materials properties so that they can be used as design parameters in the early stages of selection and
shortlisting. Other ML models reported in the literature use complex derived properties, such as
Gruneisen parameter, maximum phonon frequency, empirically estimated thermal conductivity (Juneja
et al. (2019); Wang et al., 2019), which makes the utility of ML models rather limited. Classification
model was built to segregate compounds into three categories of kL viz. low (kL <5W/mK), medium (5
< kL <10W/mK), and high (kL >10W/mK). In this way, the resulting model could potentially capture the
underlying physical mechanisms after training, and thus offer reliable predictions for the chemistries
beyond the training set. Around 30 different ML and deep learning models were built using the Caret
library in R to solve this ternary classification task.

Best performance was achieved with Gradient Boosting Trees (details about the model training
procedure are mentioned in Supplementary Appendix: Figure S5) in which the loss function to be
optimized is in terms of trees grown on subsets of the predictor space. The algorithm XGBoost (Chen
and Guestrin, 2016) achieves this task in a computationally efficient manner. This method has the
potential to overfit data to any extent to give low prediction error rates. Xgboost algorithm has been
widely used by data scientists in diverse problems involving classification and regression. Boosting is an
ensemble technique where new tree-based models are added to correct the errors made by existing tree
models. Tree-models are added sequentially until no further improvements can be made. Gradient
boosting is an approach where new models are created that predict the residuals or errors of prior models
and then added together to make the final prediction.

2.2. Regression

In this step, we used regression ML models to predict the absolute value of kL of a compound. Since our
dataset contained about 315 observations and 11 features (including the target variable), the dataset is
relatively small. This may lead to higher variance in the least square estimates (Zhang and Ling, 2018).
Regularization based regression techniques such as Lasso, Kernel-Ridge, Elastic net, and their modifi-
cations help us solve this problem by reducing the variance while managing negligible increase in bias.
These models have been used extensively in the past by the computational materials community (Zhang
and Ling, 2018; Hu et al., 2020) to build regression models with small sized datasets.

The Caret library in R (Kuhn et al., 2008) and the AutoML (H2O.ai, 2017) library from H2O package
were used to automate the process of building regression models, thus automating the end-to-end process
of applying ML to real-world problems. AutoML tends to automate the maximum number of steps in an
ML pipeline with a minimum amount of human effort without compromising the model’s performance.

Due to the ease provided by these libraries, we were able to test the performance of a large number of
predictiveML and deep learning models through cross validation on our dataset of thermoelectric oxides.
Since we are interested in low kL oxide alloys, we decided to build the regression model using the already
classified data of only low kL alloys, which contained 131 data points. The first regressionmodel was built
by considering the same descriptors, which were used to build the classification models in the first step.
The best performingmodel (RandomForest) gave anR2 value of 0.70. To improve the predictive accuracy
of our model, we included two additional descriptors: Gruneisen parameter and Debye temperature,
which have also been used earlier to build ML models for kL prediction (Juneja et al., 2019). Best
performance was achieved with cubist regression (details about the model training procedure are
mentioned in Supplementary Appendix: Figure S6) which largely follows the model tree approach
proposed by Quinlan et al. (1992). The basic idea behind the model tree approach is to use linear models
instead of mere average of responses in the terminal leaves. This makes the method fit better than a
Random Forest model in case the true responses are too large or too small. Even the splitting criteria
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chosen is differently as the expected reduction in the error of the node. Further, model trees deal with the
problem of overfitting by incorporating a smoothing strategy devoled byHastie and Pregibon (1990). The
smoothing process adopted byCubist is however more complex in comparison tomodel trees. For precise
mathematical details the reader is refered to Kuhn and Johnson (2013).

3. Results and Discussions

Adataset of 315 compounds was obtained fromAFLOWmaterials database. For the classificationmodel,
data for compounds was labeled based on the values of kL as “low” (kL <5W/mK), “medium” (0 < kL <10
W/mK), and “high” (kL >10W/mK). Equal instances of all the three classes were used to train the
classifier to avoid class imbalance. The performance of top seven algorithms after training, testing, and
hyperparameter tuning using 10-fold cross-validation is plotted in Figure 2. Using 10-fold cross
validation while training the models allows us to divide the data into 10 parts out of which 9 are iteratively
used for training and the last one for testing. Out of 30 different ML and deep learning models, both
XGBoost and Random Forest models offer superior accuracy when compared to other counterparts such
as Naïve Bayes, support vector machines (SVM), k Nearest Neighbors (kNN), linear discriminant
analysis (LDA), and deep learning based classifiers. Higher value of cohens kappa coefficient also
verifies their superiority. XGBoost was chosen for further analysis on the basis of higher mean class
probability when compared toRandomForest.We notice that boosting (combiningmanyweak learners to

Confidence Level: 0.95
Accuracy Kappa

0.2 0.3 0.4 0.5 0.6 0.7

Accuracy

0.2 0.3 0.4 0.5 0.6 0.7

Kappa

kNN

Neural Network

SVM

LDA

Naive Bayes

Random Forest

XGBoost

Figure 2. Relative comparison of accuracy obtained using machine learning and deep learning
classifiers. Here XGBoost and Random Forest surpass deep neural networks and other machine learning
approaches to obtain the best classification accuracy. Cohen’s kappa coefficient is also used to evaluate
the different classification models amongst themselves. Abbreviations: kNN, k Nearest Neighbors; SVM,

support vector machine with rbf kernel; LDA, linear discriminant analysis.
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form a strong learner), plays a significant role in the success of tree-based classifiers for the limited data
regime in materials sciences.

The XGBoost classifier correctly identified unknown compounds having Low kL (sensitivity) with an
accuracy of 81% and correctly identified unknown compounds not having Low kL (specificity) with an
accuracy of 82%. The balanced accuracy achieved while detecting compounds having high kL was 84%.
A dip in accuracy was observed while distinguishing low frommedium kL compounds and medium from
high kL compounds as the accuracy in such cases was 70%. The overall accuracy obtained while
categorizing new compounds into the correct category was 72.13%. Table 1 represents the confusion
matrix for model predictions on the validation set.

In order to assess the pros and cons of different classifiers, we went even further to calculate the
probability of the class predicted by various methods for the given test observations. The average value of
these probabilities are shown in Table 2. The class probabilities represent the confidence with which an
unknown compound gets assigned to a particular class; therefore, higher values make the predictions
trustworthy. Once again, XGBoost performs the best in this regard as well. We also computed the multi
class area under the receiver operating characteristics (AUROC) values for the variousmethods according
to the definition laid down by Hand and Till (2001). It tells how much model is capable of distinguishing
between classes. Higher the AUROC, better the model is at distinguishing between classes. These
numbers are summarized in Table 2. XGBoost clearly outscores the other methods in this regard.

The benefit of using XGBoost as the classifier is that after the boosted trees are constructed, it is
relatively straightforward to retrieve importance scores for each attribute. Generally, importance provides
a score that indicates how useful or valuable each feature was in the construction of the boosted decision
trees within the model. The more an attribute is used to make key decisions with decision trees, the higher
its relative importance. This importance is calculated explicitly for each attribute in the dataset, allowing
attributes to be ranked and compared to each other.

Table 1. Confusion Matrix for predictions made on the validation set by the XGBoost classifier.

Precision Low Medium High

Low 11 2 3

Medium 0 22 6

High 3 3 11

Table 2. A detailed comparison of different classifiers and their relative performance.

Model Mean class probability Sensitivity (low kL) Specificity (low kL) AUROC

XGBoost 0.85 0.81 0.82 0.96

Random Forests 0.78 0.84 0.87 0.98

Naive Bayes 0.73 0.63 0.85 0.84

kNN 0.67 0.85 0.73 0.83

Deep neural nets 0.63 0.59 0.74 0.74

SVM rbf kernel 0.54 0.78 0.82 0.84

LDA 0.52 0.63 0.70 0.75

Here mean class probability represents the average confidence with which the classifier assigns a particular compound to the predicted class. The
corresponding sensitivities and specificities have also been mentioned.Abbreviation: AUROC, area under the receiver operating characteristics; kNN, k
Nearest Neighbors; LDA, linear discriminant analysis; SVM, support vector machine.
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Figure 3 shows the relative importance of features output by the XGBoost classifier. Lattice energy per
atom, atom density, electronic energy band gap, mass density, and O/M ratio were the key descriptors
identified as important by our classifier. The idea behind performing the classification step was to shortlist
the promising candidates based on their crystal structure, compound chemistry and interatomic bonding in
the initial process of material design without having to calculate any complex derived properties. Some of
the descriptors identified by the classification algorithm are intuitive and known from the physics of heat
conduction. For example, Lattice energy per atom is a measure of interatomic bonding in a material. The
lower the eL, the higher the strength of interatomic bonding and higher the kL. Similarly, classification
model also predicts the importance of atom density and mass density, which have been reported earlier as
influencing parameters in lattice thermal conductivity (Juneja et al., 2019). Electronic energy band gap
andO/M ratio are two parameters, which are not directly linked to the physics of thermal conductivity, but
are recognized as important classifying parameters in our study. The role of these parameters needs to be
investigated further using atomistic modeling methods.

The second part of our formulated process, involved constructing regression-based predictive models.
First, the regressionmodels were built on the entire dataset, whichwas used for the classification. Random
Forest models showed the highest accuracy with an cv – R2 = 0.44 and cv�MAE=3.2 on this dataset.
The same model was then applied on already classified dataset of “low” kL values with the cv – R

2 = 0.70
and cv –MAE=0.71. The performance of the random forest model on two different datasets is plotted in
Figure 4 a,b. An improvement in the accuracy might be attributed to the narrower spread of the classified
data. Classification helps reduce the variance in the dataset according to the range of the material property
of interest, which is used in the regression step. It helps in achieving greater predictive accuracy even with
small dataset in the regression step. To further improve the predictive accuracy, Debye temperature and
Gruneisen parameter were added as descriptors in the list of descriptors used in the classification step. Best
performance was achieved by cubist model giving the cv – R2 = 0.96 and a cv – MAE=0.19. Gaussian
process regression with polynomial kernel and Kernel ridge regression also performed well giving an
accuracy of cv – R2 = 0.95, cv – MAE=0.26 and cv – R2 = 0.94, cv – MAE=0.23, respectively. Details
about the performance of other models is given in Table 3.

Point Group

c/a ratio

O/M Ratio

Band Gap

Mass Density

Atom Density

Lattice Energy Per Atom

0 25 50 75 100

Importance

F
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Figure 3. Feature importance plot generated by the XGBoost Classifier. The relative importance of
descriptors is calculated by how useful it was while making key decisions with Decision Trees.
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Figure 4. Predictions of the regression models where lighter shades of red and bigger point sizes
represent higher residuals, (a) random forest fitted on entire dataset, (b) random forest fitted on dataset of
low kL compounds, and (c) Cubist model fitted on low kL compounds including Debye temperature and

Gruneisen parameter.

Table 3. Represents the 10-fold cross validation results obtained from the regression model including Gruneisen parameter and
Debye temperature.

Model cv-RMSE cv-R2 cv-MAE

Cubist 0.27 0.96 0.19

GPR poly kernel 0.34 0.95 0.26

kNN 0.67 0.77 0.59

GBM 0.44 0.91 0.36

XGBoost 0.72 0.72 0.56

Random Forests 0.48 0.87 0.38

Kernel ridge 0.31 0.94 0.23

Deep neural nets 2.44 N.A. 2.14

Cubist model achieves the best predictive power. The bad performance of Neural Networks is justified by the lack of training data.Abbreviations: kNN, k
Nearest Neighbors; RMSE, root mean square error; GBM, Gradient Boosted Machines; GPR, Gaussian Process Regression; MAE, mean absolute error.
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It is to be noted that the classifier can be used independently of the regression step in cases when the
values of Gruneisen parameter and Debye temperature are not available for the compound. This is useful
when we have only limited information about the compound, that is only values for the fundamental
material properties mentioned earlier. Another important point is that the feature importance identified by
the classifier is only applicable when the classifier is used independently of the regression step. We claim
this because the regression step uses a different model, which means that the same features might not turn
out to be important for the regression step. Therefore, the regression step uses all descriptors used in the
classification step in addition to using Gruneisen parameter and Debye temperature as descriptors.

Further, it was also observed that ML approaches in general work better than deep learning when
applied to datasets related to material science. This can be attributed to the fact that neural networks need
high amounts of data to approximate the underlying function (Hornik et al., 1989) representing the kL
which is rarely available in cases of material science problems. Therefore, when a deep neural network
with multiple permutations of the hidden layer (neurons) is built, it fails to converge to the optimal
underlying function giving a large MAE of 2.14.

4. Conclusions

In this paper, aML-based two-step process of discovering novel materials have been proposed. In the first
step, classification is performed on the entire dataset to categorise the data, which is followed by fitting
regression models to predict the numerical value of the property of interest. The proposed two-step
process addresses the problem of small datasets in materials informatics by reducing the variance of the
dataset using classification models according to the range of property of interest, which helps in achieving
greater predictive accuracy in the regression step. The approach was applied on a dataset of transition
metal oxides to classify and predict the kL values of low kL transition metal oxides. A high predictive
accuracy of 95% was achieved using multiple ML-based regression algorithms, such as cubist model,
kernel ridge and gaussian process. It was also shown that ML-based approach worked better in
comparison to deep learningmethods for problems involving small datasets. In addition, gradient boosted
tree algorithm was able to identify key material properties namely: Lattice energy per atom, atom density,
electronic energy band gap, mass density, and ratio of oxygen by transition metal atoms. Since the key
descriptors can be derived from fundamental crystal structure, compound chemistry, and interatomic
bonding, they can be easily utilized for the classification of compound in the early stages of materials
selection, without needing to calculate computationally expensive derived complex properties. The two-
step process proposed in the current work addresses a critical challenge in thematerials informatics, which
is the smaller sizes of datasets. The approach can be combined with high-throughput computing to
discover novel materials for specific applications at lower computational cost. The work will be carried
forward in that direction by demonstrating the proposed methodology on transition metal oxides to
discover novel low kL oxides.
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