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GREEN’S FUNCTIONS FOR POWERS
OF THE INVARIANT LAPLACIAN

MIROSLAV ENGLIŠ AND JAAK PEETRE

ABSTRACT. The aim of the present paper is the computation of Green’s functions
for the powers Ðm of the invariant Laplace operator on rank-one Hermitian symmetric
spaces. Starting with the noncompact case, the unit ball in Cd , we obtain a complete
result for m ≥ 1, 2 in all dimensions. For m ½ 3 the formulas grow quite complicated
so we restrict ourselves to the case of the unit disc (d ≥ 1) where we develop a method,
possibly applicable also in other situations, for reducing the number of integrations by
half, and use it to give a description of the boundary behaviour of these Green functions
and to obtain their (multi-valued) analytic continuation to the entire complex plane.
Next we discuss the type of special functions that turn up (hyperlogarithms of Kummer).
Finally we treat also the compact case of the complex projective space Pd (for d ≥ 1,
the Riemann sphere) and, as an application of our results, use eigenfunction expansions
to obtain some new identities involving sums of Legendre (d ≥ 1) or Jacobi (d Ù 1)
polynomials and the polylogarithm function. The case of Green’s functions of powers of
weighted (no longer invariant, but only covariant) Laplacians is also briefly discussed.

0. Introduction. Let Bd ≥ fz 2 Cd : jzj Ú 1g be the unit ball in the complex
d-space Cd. In [HK] Hayman and Korenblum obtained a formula for the Green function
of the polyharmonic operator ∆m on Bd with the Dirichlet boundary data (u ≥ ∂uÛ∂n ≥
Ð Ð Ð ≥ ∂m�1uÛ∂nm�1 ≥ 0):

(0. 1) Gm,d(z, w) ≥ (�1)m

4môd(m� 1)!

1X
j≥0

( j + d � 1)!
( j + m)!

(1 � jzj2)m+j(1 � jwj2)m+jþþþwÛjwj � jwjz
þþþ2d+2j .

Their proof rests, more or less, on skillful explicit computations. Subsequently the pre-
sent authors gave another proof [EP] in the case of dimension d ≥ 1, based on Moebius-
invariance techniques (Bojarski’s theorem, which in this simple case essentially reduces
to Bol’s lemma). In short, their main idea was to use invariance to reduce to the case
w ≥ 0, which is essentially a problem in ordinary differential equations and, thus, much
easier to handle.

The latter approach is particularly suitable also for the invariant Green’s functions
Gm,d of the invariant polyharmonic operatorÐm on the unit ball Bd . The operator Ð is
given by the formula (cf. [Ru], Theorem 4.1.3)

(0. 2) Ðu ≥ 4(1 � jzj2)
dX

i, j≥1
(éij � ziz̄j)

∂2u
∂zi∂z̄j

.
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GREEN’S FUNCTIONS FOR POWERS OF THE INVARIANT LAPLACIAN 41

In this case, certain care must be exercised with the boundary conditions, since the bound-
ary of Bd is a characteristic for the operatorÐ; for this reason, we shall mean by Green’s
function, informally, the function satisfying ÐmG ≥ é and having the least possible
growth rate at the boundary. (It should be possible to show that this coincides with the
Green function of the operator obtained by defining Ð by (0.2) on C1

0 functions and
taking the Friedrichs extension.) For d ≥ 1 (the unit disc) and m ≥ 1, 2, 3, the following
explicit formulas were obtained in [EP]:

(0. 3)

G1,1 ≥ G1,1 ≥ 1
4ô log t,

G2,1 ≥ 1
16ô

2
4log t log(1 � t) � 2 Li2(t) +

ô2

3

3
5 ,

G3,1 ≥ 1
64ô

"
log t Ð

 
1
2

log2(1 � t) + log(1 � t) + Li2(t)
!

+ 2
�
Li2(t) log(1 � t) + M3(t) + Li2(t) � Li3(t)

�

� 2
�
ê(3) + ê(2)

� � ô2

3
log(1 � t)

#

where t ≥ j z�w
1�zw̄ j2, ê(s) ≥ Lis(1) is the Riemann’s zeta function, Lis is the polylogarithm

(0. 4) Lis(t) ≥
1X

k≥1

tk

ks
,

and M3 is Kummer’s function

(0. 5) M3(t) ≥ Z t

0

log2(1 � x)
x

dx

which can also be expressed as

(0. 6) M3(t) ≥ 2ê(3) + log t log2(1 � t) + 2 Li2(1 � t) log(1 � t)� 2 Li3(1 � t).

In the present paper we continue this program by calculating the invariant Green’s
functions Gm,d for m ≥ 2 and arbitrary d (Section 1) and for the unit disc (d ≥ 1) and
m ≥ 4 (Section 2). For d ≥ 1 we further develop a method for generating a rather
explicit formula for Gm � Gm,1 for general m, and use it to show that Gm(z, w) ≥
O
�
(1 � t) logm�1(1 � t)

�
as t ≥ j z�w

1�w̄z j ! 1, and to obtain an analytic continuation
for Gm; this too is done in Section 2. It also turns out that, in general, the functions Gm

are given by formulas involving Kummer’s hyperlogarithms ([We] in [Le2], Chapter 8);
this is shown in Section 3, which further contains a brief overview of the transcenden-
tal functions which enter into the formulas for Gm, m � 4. In Section 4, we carry out
a similar computation (for m ≥ 1, 2) in the compact case of the Riemann sphere, and,
as an application of our formulae, use eigenfunction expansions to prove two identities
involving sums of Legendre polynomials Pn(x), for m ≥ 1:

(0. 7)
1X

n≥1

2n + 1
n(n + 1)

Pn(x) ≥ log 2 � 1 � log(1 � x)
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42 MIROSLAV ENGLIŠ AND JAAK PEETRE

and for m ≥ 2:

(0. 8)
1X

n≥1

2n + 1�
n(n + 1)

�2 Pn(x) ≥ log
1 � x
1 + x

Ð log
2

1 + x
� 1

2
log2 2

1 + x
+ Li2

 
�1 � x

1 + x

!
+ 1.

In fact, formula (0.7) is nothing but the special case y ≥ 1 of an analogous “bilin-
ear formula” (with the product Pn(x)Pn( y) in place of just Pn(x)) which can be found,
e.g., in [BE], Section 10.10, formula (53). On the contrary, up to our knowledge (0.8)
is new. In principle, similar formulas for higher hyperlogarithms which appear in the
expressions for the Green’s functions Gm can be obtained along these lines as well.
We observe also that (0.7) and (0.8) can be interpreted as giving the value of a certain
Minakshisundaram-Pleijel type zeta function. In conclusion, we discuss (Remark 4.5)
also the case of weighted (no longer invariant, but only covariant) LaplaciansÐóŁ on the
sphere, and indicate still other generalizations of (0.7) and (0.8) that can be obtained in
this way.

1. Invariant Green functions on the ball. Let us put ourselves into the scenario
described in the Introduction, i.e., letBd be the unit ball in Cd and consider the differential
operatorÐ given by (0.2). It is well known that a great virtue of the latter operator is its
invariance under holomorphic mappings: for any holomorphic automorphism û of Bd

one has

Ð( f Ž û) ≥ (Ð f ) Ž û.

A proof of this fact can be found, e.g., in Chapter IV of Rudin’s book [Ru]. Our main
goal in this section will be the identification of the Green functions (in the sense made
clear in the Introduction) Gm,d for the operators Ðm where m ≥ 1 or 2. In view of the
invariance ofÐ, these Green functions must satisfy

(1. 1) Gm,d(z, w) ≥ Gm,d

�û(z),û(w)
� 8û 2 Aut(Bd).

Since for any point a 2 Bd there exists an automorphism ûa interchanging a and 0 ([Ru],
Proposition 2.2.2), it therefore suffices to find the Green function Gm,d(z, 0) with the pole
at the origin. Further, in view of rotational symmetry, it is clear that the last function must
actually depend only on the modulus jzj of z. Thus we may write

(1. 2) Gm,d(z, 0) ≥ Λm,d(t)

for some function Λm,d, where we have introduced the variable t ≥ jzj2 . By (1.1) and
formula 2.2.2(iv) in [Ru], we will then have

(1. 3)

Gm,d ≥ Λm,d

�
jûw(z)j2

�

≥ Λm,d

0
@1 � (1 � jwj2)(1 � jzj2)

j1 � hz, wij2
1
A .
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In order to find Λm,d, let us first determine what is the action of Ð on radial functions.
Using (0.2), one has

Ðf (t) ≥ 4(1 � t)
dX

i, j≥1
(éij � ziz̄j) ∂2fÛ∂zi∂z̄j

≥ 4(1 � t)
dX

i, j≥1
(éij � ziz̄j)(éij f 0 + z̄izj f 00)

≥ 4(1 � t)
dX

i, j≥1
(éijf

0 � jzij2f 0 + jzij2f 00 � jziz̄jj2f 00)

≥ 4(1 � t)
h
(d � t) f 0 + (t � t2) f 00

i

≥ 4
(1 � t)d+1

td�1

2
4 td

(1 � t)d�1
f 0
3
50 ,

where the prime 0 stands for the differentiation with respect to the t variable. This suggests
putting into play the ordinary differential operator

(1. 4) Ldf ≥ (1 � t)d+1

td�1

2
4 td

(1 � t)d�1
f 0
3
50 ,

which represents the radial part of 1
4Ð. The function Λm,d is a solution to the equation

(1. 5) Lm
d Λm,d ≥ 0 on (0, 1).

Moreover, at the origin it must have the same singularity as the fundamental solution
of the ordinary polyharmonic operator ∆m. Our approach to finding Gm,d will be very
simple-minded: we construct a basis of the solutions of equation (1.5) and then seek a
linear combination of the basis elements which has the required singularity at the origin
and the required boundary behavior.

Let us start with m ≥ 1. The general solution to the equation Ldu ≥ v is given by the
integral

(1. 6) u ≥ Z (1 � t)d�1

td

0
@Z td�1

(1 � t)d+1
v dt

1
A dt.

Taking in particular v ≥ 0 we see that a basis of solutions for the equation Ldu ≥ 0 is
given by

(1. 7) f0 ≥ 1, g0 ≥
Z (1 � t)d�1

td
dt.

The integral can be evaluated using the binomial theorem:

g0 ≥
d�1X
j≥1

d � 1
j

(�1)d�j 1
jt j

� (�1)d log t.
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At the boundary point t ≥ 1 we have

(1. 8) g0(1) ≥
d�1X
j≥1

d � 1
j

(�1)d�j

j
� Cd.

The function Λ1,d must therefore be of the form Λ1,d ≥ çd(g0 � Cd), for some constant
çd yet to be determined. To that end, observe that the behavior of g0 at the origin is

(1. 9) g0 ¾
(

log t if d ≥ 1,
� 1

(d�1)td�1 if d Ù 1.

On the other hand, the fundamental solution for the Laplace operator ∆ is well known to
be 8<

:
1

4ô log t for d ≥ 1,
� (d�2)!

4ôd t1�d for d Ù 1.

Thus we conclude that

(1.10)
Λ1,1(t) ≥ 1

4ôg0 (trivial!),

and Λ1,d(t) ≥ (d � 1)!
4ôd

(g0 � Cd) for d Ù 1

with the constant Cd given by (1.8). Since C1 ≥ 0, the second formula actually works
for all values of d.

Now we take m ≥ 2. An obvious choice for the basis elements f1, g1 which together
with f0 and g0 would span the vector space of the solutions to L2

du ≥ 0 is

f1 ≥
Z (1 � t)d�1

td

0
@Z td�1

(1 � t)d+1
f0 dt

1
A dt,

g1 ≥
Z (1 � t)d�1

td

0
@Z td�1

(1 � t)d+1
g0 dt

1
A dt.

Integration gives

f1 ≥ 1
d

Z (1 � t)d�1

td
Ð td

(1 � t)d
dt ≥ 1

d
log

1
1 � t

,

g1 ≥ (�1)d

d

�
2 Li2(t) + log t log(1 � t)

�

+
d�1X
j≥1

d � 1
j

(�1)d�j

jd

2
4 log(1 � t)

tj
+ 2 log

t
1 � t

� 2
j�1X
k≥1

1
ktk

3
5 .

The sought function Λ2,d will be a linear combination

Λ2,d ≥ Af0 + Bg0 + Cf1 + Dg1,

with constants A, B, C, D yet to be determined from the boundary conditions at t ≥ 0
and t ≥ 1. Let us look first at t ≥ 0. One has

f0 ¾ 1, f1 ¾ t
d

, g0 ¾ is given by (1. 9),
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and it is not difficult to see that

g1 ¾
8>><
>>:

t log t for d ≥ 1
� log t for d ≥ 2

1
(d�1)(d�2)td�2 for d Ù 2.

On the other hand, the fundamental solution for ∆2 is

¾
8>><
>>:

1
16ô t log t for d ≥ 1

1
16ô2 Ð (� log t) for d ≥ 2
(d�3)!
16ôd t2�d for d Ù 2.

By comparison we thus infer that

B ≥ 0 and D ≥ (d � 1)!
16ôd

.

Let us now investigate the situation at t ≥ 1. This time one has

f0 ≥ 1, f1 ≥ 1
d

log
1

1 � t
,

g0 is irrelevant, and

g1 ≥ Cd Ð 1
d

log
1

1 � t
+ Ad + o(1),

where Cd is the constant from (1.8) and Ad is given by

Ad ≥ 2
d�1X
j≥1

d � 1
j

(�1)d�j

jd

h j�1X
k≥1

1
k

i� (�1)d ô2

3d
.

Therefore we conclude that

Λ2,d ≥ (d � 1)!
16ôd

(g1 � Cd f1 � Ad f0)

for all d ½ 1. Supplying all the constants et cetera, we can summarize our results in this
section as the following theorem.

THEOREM 1.1. The Green functions G1,d and G2,d for the operatorsÐ and Ð2 are
given by the formulas (1.3) where

Λ1,d(t) ≥ G1,d(z, 0) ≥ (d � 1)!
4ôd

2
4(�1)d�1 log t +

d�1X
j≥1

d � 1
j

(�1)d�j

j
(t�j � 1)

3
5 ,

Λ2,d(t) ≥ G2,d(z, 0) ≥ (d � 1)!
16ôd

2
64 (�1)d

d

0
@2 Li2(t) + log t log(1 � t) � ô2

3

1
A

+
d�1X
j≥1

d � 1
j

(�1)d�j

jd

0
@(1 � t�j) log

1
1 � t

+ 2 log t + 2
j�1X
k≥1

1 � t�k

k

1
A
3
75.
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COROLLARY 1.2. For m ≥ 1 and 2, Gm,d(z, 0) ≥ O
�
(1� t) logm�1(1� t)

�
as jzj2 � t

approaches 1.

COROLLARY 1.3. For m ≥ 1 and 2, the functions Λm,d extend to multi-valued an-
alytic functions on C n f0, 1g with logarithmic singularities at the exceptional points 0
and 1.

Already from these two cases m ≥ 1, 2 one gets a feeling what might be happening for
general m. By repeated applications of the integral operator (1.6) we create two chains of
functions f0, f1, f1, . . . and g0, g1, g2, . . . which satisfy Lk

d fk ≥ f0 and Lk
d gk ≥ g0; hence,

they are linearly independent and

f0, f1, . . . , fm�1, g0, g1, . . . , gm�1

is a basis of solutions for Lm
d u ≥ 0. The function Λm,d is a certain linear combination

of these basis elements, and one expects to recover the coefficients at the fj from the
behavior near the point t ≥ 0 and the coefficients at the gj from the behavior at the
boundary (t ≥ 1). Due to the increasing complexity of the calculations involved, there
seems to be little hope of pursuing this program much further than m ≥ 2 in the general
case; however, we shall see in the next section that, to a certain extent, this can be done
for d ≥ 1, and it turns out that all the observations above come out to be true for all m,
and, moreover, so do even Corollaries 1.2 and 1.3.

2. The case of the unit disc. With our simple-minded method from the preceding
section, solving the equation Ldu ≥ v involves two integrations, so the construction of
a basis of solutions to Lm

d ≥ 0 requires 4m integrations. It turns out that there is a more
refined approach by which the number of integrations can be reduced by half, and more-
over the functions being integrated will be of simpler form. This device, unfortunately,
seems to work only in the case of the unit disc, d ≥ 1, and so we restrict ourselves to
this situation throughout the present section. The radial part of the invariant Laplacian
Ð takes then the simple form

(2. 1) Ð f (t) ≥ 4(1 � t)2[t f 0]0 (t ≥ jzj2).

We denote this ordinary differential operator by 4L (omitting the subscript d ≥ 1) and
(likewise) abbreviate the Green functions Gm,1 to Gm.

PROPOSITION 2.1. Assume that two sequences of functions N0, N1, N2, . . . and Ñ0,
Ñ1, Ñ2, . . . are given which satisfy, respectively,

N0 ≥ 1

N0
2k+1 ≥

1
1 � t

N2k(2. 2)

N0
2k+2 ≥

1
t(1 � t)

N2k+1
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and

Ñ0 ≥ 1

Ñ0
2k+1 ≥

1
t(1 � t)

Ñ2k(2. 3)

Ñ0
2k+2 ≥

1
1 � t

Ñ2k+1.

Define also

(2. 4) Kk ≥ Ñk+1 � Nk+1.

Then

(2.5) LNj ≥ Nj�1 + Nj�2 (with N�1 � N�2 � 0),

LÑj ≥ Ñj�1 + Ñj�2 (with Ñ�1 � Ñ�2 � 0),

(2. 6) L jNj ≥ LjÑj ≥ N0(≥ 1),

(2. 7) L j+1Nj ≥ Lj+1Ñj ≥ 0,

and

(2. 8) LKj ≥ Kj�1 + Kj�2 (K�1 � K�2 � 0),

(2. 9) L jKj ≥ K0,

(2. 10) L j+1Kj ≥ 0.

Moreover, for each n, the 2n functions

(2. 11) N0, N1, . . . , Nn�1, K0, K1, . . . , Kn�1,

are a complete system of fundamental solutions of the equation Lnf ≥ 0.

PROOF. One has

LN2k+1 ≥ (1 � t)2
"
t Ð 1

1 � t
N2k

#0
≥ (1 � t)2

"
1

(1 � t)2
N2k +

t
1 � t

N0
2k

#

≥ N2k + t(1 � t) Ð 1
t(1 � t)

N2k�1 ≥ N2k + N2k�1,

LN2k+2 ≥ (1 � t)2
"
t Ð 1

t(1 � t)
N2k+1

#0
≥ (1 � t)2

"
1

(1 � t)2
N2k+1 +

1
1 � t

N0
2k+1

#

≥ N2k+1 + (1 � t) Ð 1
1 � t

N2k ≥ N2k+1 + N2k,
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and (2.5) follows; the proof for Ñj is completely similar. Iterating (2.5) gives

(2. 12) LkNj ≥
kX

i≥0

0
@k

i

1
ANj�k�i (Nj � 0 if j Ú 0)

and similarly for Ñj. Taking k ≥ j and k ≥ j + 1 gives (2.6) and (2.7). The formulas (2.8)
and (2.10) are immediate consequencesof (2.5) and (2.7), respectively, and the definition
of Kj. Finally, by (2.12)

L jNj+1 ≥ N1 + jN0

and similarly for L jÑj+1. Subtracting, we get

L jKj ≥ (Ñ1 � N1) + j(Ñ0 � N0) ≥ Ñ1 � N1 ≥ K0,

which proves (2.9).
The functions (2.11) belong to the kernel of Ln, by (2.7) and (2.10); in order to prove

that they are a complete system of fundamental solutions, it suffices to show that they
are linearly independent. So suppose that for some constants ak and bk

an�1Nn�1 + bn�1Kn�1 + an�2Nn�2 + bn�2Kn�2 + Ð Ð Ð + a0N0 + b0K0 ≥ 0.

Applying Ln�1 to both sides gives

(2. 13) an�1N0 + bn�1K0 ≥ 0

by (2.6) and (2.9). On the other hand, from (2.2) and (2.3) we have

N1 ≥ log
1

1 � t
+ ç1, Ñ1 ≥ log t + log

1
1 � t

+ ç2,

so
K0 ≥ log t + ç

and (2.13) reads
an�1 + bn�1(log t + ç) ≥ 0

implying that an�1 ≥ bn�1 ≥ 0. Proceeding by induction shows that an�1 ≥ bn�1 ≥
an�2 ≥ bn�2 ≥ Ð Ð Ð ≥ a0 ≥ b0 ≥ 0, which proves the linear independence of the
functions (2.11) and finishes the proof.

A general solution to the system (2.2) is given recursively by

N2k+1(t) ≥ Z
a2k+1

N2k(t)
1 � t

,

N2k+2(t) ≥ Z
a2k+2

N2k+1(t)
t(1 � t)

,

for some points aj 2 [0, 1] for which the integrals exist, and similarly for Ñj. Here we
have made the convention (to be observed throughout the rest of this paper) of introducing
the shorthand

R
a to denote the primitive which vanishes at a; that is,

Z
a

f (t) is an abbreviation for
Z t

a
f (x) dx.
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In practice, with the view on constructing the invariant Green’s functions Gm, it is conve-
nient to choose the integral limits aj so as to have control of the behavior of the functions
Nj and Ñj at the boundary. We achieve this by taking aj ≥ 0 8j ½ 0 and ã1 ≥ 1Û2, ãj ≥ 0
8j ½ 1.

Thus, we define

(2.18)
N0 ≥ 1,

N2k+1 ≥
Z

0

N2k

1 � t
, N2k+2 ≥

Z
0

N2k+1

t(1 � t)
for k ½ 0,

and

(2.19)
Ñ0 ≥ 1, Ñ1 ≥ log t + log

1
1 � t

,

Ñ2k+1 ≥
Z

0

Ñ2k

t(1 � t)
for k ½ 1, Ñ2k+2 ≥

Z
0

Ñ2k+1

1 � t
for k ½ 0.

It is clear that these functions satisfy the conditions (2.2) and (2.3), granted we show
that they are well-defined, i.e., that the integrals above exist. This is contained in the
following proposition.

PROPOSITION 2.2. The functions Nj and Ñj in (2.18) and (2.19) are correctly defined
and satisfy

(2. 20) Ñk+1 ≥ Nk log t + tgk+1,

(2. 21) N2k ≥ tkh2k, N2k+1 ≥ tk+1h2k+1

for any k ½ 0, where gj and hj are functions holomorphic on the unit disc.

For brevity, we shall employ the notation O0 for a general function (not necessarily
the same one at each occurrence) holomorphic on the unit disc D. The formula (2.20) can
then be written as

Ñk+1 ≥ Nk log t + tO0,

and similarly for (2.21).

PROOF. By definition, (2.20) holds for Ñ1. Assume that it holds for Ñ2k+1 for some
k. Then by (2.19)

Ñ2k+2 ≥
Z

0

Ñ2k+1

1 � t
≥ Z

0

 
N2k log t

1 � t
+ tO0

!
.

Observe that for any function h holomorphic on a simply connected domain containing
the origin

(2. 22)
Z

0
h Ð log t ≥ �R

0h
�

log t � Z
0

R
0 h
t

,
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by integration by parts. Consequently,

Ñ2k+2 ≥ log t Ð
Z

0

N2k

1 � t
� tO0 + t2O0 ≥ log t Ð N2k+1 + tO0,

which is (2.20) for Ñ2k+2. Further,

Ñ2k+3 ≥
Z

0

Ñ2k+2

t(1 � t)
≥ Z

0

 
N2k+1 log t

t(1 � t)
+ O0

!

and by (2.22) again

Ñ2k+3 ≥ log t Ð Z
0

N2k+1

t(1 � t)
� tO0 + tO0 ≥ log t Ð N2k+2 + tO0,

which is (2.20) for Ñ2k+3. By induction, formula (2.20) follows for each k ½ 0.
Similarly, (2.21) trivially holds for N0. Assume that it holds for N2k for some k. Then

N2k+1 ≥
Z

0

N2k

1 � t
≥ Z

0

tkO0
1 � t

≥ Z
0

tkO0 ≥ tk+1O0

and

N2k+2 ≥
Z

0

N2k+1

t(1 � t)
≥ Z

0

tk+1O0
t(1 � t)

≥ Z
0

tkO0 ≥ tk+1O0,

which is (2.21) for N2k+1 and N2k+2, respectively. By induction, (2.21) holds for all
k ½ 0.

REMARK. It is easy to see that

h2k(0) ≥ 1Ûk!2, h2k+1(0) ≥ 1Ûk!(k + 1)!,

so the formulas (2.21) are, in fact, the best possible.

COROLLARY 2.3. For each k ½ 0,

(2.23) K2k ≥ N2k log t + O0 ≥ tk log t Ð O0 + O0,

K2k+1 ≥ N2k+1 log t + O0 ≥ tk+1 log t Ð O0 + O0.

PROPOSITION 2.4. For each n Ù 0, the functions K0, K1, . . . , Kn�1 are linearly in-
dependent modulo tn log t ÐO0 + O0. That is, for any complex numbers a0, . . . , an�1,

n�1X
k≥0

akKk ≥ tn log t ÐO0 + O0

is only possible when all ak ≥ 0.

PROOF. Aiming at a contradiction, assume that

n�1X
k≥0

akKk ≥ tm log t Ð f + O0, f 2 O0,
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where m ½ n and f (0) Â≥ 0. By (2.21), we then also have

n�1X
k≥0

akÑk+1 ≥ tm log t Ð f + O0.

Apply to both sides the operator Ln. By (2.6) and (2.7), the right-hand side reduces to
an�1Ñ0 ≥ an�11. On the left-hand side, we can use the formulas

L(F log t) ≥ log t Ð L(F) + O0

and
L(t jF) ≥ j2F(0)t j�1 + t jO0

valid for any F 2 O0. Thus we arrive at

an�11 ≥ tm�nF Ð log t + O0

where F 2 O0 and F Â� 0 since F(0) ≥ m!2

(m�n)!2 f (0). This is impossible.

COROLLARY 2.5. For each n Ù 0, there is a unique linear combination
Pn�1

0 akKk

of the functions K0, . . . , Kn�1 such that

n�1X
k≥0

akKk ≥ tn�1 log t + tn log t Ð O0 + O0,

i.e., which has precisely the singularity ¾ tn�1 log t at the origin.

Our next objective is to get control of the behavior of the functions N0, . . . , Nn�1 and
K0, . . . , Kn�1 at the boundary point t ≥ 1.

PROPOSITION 2.6. For each k ½ 0, one has

(2. 24) Nk ≥ Pk

 
log

1
1 � t

!
+ O

�
(1 � t) logk�1 1

1 � t

�
,

(2. 25) Ñk ≥ P̃k

 
log

1
1 � t

!
+ O

�
(1 � t) logk�1 1

1 � t

�
,

(2. 26) Kk ≥ Rk�1

 
log

1
1 � t

!
+ O

�
(1 � t) logk 1

1 � t

�

as t % 1, where Pk, P̃k and Rk�1 are polynomials of degrees k, k and k� 1, respectively,
which satisfy

P0
k+1 ≥ Pk, P̃0

k+1 ≥ P̃k, Rk�1 ≥ P̃k+1 � Pk+1,

P0(z) ≥ 1, P1(z) ≥ z, P2(z) ≥ 1
2

z2 + ê(2),

P̃0(z) ≥ 1, P̃1(z) ≥ z, P̃2(z) ≥ 1
2

z2 � ê(2).
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52 MIROSLAV ENGLIŠ AND JAAK PEETRE

In particular, the leading terms of Pk(z), P̃k(z) and Rk�1(z) are zkÛk!, zkÛk! and
�2ê(2)zk�1Û(k � 1)!, respectively.

PROOF. Assume first that the assertion (2.24) holds for N2k for some k ½ 1:

N2k ≥ P2k

 
log

1
1 � t

!
+ (1 � t) f (t), f ≥ O

 
log2k�1 1

1 � t

!
.

Then

N2k+1 ≥
Z

0

N2k

1 � t
≥ (

R
0P2k)

 
log

1
1 � t

!
+
Z

0
f .

It is well known (and easily verified by partial integration) that for each j Ù 0 the integral

Z 1

0
log j 1

1 � t
dt

is finite, and moreover

Z 1

t
log j 1

1 � t
dt ≥

þþþþþ
Z 1�t

0
log j s ds

þþþþþ ' (1 � t) log j 1
1 � t

as t ! 1.

Consequently, as t ! 1,

N2k+1 ≥ (
R

0P2k)
 

log
1

1 � t

!
+ C2k �O

�
(1 � t) log2k�1(1 � t)

�

where C2k ≥ R1
0 f (t) dt, which gives the required assertion for N2k+1, with

P2k+1 ≥ C2k +
Z

0
P2k.

Now, similarly, assume that (2.24) holds for N2k+1 for some k. Then

(2. 27) N2k+2 ≥
Z

0

N2k+1

t(1 � t)
≥ Z

0

N2k+1

t
+
Z

0

N2k+1

1 � t
.

The second integral is susceptible to the same treatment as in the case of N2k+1 above,
yielding

Z
0

N2k+1

1 � t
≥ (

R
0P2k+1)

 
log

1
1 � t

!
+ CŁ

2k+1 �O
�
(1 � t) log2k�1(1 � t)

�

for some constant CŁ
2k+1; and the first integral in (2.27)–for which there are no problems

with the existence at t ≥ 0, owing to Proposition 2.2–is, likewise, susceptible to the same
treatment as the integral

R
0 f above, yielding

Z
0

N2k+1

t
≥ CŁŁ

2k+1 � O
�
(1 � t) log2k+1(1 � t)

�
.

Therefore

N2k+2 ≥ P2k+2

 
log

1
1 � t

!
+ O

 
(1 � t) log2k+1 1

1 � t

!
as t ! 1,
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with
P2k+2 ≥ CŁ

2k+1 + CŁŁ
2k+1 +

Z
0

P2k+1.

Summing up, we see that if (2.24) holds for some Nk, then it holds also for Nk+1, and,
moreover,

P0
k+1 ≥ Pk.

On the other hand,

(2. 28) N0 ≥ 1, N1 ≥
Z

0

1
1 � t

≥ log
1

1 � t
,

and

(2. 29) N2 ≥
Z

0

 
1
t

+
1

t � 1

!
log

1
1 � t

≥ 1
2

log2 1
1 � t

+ Li2(t)

where Li2 is the familiar dilogarithm:

Li2(t) ≥ Z
0

1
t

log
1

1 � t
≥

1X
n≥1

tn

n2
.

For t ≥ 1, Li2(1) ≥ ê(2) ≥ ô2Û6 (the Riemann ê-function). Using the formula (due to
Euler; cf. [Le1], p. 5)

(2. 30) Li2(t) + Li2(1 � t) ≥ log t log
1

1 � t
+ ê(2),

we see that

N2 ≥ 1
2

log2 1
1 � t

+ ê(2) + O
 

(1 � t) log
1

1 � t

!
.

Thus, by induction, it follows that (2.24) holds true for all k ½ 0, and for k ½ 2 we even
have a more detailed formula

(2. 31) Pk(z) ≥ 1
k!

zk +
ê(2)

(k � 2)!
zk�2 + Ð Ð Ð ,

so

Nk(t) ≥ 1
k!

logk 1
1 � t

+
ê(2)

(k � 2)!
logk�2 1

1 � t
+ O

 
logk�3 1

1 � t

!
.

The proof for Ñk runs along completely similar lines. This time, for k ≥ 0, 1, 2 we
obtain

(2. 32) Ñ0 ≥ 1, Ñ1 ≥ log t + log
1

1 � t
,

(2. 33) Ñ2 ≥ Li2(1 � t) +
1
2

log2 1
1 � t

� ê(2),

so (by induction as above) the required assertion (2.25) holds with

(2. 34) P̃k(z) ≥ 1
k!

zk � ê(2)
(k � 2)!

zk�2 + Ð Ð Ð .
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Finally, as Kk ≥ Ñk+1 � Nk+1, the assertions concerning Kk and Rk�1 follow from those
for Nk, Ñk, Pk and P̃k by subtraction.

With the information at hand it is now easy to obtain an expression for the invariant
Green function Gn with the pole at the origin in terms of the functions Nj and Kj. Since
the highest order part of the operatorÐn is (1� t)2n∆n, the behavior of the Green function
Gn(Ð, 0) at the origin must be the same as that of the fundamental solution of the operator
∆n; the latter is given by

cnjzj2n�2 log jzj2 ≥ cntn�1 log t,

where cn ≥ 1Û[4n(n�1)!2ô]. By Corollary 2.5, there exists a unique linear combinationPn�1
0 ajKj which is ¾ tn�1 log t at the origin. By Proposition 2.6,

n�1X
j≥0

ajKj ≥ Qn�2

 
log

1
1 � t

!
+ O

 
(1 � t) logn�1 1

1 � t

!

as t ! 1, where Qn�2 is a polynomial of degree n�2 defined by Qn�2(z) ≥ Pn�1
0 ajRj�1,

with Rj�1 the polynomials from (2.26). Again by Proposition 2.6, there exist (unique)
constants bk such that the linear combination

Pn�1
0 bkNk has the same boundary behavior

as t ! 1 (in fact, bn�1 ≥ 0, i.e., Nn�1 will be absent!). Since the Nk are holomorphic at
the origin (Proposition 2.2), the function

n�1X
j≥0

ajKj �
n�1X
k≥0

bkNk

will still have the correct type of singularity at the origin, will vanish at the boundary
t ≥ 1, and will be annihilated by the operator Ln. Thus we conclude that

(2. 35) cn

hn�1X
j≥0

ajKj �
n�1X
k≥0

bkNk

i ≥ Λn,1(t)

must be the sought Green function forÐn with pole at the origin.

COROLLARY 2.7. Gm(z, 0) ≥ O
�
(1 � t) logm�1(1 � t)

�
as t � jzj2 ! 1.

As an illustration of this machinery, we compute the Green functions Gm for m up
to 4. Let us start by identifying the asymptotics at the origin (Proposition 2.2). One has

N1 ≥ log
1

1 � t
≥ t +

t2

2
+

t3

3
+ Ð Ð Ð .

Consequently,

N2 ≥
Z

0

N1

t(1 � t)
≥ t +

3
4

t2 +
11
18

t3 +
25
48

t4 + Ð Ð Ð ;

N3 ≥
Z

0

N2

1 � t
≥ 1

2
t2 +

7
12

t3 +
85

144
t4 +

83
144

t5 + Ð Ð Ð ;(2. 36)

N4 ≥
Z

0

N3

t(1 � t)
≥ 1

4
t2 +

13
36

t3 +
241
576

t4 + Ð Ð Ð .
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The asymptotics at t ≥ 1–that is, the polynomials Pk and P̃k from Proposition 2.6–are,
unfortunately, more difficult to obtain, since to that end it seems to be unavoidable to
compute the functions Nk and Ñk quite explicitly and then work things out. For k ≥ 0, 1, 2
we already know from (2.28)–(2.34) that

P0 ≥ P̃0 ≥ 1, P1 ≥ P̃1 ≥ z, P2 ≥ 1
2

z2 + ê(2), P̃2 ≥ 1
2

z2 � ê(2).

Taking next k ≥ 3 we have from (2.29)

(2. 37) N3 ≥
Z

0

1
1 � t

 
1
2

log2 1
1 � t

+ Li2(t)
!
≥ 1

6
log3 1

1 � t
+Li2(t) log

1
1 � t

�M3(t)

where M3(t) is the Kummer function

(2. 38) M3(t) ≥ Z
0

log2(1 � t)
t

.

It can be shown that M3(1) ≥ 2ê(3) (see the next section). Thus

(2. 39) P3(z) ≥ 1
6

z3 + ê(2)z � 2ê(3).

As for Ñ3, we have from (2.33)

Ñ3 ≥
Z

0

 
1

1 � t
+

1
t

! 
1
2

log2 1
1 � t

+ Li2(1 � t) � ê(2)
!

≥ 1
6

log3 1
1 � t

� Li3(1 � t) +
1
2

M3(t) + Li2(1 � t) log t(2. 40)

+ M3(1 � t)� ê(2) log
1

1 � t
� ê(2) log t � ê(3),

and

(2. 41) P̃3(z) ≥ 1
6

z3 � ê(2)z.

Here Li3(t) is the trilogarithm

Li3(t) ≥ Z
0

Li2(t)
t

≥
1X

k≥1

tk

k3

and we have used the fact that Li3(1) ≥ ê(3) and M3(1) ≥ 2ê(3).
Finally, for k ≥ 4 we have by Proposition 2.6

(2. 42) P4 ≥ 1
24

z4 +
ê(2)

2
z2 � 2ê(3)z + A, P̃4 ≥ 1

24
z4 � ê(2)

2
z2 + B,

for some constants A and B whose determination is deferred to the next section. Sub-
tracting, we also get
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(2.43)
R�1 ≥ 0, R0 ≥ �2ê(2), R1 ≥ �2ê(2)z + 2ê(3),

R2 ≥ �ê(2)z2 + 2ê(3)z + (B � A).

Let us now proceed to the respective cases m ≥ 1 to 4.

THE CASE m ≥ 1. This is of course trivial, but let us make the computation for
completeness. We have

K0 ≥ Ñ1 � N1 ≥ log t

so a0 ≥ 1 and
a0K0 ≥ O(1 � t) as t ! 1.

Thus

(2. 44) G1(Ð, 0) ≥ c1K0 ≥ 1
4ô log t,

as it should be.

THE CASE m ≥ 2. Now in addition to K0 we have

K1 ≥ Ñ2 � N2 ≥ Li2(1 � t) � Li2(t) � ê(2).

By (2.28) and Corollary 2.3,

K1 ≥ N1 log t + O0 ¾ t log t as t ! 0,

so a0 ≥ 0 and a1 ≥ 1, and by (2.43)

1X
0

ajKj ≥ K1 ≥ �2ê(2) + O
 

(1 � t) log
1

1 � t

!
as t ! 1.

Thus

G2(Ð, 0) ≥ c2

h
K1 + 2ê(2)N0

i ≥ 1
16ô

h
Li2(1 � t)� Li2(t) + ê(2)

i
.

Using formula (2.30) we can rewrite this as

(2. 45) G2(Ð, 0) ≥ 1
16ô

"
log t log

1
1� t

� 2 Li2(t) + 2ê(2)
#

which is in agreement with the result obtained in [EP] (Theorem 1 in Section 3), as well
as with our Theorem 1.1.

THE CASE m ≥ 3. This time we add K2 ≥ Ñ3 � N3. By (2.36) and Proposition 2.2,

K1 ≥ N1 log t + O0 ¾ log t Ð (t +
1
2

t2 + Ð Ð Ð),

K2 ≥ N2 log t + O0 ¾ log t Ð (t +
3
4

t2 + Ð Ð Ð).

It follows that
4(K2 � K1) ¾ t2 log t as t ! 0,
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so a0 ≥ 0, a2 ≥ �a1 ≥ 4. At the boundary we have from (2.43)

K2 � K1 ≥ �2ê(2) log
1

1 � t
+ 2

�
ê(3) + ê(2)

�
+ o(1) as t ! 1.

Also

N1 ≥ log
1

1 � t
,

so

(2. 46) G3(Ð, 0) ≥ 4c3

�
K2 � K1 + 2ê(2)N1 � 2

�ê(3) + ê(2)
�½

.

Inserting the expressions for Ñ3, N3 and K1 obtained above and using the formula (2.30)
and the formulas below in Section 3, it can be shown that this agrees with the formula
for G3 in [EP], Theorem 1 in Section 4.

THE CASE m ≥ 4. Proceeding as above we see from (2.36) that

K1 ¾ log t Ð
 

t +
1
2

t2 +
1
3

t3 + Ð Ð Ð
!

,

K2 ¾ log t Ð
 

t +
3
4

t2 +
11
18

t3 + Ð Ð Ð
!

,

K3 ¾ log t Ð
 

1
2

t2 +
7

12
t3 + Ð Ð Ð

!

as t ! 0, so
36
�
K3 � 2(K2 � K1)

�
¾ t3 log t as t ! 0.

Thus a3 ≥ 36, a1 ≥ �a2 ≥ 72. As t ! 1,

K3 � 2K2 + 2K1 ≥ �ê(2) log2 1
1 � t

+
�
2ê(3) + 4ê(2)

�
log

1
1 � t

+
�
B� A � 4ê(3) � 4ê(2)

�
+ o(1).

On the other hand,

N1 ≥ log
1

1 � t
, N2 ≥ 1

2
log2 1

1 � t
+ ê(2) + o(1),

so we arrive at

(2. 47)
G4(Ð, 0) ≥ 36c4

�
K3 � 2K2 + 2K1 + 2ê(2)N2 �

�
2ê(3) + 4ê(2)

�
N1

�
�
2ê(2)2 + B� A� 4ê(3)� 4ê(2)

�½
.

The expressions for the function K3 and the constants A, B will be derived in the next
section; inserting them into the last right-hand side yields an explicit formula for the
Green function G4. (It is rather unwieldy, so we do not reproduce it here.)

We conclude this section by proving an improved version of Proposition 2.6 which
can be used to obtain an analytic continuation of the Green’s functions past the boundary
circle jzj ≥ 1 (Corollary 2.10).
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THEOREM 2.8. For each k ½ 0, one has

(2.48)

Nk ≥ 1
k!

logk 1
1 � t

+
k�1X
j≥0

fkj(t) Ð log j 1
1 � t

,

Ñk ≥ 1
k!

logk 1
1 � t

+
k�1X
j≥0

f̃kj(t) Ð log j 1
1 � t

,

where fkj and f̃kj are functions holomorphic in the right half-plane.

PROOF. As we did before with O0, we introduce the notation O+ for a general func-
tion, not necessarily the same one on each occurrence, holomorphic in the right half-
plane. For each g 2 O+ we have, by integration by parts,

Z
g(t) logk 1

1 � t
dt ≥ logk 1

1 � t
Ð (
R

1 g) � Z k(
R
1 g)

1 � t
logk�1 1

1 � t
dt.

Since the function 1
1�t

R
1 g is also O+, we see that

Z
g(t) logk 1

1 � t
dt ≥

kX
j≥0

O+ Ð log j 1
1� t

.

Combining this with the elementary equality
Z 1

1 � t
logk 1

1 � t
dt ≥ 1

k + 1
logk+1 1

1 � t
,

we finally obtain

Z g(t)
1 � t

logk 1
1 � t

dt ≥ g(1)
k + 1

logk+1 1
1 � t

+
kX

j≥0
O+ Ð log j 1

1 � t
.

Consequently, if (2.48) holds for some k, then

Nk+1 ≥
Z

0

1
1 � t

gkNk (gk ≥ 1Ût for k odd, gk ≥ 1 for k even)

≥ Z
0

0
@ 1

k!
gk

1� t
logk 1

1 � t
+

k�1X
j≥0

O+ Ð log j 1
1 � t

1
A (by assumption)

≥ C +
gk(1)

(k + 1)!
logk+1 1

1 � t
+

kX
j≥0

O+ Ð log j 1
1 � t

≥ 1
(k + 1)!

logk 1
1 � t

+
kX

j≥0
O+ Ð log j 1

1 � t
,

as gk(1) ≥ 1 and the constant of integration C can be absorbed into the summand j ≥ 0.
Since N0 ≥ 1, it follows by induction that (2.48) holds true for all k ½ 0. The proof for
Ñk is quite similar and hence omitted.

Splitting off the constant term from each fkj ,

fkj(t) ≥ fkj(1) + (1 � t)gkj(t)

(and similarly for f̃kj) and then comparing our last result with Proposition 2.6, we imme-
diately obtain:
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COROLLARY 2.9. For each k ½ 0,

Nk ≥ Pk

 
log

1
1 � t

!
+ (1 � t)

k�1X
j≥0

gkj(t) logj 1
1 � t

,

Ñk ≥ P̃k

 
log

1
1 � t

!
+ (1 � t)

k�1X
j≥0

g̃kj(t) logj 1
1 � t

,

Kk ≥ Rk�1

 
log

1
1 � t

!
+ (1 � t)

kX
j≥0

hkj(t) logj 1
1 � t

,

where Pk, P̃k and Rk�1 are the polynomials from Proposition 2.6 and gkj, g̃kj and hkj are
functions holomorphic in the right half-plane.

As a consequence we have also the following amplification of Corollary 2.7.

COROLLARY 2.10. The invariant Green functions satisfy

Gm ≥ (1 � t)
m�1X
j≥0

Gkj(t) logj 1
1 � t

,

where Gkj are functions holomorphic in the right half-plane.

3. Some transcendental functions. Hyperlogarithms. In this section we discuss
in more detail the transcendental functions which appear in connection with the Nk and
Ñk. Perhaps the most conspicuous among them are the polylogarithms

Lis(t) ≥
1X

k≥1

tk

ks

which can be defined recursively by

Lis+1(t) ≥ Z
0

Lis(t)
t

, Li1(t) ≥ log
1

1 � t
.

For t ≥ 1,
Lis(1) ≥ ê(s)

the Riemann ê-function. Another important chain are the Kummer functions

(3. 1) Mk(t) ≥ Z
0

logk�1(1 � t)
t

,

of which we have seen M3 to enter into the formulas for N3 and Ñ3, and M4 arises if we
calculate N4 or Ñ4:

N4 ≥
Z

0

 
1
t

+
1

1 � t

! 
1
6

log3 1
1 � t

+ Li2(t) log
1

1 � t
� M3(t)

!
(by (2.37))

≥ �2
3

M4(t) +
1
2

Li2(t)2 �MŁ
4(t) +

1
24

log4 1
1 � t

(3. 2)

+
1
2

Li2(t) log2 1
1 � t

� M3(t) log
1

1 � t
.
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60 MIROSLAV ENGLIŠ AND JAAK PEETRE

Here we have denoted by MŁ
4 another transcendental function

(3. 3) MŁ
4(t) ≥ Z

0

M3(t)
t

.

Similarly, for Ñ4 we have by (2.40)

Ñ4 ≥
Z

0

1
1 � t

 
1
6

log3 1
1 � t

� Li3(1 � t) +
1
2

M3(t) + Li2(1 � t) log t

+ M3(1 � t)� ê(2) log
1

1 � t
� ê(2) log t � ê(3)

!

≥ 1
24

log4 1
1 � t

+ Li4(1 � t) +
1
2

M3(t) log
1

1 � t
+

1
2

M4(t)(3. 4)

+
1
2

Li2(1 � t)2 + MŁ
4(1)� MŁ

4(1 � t)� ê(2)
2

log2 1
1 � t

� ê(2) Li2(1 � t) � ê(3) log
1

1 � t
� ê(4) +

ê(2)2

2
,

and we see that Ñ4 too can be expressed in terms of the functions M4, MŁ
4, M3, Li2, Li3

and Li4.
There are numerous relations between the various functions just mentioned. An ex-

ample is Euler’s formula (2.30), which we have already used several times and which
can be verified easily by differentiation. Another important formula, essentially due to
Kummer ([Le1], p. 159), connects M3(t) with Li3(1 � t):

(3. 5) M3(t) ≥ M3(1) + log t log2 1
1 � t

� 2 Li2(1 � t) log
1

1 � t
� 2 Li3(1 � t).

Setting t ≥ 0 in (3.5) we obtain the important equality

(3. 6) M3(1) ≥ 2ê(3).

In general one has the formula ([Le1], p. 203)

(3. 7) Mk(t) � Mk(1) ≥ (�1)k
kX

j≥1

(k � 1)!
(k � j)!

Lij(1 � t) logk�j 1
1 � t

which is a generalization of (2.30) and (3.5), and

(3. 8) Mk(1) ≥ (�1)k+1(k � 1)! ê(k).

The function MŁ
4 is more evasive. Using again integration by parts shows that it sat-

isfies the formula

MŁ
4(t) + MŁ

4(1 � t) ≥ MŁ
4(1) + M3(1 � t) log(1 � t) + M3(t) log t � 1

2
log2 t log2(1 � t)
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which can be regarded as a higher-order analog of (2.30). An explicit expression for MŁ
4

can be obtained from the formula (7.65) in [Le1], p. 204; the result is

MŁ
4(t) ≥ 2

"
Li4

 �t
1 � t

!
+ Li4(t) � Li4(1 � t) + ê(4)

#

+ 2 Li3(t) log
1

1 � t
+

1
3

log t log3 1
1 � t

+
1

12
log4 1

1 � t
(3. 9)

+ ê(2) log2 1
1 � t

� 2ê(3) log
1

1 � t
.

The number MŁ
4(1) is best evaluated directly. To that end, use (2.30) to rewrite the for-

mula (3.5) as

M3(t) ≥ M3(1) � 2 Li3(1 � t) � log t log2 1
1 � t

� 2ê(2) log
1

1 � t
+ 2 Li2(t) log

1
1 � t

.

Dividing by t and using (3.6) gives

M3(t)
t

+ log t ÐM3(t)0 ≥ 2
ê(3)� Li3(1 � t)

t
� 2ê(2) Li2(t)0 + 2 Li2(t) Ð Li2(t)0.

Integrating from 0 to 1, the left-hand side vanishes, and we obtain

(3. 10) 2
Z 1

0

ê(3) � Li3(1 � t)
t

dt ≥ ê(2)2.

The last integral can be evaluated by power series expansion:

(3. 11)
Z 1

0

ê(3) � Li3(t)
1 � t

dt ≥
1X

n≥1

1
n3

Z 1

0

1 � tn

1 � t
dt ≥

1X
n≥1

1
n3

0
@ nX

k≥1

1
k

1
A

On the other hand, from the Taylor series for log2(1 � t)

log2(1 � t) ≥ 2
1X

n≥2

tn

n

0
@n�1X

k≥1

1
k

1
A

it follows that

M3(t) ≥ 2
1X

n≥2

tn

n2

0
@n�1X

k≥1

1
k

1
A , MŁ

4(t) ≥ 2
1X

n≥2

tn

n3

0
@n�1X

k≥1

1
k

1
A ,

and so
1X

n≥1

1
n3

0
@ nX

k≥1

1
k

1
A ≥ 1

2
MŁ

4(1) + ê(4).

Substituting this back into (3.11) and (3.10) yields

(3. 12) MŁ
4(1) ≥ ê(2)2 � 2ê(4) ≥ 1

2
ê(4)

(since ê(2) ≥ ô2Û6 and ê(4) ≥ ô4Û90).
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This equality, as well as (3.6), have an interesting interpretation as sums of series:
(3.6) can be restated as

1X
n≥2

1
n2

0
@n�1X

k≥1

1
k

1
A ≥ ê(3),

and (3.12) means that 1

1X
n≥2

1
n3

0
@n�1X

k≥1

1
k

1
A ≥ 1

4
ê(4).

We finish this discussion by evaluating the constants A, B in (2.42). From (3.2) we
have

N4 � 1
24

log4 1
1 � t

� ê(2)
2

log2 1
1 � t

+ 2ê(3) log
1

1 � t

≥ �2
3

M4(t) +
1
2

Li2(t)2 �MŁ
4(t) +

Li2(t) � ê(2)
2

log2 1
1 � t

�
�
M3(t) �M3(1)

�
log

1
1 � t

.

In view of (2.30) and (3.5) the last two terms are of order (1�t) log3 1
1�t as t ! 1. Letting

t tend to 1 we therefore get

(3. 13) A ≥ �2
3

M4(1) +
1
2
ê(2)2 �MŁ

4(1) ≥ 19
4
ê(4).

Similarly from (3.4)

Ñ4 � 1
24

log4 1
1 � t

+
ê(2)

2
log2 1

1 � t

≥ Li4(1 � t) +
1
2

�
M3(t) �M3(1)

�
log

1
1 � t

+
1
2

M4(t) +
1
2

Li2(1 � t)2

+ MŁ
4(1) �MŁ

4(1 � t) � ê(2) Li2(1 � t) � ê(4) +
ê(2)2

2
.

The second term on the right-hand side is again of order (1 � t) log3 1
1�t by (3.5), so

letting t ! 1 yields

(3. 14) B ≥ 1
2

M4(1) + MŁ
4(1) � ê(4) +

1
2
ê(2)2 ≥ �9

4
ê(4).

Thus
B� A ≥ �8ê(4) + 2MŁ

4(1) ≥ �7ê(4)

1 More generally,
1X

n≥2

1
nm�1

0
@

n�1X
k≥1

1
k

1
A ≥ m� 1

2
ê(m)�

1
2

m�2X
k≥2

ê(k) ê(m� k),

and also
1X

n≥1

1
n2m�1

0
@ nX

k≥1

1
k

1
A ≥ 1

2

2m�2X
k≥2

(�1)kê(k) ê(2m� k).

These formulas are due to N. Nielsen (see [Ni], p. 198).
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and the constant term in the square brackets in the formula (2.47) for G4 is equal to

(3. 15) �
�
ê(2)2 � 4ê(4) + MŁ

4(1)� 2ê(3) � 2ê(2)
�
≥ ê(4) + 2ê(3) + 2ê(2).

The formulas above can be used to obtain—as we have promised near the end of the
preceding section—various expressions for the functions Kj, j � 4. For instance, we
have

K0 ≥ log t;

K1 ≥ Li2(1 � t) � Li2(t) � ê(2) ≥ log t log
1

1 � t
� 2 Li2(t);

K2 ≥ �4 Li3(1 � t) � 2 Li3(t) +
1
2

log t log2 1
1 � t

� 2
h
Li2(1 � t) + ê(2)

i
log

1
1 � t

+ Li2(t) log t + 4ê(3);

K3 ≥ 8 Li4(1 � t) + MŁ
4(t) �MŁ

4(1 � t) + 4 Li3(1 � t) log
1

1 � t

+
1
2

Li2(1 � t) log2 1
1 � t

� 1
2

Li2(t) log2 1
1 � t

+
1
2

Li2(1 � t)2

� 1
2

Li2(t)2 +
1
3

log t log3 1
1 � t

� ê(2) Li2(1 � t)

� 1
2
ê(2) log2 1

1� t
+ 2ê(3) log

1
1 � t

� 25
4
ê(4), etc.

In particular, feeding this information into the formulas for G2, G3 and G4 in Section 2,
one obtains explicit formulas for the latter in terms of the polylogarithms Li2, Li3 and
Li4.

In principle, the Green functions Gm can be computed by the method of Section 2 for
any m, but for m ½ 5 the results become immensely complicated and also new transcen-
dental functions pop up; for this reason, we won’t pursue these matters any further and,
instead, will be content with stating a simple result of general nature.

Recall that, for a 2n-tuple of complex numbers a1, . . . , an, b1, . . . , bn, the hyperloga-
rithm of Kummer is defined as

Fn

 
a1 a2 Ð Ð Ð an

b1 b2 Ð Ð Ð bn

!
(t) ≥ Z

bn

1
t � an

Z
bn�1

1
t � an�1

Ð Ð Ð Z
b1

1
t � a1

.

This is in general a multi-valued analytic function on C which may have (and usually
has) various logarithmic singularities at the points a1, a2, . . . , an. It is, however, easy to
see (by considerations akin to our proof of Proposition 2.2 above) that a single-valued
holomorphic branch can always be selected on any simply connected domain Ω as long
as, for each k, either ak ≥ bk�1, or ak Û2 Ω and bk Â≥ ak. As a rather straightforward
application of the discussion in the preceding section, we then have the following result.
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THEOREM 3.1. For each k ½ 1 the function Nk is a linear combination of the hy-
perlogarithms

(3. 16) Fk

 
a1 a2 Ð Ð Ð ak

0 0 Ð Ð Ð 0

!
,

where aj ≥ 1 for j odd and aj 2 f0, 1g for j even. Similarly, the functions Ñk are linear
combinations of

(3. 17) Fk

 
0 a2 a3 Ð Ð Ð ak

1 0 0 Ð Ð Ð 0

!
and Fk

 
1 a2 a3 Ð Ð Ð ak

0 0 0 Ð Ð Ð 0

!
,

where aj ≥ 1 for j even and aj 2 f0, 1g for j odd, j Â≥ 1. Consequently, the Green function
Gk(Ð, 0) too is a linear combination of the functions (3.16) and (3.17).

Hyperlogarithms were first studied by Kummer in the third part of his paper [Ku]. For
a recent exposition, see, e.g., G. Wechsung’s article [We] in Lewin’s book [Le2].

4. The dual spaces. In this section we consider the compact duals of the previous
symmetric domains (ball, disc).

In the first place let us examine the case of the Riemann sphere S2 (³ the complex
projective line P1). We let its diameter be 1 (radius 1

2 ). Removing a base point denoted
1 (the point at infinity) we map the remainder of S2 onto the complex plane C. We can
thus use the generic point z of C as a local coordinate on S2nf1g. We put also, as before,
t ≥ r2 ≥ jzj2.

Below we present in table form some relevant quantities associated with S2 along
with, for comparison, their counterparts in the dual case of the disk D; for bookkeeping
reasons the former are equipped with a subscript in the form of a star Ł.

sphere disc

metric dsŁ ≥ jdzj
1+jzj2 ds ≥ jdzj

1�jzj2

area element dAŁ ≥ dx dy
(1+jzj2)2 dA ≥ dx dy

(1�jzj2)2

total area ô 1

Laplace operator ÐŁ ≥ 4(1 + jzj2)2 ∂2

∂z∂z̄ Ð ≥ 4(1� jzj2)2 ∂2

∂z∂z̄

radial part Ð 1
4 LŁ ≥ (1 + t)2

h
t d2

dt2 + d
dt

i
L ≥ (1 � t)2

h
t d2

dt2 + d
dt

i

TABLE 1.
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The main difference is thus that everywhere the factor 1 � jzj2 (respectively 1� t) in
the previous situation has been replaced by 1 + jzj2 (respectively 1 + t).

There is a simple connection between the operators LŁ and L. Indeed, let us set for
f ≥ f (t), any radial function,

f Ł ≥ f Ł(t) ≥ f (�t).

Then we have

(4. 1) L( f Ł) ≥ �(LŁ f )Ł.

PROOF OF (4.1). We have by definition (see Table 1)

L( f Ł) ≥ (1 � t)2
h
t f 00(�t) � f 0(�t)

i
;

LŁ f ≥ (1 + t)2
h
t f 00(t) + f 0(t)

i
.

The second of these relations gives

(LŁ f )Ł ≥ (LŁ f )(�t) ≥ (1 � t)2
h�t f 00(�t) + f 0(�t)

i
≥ �(1 � t)2

h
t f 00(�t) � f 0(�t)

i ≥ �L( f Ł).

This proves the desired equality.
Iterating (4.1) gives

(4. 2) Lm( f Ł) ≥ (�1)m(Lm
Ł f )Ł.

From (4.2) we may draw the following conclusion.

LEMMA 4.1. Let f1, . . . , fm, g1, . . . , gm be the basis for the solutions of the differential
equation Lmf ≥ 0 indicated in Section 1 (cf. also [EP], Section 4). Then a basis for the
solutions of Lm

Ł f ≥ 0 is constituted by the functions

f1(�t), . . . , fm(�t), g1(�t), . . . , gm(�t).

We now turn our attention to the Green’s functions of the iterated operatorsÐm
Ł . First

we must, however, make precise what is meant by Green’s function in the present com-
pact situation.

Consider quite generally the inhomogeneous equationÐm
Ł u ≥ v on S2. Let us multiply

by dAŁ and integrate, yielding
Z

S2
Ðm

Ł u dAŁ ≥
Z

S2
v dAŁ.

If we use the fact that the operator Ðm
Ł is selfadjoint and that, in addition, Ðm

Ł 1 ≥ 0, it
follows that the left-hand side is zero so we obtain the following necessary condition for
the existence of a (global) solution:

(4. 3)
Z

S2
v dAŁ ≥ 0.
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It may be proved2 that, conversely, (4.3) implies the existence of a solution. Finally, we
obtain a unique solution u if we impose the additional hypothesis

(4. 4)
Z

S2
u dAŁ ≥ 0.

Accordingly, we define the m-th order invariant Green’s function on S2 with pole at
the point w to be the unique function GmŁ ≥ GmŁ(z) ≥ GmŁ(z, w) such that

1Ž Ðm
Ł GmŁ ≥ éw � 1

ô
where éw is the Dirac delta function at w;

2Ž
R

S2 GmŁ dAŁ ≥ 0.
The constant 1

ô appears because in view of our normalization of the area (see Table 1)
precisely then the condition (4.3) is formally satisfied.

As usual, we may take w ≥ 0.
Let us begin with the case m ≥ 1 . Then there are two independent radial solutions:

the functions 1 and log t. Furthermore, the equation LŁ f ≥ 1 is satisfied by the function
log(1 + t) (this follows from (4.1) and (2.28), or also from Lemma 4.1 and the results
of [EP]; see Scholium 1, Section 4 there). This leads the following expression for G1Ł:

G1Ł(t) ≥ 1
4ô
�
log t � log(1 + t) + A

�
,

where the constant A has to be chosen in such a way that condition 2Ž is met. Observe
that the sign in front of the second term helps us to take care of the singularity at 1
which otherwise would have occurred.

Before passing to the actual computation of A it is handy to collect some salient facts
about integration of radial functions, which we do as a lemma.

LEMMA 4.2. Let f ≥ f (t) be any radial function on S2. Then we have
Z

S2
f dAŁ ≥ ô Z 1

0

f (t)
(1 + t)2

dt.

Moreover, the differential dt
(1+t)2 is invariant if we make the substitution t 7! 1

t (inversion).
In particular, we have Z 1

0

f ( 1
t )

(1 + t)2
dt ≥ Z 1

0

f (t)
(1 + t)2

dt.

PROOF. All there is to do is to observe that if z ≥ reií, t ≥ r2 then it follows that

dAŁ(z) ≥ ô dt dí
(1 + t)2

.

From the first half of Lemma 4.2 it follows that we must haveZ 1

0

log t
(1 + t)2

dt � Z 1

0

log(1 + t)
(1 + t)2

dt + A ≥ 0.

Using the symmetry property in the second half we see that the first integral must vanish.
On the other hand, a direct computation reveals that the second integral has the value 1.
Thus we conclude that A ≥ 1 . In summary, we have now proved the following result.

2 For instance, using the spectral resolution forÐŁ.
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THEOREM 4.3. The radial part of the invariant Green’s function G1Ł is given by the
formula

(4. 5) G1Ł(t) ≥ � 1
4ô
�
log t � log(1 + t) + 1

�
.

We can combine this with the expression for G1Ł obtained by using the eigenfunction
expansion ofÐŁ. We recall that the n-th eigenvalue ofÐŁ is �4n(n + 1) and occurs with
multiplicity 2n + 1 (n ≥ 0, 1, 2, . . .). So choosing for each n an orthonormal basis of
eigenfunctions (spherical harmonics) Ynã (ã ≥ 1, . . . , 2n + 1) we see that we must also
have

G1Ł(z, w) ≥ �
1X

n≥1

1
4n(n + 1)

2n+1X
ã≥1

Ynã(z)Ynã(w).

Because of the invariance the inner sum depends only of the distance between the points z
and w (with respect to the metric dsŁ). In other words, it must be proportional to Pn(cos í),
where Pn stands for the n-th Legendre polynomial and í is the angle between z and w. The
proportionality constant can be found using that, in view of the normalization Pn(1) ≥ 1,
it must equal the integral of the expression obtained by putting z ≥ w, divided by the
integral of the function 1; that is, using also the orthonormalization of the eigenfunctions,
it turns out to be

1
ô
Z

S2

2n+1X
ã≥1

�
Ynã(z)

�2
dAŁ ≥ 1

ô
2n+1X
ã≥1

Z
S2

�
Ynã(z)

�2
dAŁ ≥ 1

ô
2n+1X
ã≥1

1 ≥ 2n + 1
ô .

So we end up with the formula

(4. 6) G1Ł(z, w) ≥ � 1
4ô

1X
n≥1

2n + 1
n(n + 1)

Pn(cos í).

REMARK 4.1. Alternatively, we could have used the fact that the sum

2n+1X
ã≥1

Ynã(z)Ynã(w)

is nothing but the reproducing kernel of the n-th eigenspace. In this way we could have
stayed entirely in the complex domain without having to pass to the real (cf. [PZ], p. 231,
the last remark in Section 2).

Let us now recall the relation between the angle í and the parameter t: As the inverse
image (pullback) of z under stereographic projection is the point with coordinates0

@ Re z
1 + jzj2 ,

Im z
1 + jzj2 ,

1
2

1 � jzj2
1 + jzj2

1
A

in R3 and t ≥ jzj2, we must have

cos í ≥ 1 � t
1 + t

.
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This again shows that, putting x ≥ cos í,

t ≥ 1 � x
1 + x

, 1 + t ≥ 2
1 + x

,
t

1 + t
≥ 1 � x

2
.

Finally, juxtaposing (4.5) and (4.6) we see that

(4. 7)
1X

n≥1

2n + 1
n(n + 1)

Pn(x) ≥ log 2 � 1 � log(1 � x)

which formula is formally valid for �1 � x Ú 1.3

Formula (4.7) is however not new. Indeed, it is the special case of a result which
appears in [BE], Section 10.10, as the bilinear formula (53) on p. 183:

(4. 8)
1X

n≥1

2n + 1
n(n + 1)

Pn(x)Pn( y) ≥ 2 log 2 � 1 � log(1 � x)(1 + y)

with �1 Ú x � y Ú 1.

REMARK 4.2. Actually, (4.8) can be obtained from its special case (4.7) by invoking
the multiplication theorem for Legendre polynomials, which we found in [V], p. 141:

1
2ô

Z ô

�ô
Pn

�
xy �

p
1 � x2

q
1 � y2 cosû

�
dû ≥ Pn(x)Pn( y).

Indeed, if we replace x by xy � p
1 � x2

q
1 � y2 cosû in (4.7) and integrate, then the

left-hand side of the resulting formula agrees with the left-hand side of (4.8). In order to
be able to reduce the right-hand side into the right-hand side of (4.8) we must therefore
show that

(4. 9)
1

2ô
Z ô

�ô
log

�
1 � xy +

p
1 � x2

q
1 � y2 cosû

�
dû ≥ � log 2 + log(1 � x)(1 + y),

or, upon setting z ≥ �p1 � x2
q

1 � y2Û(1 � xy),

1
2ô

Z ô

�ô
log(1 � z cosû) dû ≥ log

1 +
p

1 � z2

2
,

which is easily done by power series expansion.
Encouraged by this partial success we next make an assault on the case m ≥ 2 .

Looking again at (2.45) and (2.29), or at the formulae in [EP], especially Scholium 1 in
Section 4 there, and using our Lemma 4.1, we see that the radial part of G2Ł must be of
the form

(4. 10) G2Ł(t) ≥ 1
16ô

"
log t Ð log(1 + t) � 1

2
log2(1 + t) + Li2(�t) + B

#
,

3 We do not enter here into the subtleties connected with convergence but we assure the reader that everything

can be fixed up with ease.
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where B is a constant. Alternatively, it is easy to see directly that the expression within
brackets in the last formula satisfies the differential equation L2

Ł f ≥ �1. Moreover, the
singularity at t ≥ 0 clearly is the right one and there is no singularity at t ≥ 1. The last
fact follows from the following result for the dilogarithm (see [Le1], formula (1.7), p. 4):

(4. 11) Li2(�t) ≥ �1
2

log2 t � Li2

 
�1

t

!
� ô2

6

valid for t 2 (0,1) (all the log-terms cancel). So what remains is the determination
of the constant B in (4.10) so as to meet the requirement that the integral of G2Ł be
zero (see Condition 2Ž ultra). To this end we invoke once more Lemma 4.2. Let the
expression within brackets in (4.10) be denoted by Ê. If we replace there t by 1

t we
obtain the expression

ÊÊ ≥ � log t Ð �log(1 + t) � log t
�� 1

2

�
log(1 + t) � log t

�2
+ Li2

 
�1

t

!
+ B.

Adding up gives after various simplifications, invoking especially (4.11),

Ê + ÊÊ ≥ log t Ð log(1 + t) � log2(1 + t) � ô2

6
+ 2B

≥ log(1 + t) Ð log
 

1 � 1
1 + t

!
� ô2

6
+ 2B.

According to Lemma 4.2 the integral of this quantity has to vanish. In other words, we
must have Z 1

0

log(1 + t) Ð log
�
1 � 1

1+t

�
(1 + t)2

dt� ô2

6
+ 2B ≥ 0.

The value of the last integral is ô2

6 � 2. (To see this we make the substitution t ≥ 1
p � 1.

Then we obtain the integral

� Z 1

0
log p Ð log(1 � p) dp.

Again, using the power series expansion of the function log(1�p) we are lead to summing
the series

�
1X

n≥1

1
n(n + 1)2

,

which is easily achieved.) Thus we find that B ≥ 1 . Summing up, we have now found
the following result.

THEOREM 4.4. The radial part of the invariant Green’s function G2Ł is given by the
formula

(4. 12) G2Ł(t) ≥ 1
16ô

"
log t Ð log(1 + t) � 1

2
log2(1 + t) + Li2(�t) + 1

#
.
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If we now use the spectral resolution of ÐŁ in a similar way as in connection with
Theorem 4.3 we are led to the following analog of formula (4.7):

1X
n≥1

2n + 1�
n(n + 1)

�2 Pn(x) ≥ log
1 � x
1 + x

Ð log
2

1 + x
� 1

2
log2 2

1 + x
+ Li2

 
�1 � x

1 + x

!
+ 1

where �1 � x � 1.

REMARK 4.3. Using the multiplication theorem for Legendre polynomials one can
also formally write down a bilinear formula analogous to (4.8), thus involving the sum

1X
n≥1

2n + 1�
n(n + 1)

�2 Pn(x)Pn( y).

However, so far we have not been able to evaluate the integrals arising in the right-hand
side so there is no point in writing it down here.

We have now discussed in detail the cases m ≥ 1 and m ≥ 2. It is clear that in
principle the previous analysis carries over to the case of any integer m. (For instance,
using (2.46) and (2.37), one can after some work produce the result for m ≥ 3, and
from (2.47) and (3.4) for m ≥ 4.) In particular, we are thus led to consider the sums

1X
n≥1

2n + 1�
n(n + 1)

�m Pn(x) and
1X

n≥1

2n + 1�
n(n + 1)

�m Pn(x)Pn( y)

and we arrive at the conviction that at least the former can be expressed in closed form
in terms of hyperlogarithmic functions.

REMARK 4.4. The above can also interpreted in terms of zeta values. Indeed, let us
write

Z(s, x) ≥
1X

n≥1

2n + 1�
n(n + 1)

�s Pn(x) and Z(s, x, y) ≥
1X

n≥1

2n + 1�
n(n + 1)

�s Pn(x)Pn( y),

where s is a complex variable. The functions Z(s, x) and Z(s, x, y) are related to the
Minakshisundaram-Pleijel zeta function (see [MP]) for the operatorÐŁ. Our results can
thus be expressed by saying that we have computed the values of these functions for the
two integer arguments s ≥ m ≥ 1 and s ≥ m ≥ 2.

We see that it is of considerable interest to extend this investigation also to the case
of other compact Hermitean symmetric spaces. We limit ourselves to pointing out that
in the rank one case, namely, the complex d-dimensional projective space Pd, which is
the dual of the complex unit ball Bd, one has, instead of the Legendre polynomials Pn(x),
the Jacobi polynomials P(d�1,0)

n (x) (see [BE], Section 10.8), and the formula (for m ≥ 1)

1X
n≥1

2n + d
n(n + d)

0
@n + d � 1

n

1
AP(d�1,0)

n (x) ≥
d�1X
j≥1

1
j

 
1 + x
1 � x

!j

�
dX

j≥1

1
j
� log

1 � x
2
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of which (4.7) is a special case (d ≥ 1).

REMARK 4.5 (ON THE CASE OF WEIGHTED GROUP ACTIONS). Throughout this pa-
per, up to this moment, we have been concerned with unweighted group actions, that
is, functions f are acted upon by composition: f 7! f Ž û if û is an automorphism of
the manifold under consideration. Now we say also a few words on the case when also
a weight (multiplier) is involved. For simplicity, let us fix our attention to the present
situation of the sphere S2. Recall that the isometries û of S2 are induced by unimodular

unitary 2 ð 2 matrices
 ã å
ç é

!
, where thus ç ≥ �å̄, é ≥ ã̄, ãé � åç ≥ 1: If z 2 S2

then its image under û is given by û(z) ≥ ãz+å
çz+é . Accordingly we let functions f transform

according to the rule

f (z) 7! f
 ãz + å
çz + é

!
(çz + é)ó

�
≥ f

�
û(z)

��
û0(z)

�� ó

2

�
,

where ó is a fixed integer, ó ≥ 0, 1, 2, . . . . (Such objects should really not be viewed as
functions but as forms of negative degree� ó

2 , and written as f (z)(dz)�
ó

2 .) The expression
for the corresponding Laplacian can be found in [PZ] (p. 226, beginning of Section 1):4

(4. 13)
ÐóŁ ≥ 4(1 + jzj2)2 ∂2

∂z∂z̄
� 4ó(1 + jzj2)z̄

∂
∂z̄

( ≥ ÐŁ � óZŁwhere ZŁ is the Zhang correction).

The corresponding radial operator is

LóŁ ≥ (1 + t)2

2
4t

d2

dt2
+

d
dt

3
5� ó(1 + t)t

d
dt
≥ (1 + t)2+ó d

dt

"
t(1 + t)�ó

d
dt

#
.

The operatorÐóŁ is selfadjoint with respect to the metric

(4. 14) k fk2
ó ≥

Z
S2
j f (z)j2 dAŁ

(1 + jzj2)ó
.

The kernel of ÐóŁ consists precisely of the analytic functions with finite k Ð kó-norm,
that is, of polynomials of degree not exceeding ó (see [PZ], p. 226); in view of self-
adjointness, the closure of the range ofÐóŁ is the orthogonal complement (with respect
to (4.14)) of this kernel. Also, the total area of the Riemann sphere with respect to the
measure in (4.14) is now ôÛ(ó+ 1). Thus we are led to postulate the following definition
of the corresponding Green’s functions Gó

1Ł:
1Ž For any w,

ÐóŁGó
1Ł(z, w) ≥ é(z, w) � ó + 1

ô (1 + zw̄)ó,

where it is assumed that the differential operator acts on the z-variable.

4 Following [EP], Section 3, we ought to consider such objects not as invariant differential operators, but

covariant ones.
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2Ž Orthogonality relations:

Z
S2

Gó
1Ł(z, w)z̄ k dAŁ(z)

(1 + jzj2)ó
≥ 0

for all monomials zk with k ≥ 0, 1, . . . , ó.
(Here the index 1 is intended as a reminder of the fact that it is a first order Green’s
function.)

In order to determine the Green’s function Gó
1Ł we have to solve the ordinary differen-

tial equation LóŁ f ≥ �(ó+ 1). It is seen, in one way or other, that we have the particular
solution f ≥ log(1 + t) � log t. This function has the right behavior both at t ≥ 0 and
t ≥ 1. Thus we end up the following formula (generalizing (4.5)) for the radial Green’s
function:

(4. 15) Gó
1Ł(t) ≥

1
4ô

�
log t � log(1 + t) + Aó

�
.

where the constant Aó has to be determined so that Gó
1Ł has a vanishing mean value with

respect to the measure dAŁ

(1+jzj2)ó . Using Lemma 4.2 we thus obtain

Z 1

0

log t
(1 + t)ó+2

dt � Z 1

0

log(1 + t)
(1 + t)ó+2

dt + Aó ≥ 0

which yields

(4. 16) Aó ≥
ó+1X
j≥1

1
j

.

It is now also easy to state the expression for the Green’s function when the pole is at
an arbitrary point w 2 S2:

Gó
1Ł(z, w) ≥ 1

4ô

2
4log

jz � wj2
(1 + jzj2)(1 + jwj2)

+ Aó

3
5 Ð (1 + zw̄)ó

with Aó again given by (4.16); from this formula the covariance is clearly visible.
Next, in order to determine the spectral expansion of Gó

1Ł we observe that, instead of
the Legendre polynomials Pn in the case ó ≥ 0, we shall now have the hypergeometric
functions 2F1(ó+n +1,�n; 1; t

t+1 ), that is, the Jacobi polynomials P(0,ó)
n ( 1�t

1+t ). Indeed, the
n-th eigenvalue is �4n(ó + n + 1), and occurs with multiplicity ó + 2n + 1 (cf. [PZ]), so
if we make the change of variable x ≥ 1�t

1+t the equation for radial eigenfunctions

LóŁ f + n(ó + n + 1) f ≥ 0

transforms into

(1 � x2)
d2f
dx2

+
hó � (ó + 2)x

idf
dx

+ n(n + ó + 1) f ≥ 0,
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which is the defining equation for the Jacobi polynomials P(0,ó)
n (x) (cf. [BE], formula (14)

in Section 10.8). Proceeding as before, it follows that

(4. 17) Gó
1Ł(t) ≥ � 1

4ô
1X

n≥1

(ó + 2n + 1) P(0,ó)
n ( 1�t

1+t )

n(ó + n + 1)
.

Thus if we equate the right hand members of (4.15) and (4.17), using the value of Aó

given by (4.16), we end up with the following formula generalizing (4.7):

(4. 18)
1X

n≥1

(2n + ó + 1)
n(n + ó + 1)

P(0,ó)
n (x) ≥ �

ó+1X
j≥1

1
j
� log

1 � x
2

.
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