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Lomonosov’s Techniques
and Burnside’s Theorem

Mikael Lindstrom and Georg Schliichtermann

Abstract. In this note we give a proof of Lomonosov’s extension of Burnside’s theorem to infinite dimensional
Banach spaces.

1 Introduction

In [L2] Lomonosov proved an extension of Burnside’s theorem to infinite dimensional
Banach spaces. The proof is based on the argument of de Branges’ proof of the Stone-
Weierstrass theorem. In the Hilbert space case, Brown [B] proved the extended Burnside
theorem for commutative subalgebras using Lomonosov’s celebrated invariant subspace
techniques for compact operators [L1]. On Hilbert spaces, Simonic [S] recently obtained
an extended version of Burnside’s theorem for weakly closed subalgebras. In this note we
also make use of Lomonosov’s invariant subspace techniques for compact operators to ob-
tain a proof of the extended Burnside theorem for infinite dimensional Banach spaces. We
are grateful to the referee for informing us that a similar project has independently been
carried out by Chevreau, Li and Pearcy in [CLP].

All Banach spaces E will be complex. By an operator we mean a bounded linear map.
We denote by L(E) the algebra of all operators on the Banach space E. If A is subalgebra of
L(E), then we denote by A* the subalgebra {T* : T € A} of L(E*). The uniform operator
topology on L(E) is the topology of norm convergence and the weak operator topology on
L(E) is the topology of pointwise weak convergence. That the subalgebra A C L(E) has
a non-trivial invariant subspace means that there exists a non-trivial closed subspace of E
that is invariant under all operators in A.

Let || T|| denote the essential norm of T € L(E), i.e., the distance from the compact
operators,

IT||le = inf{||T — K|| : K € K(E)}.

Recall that A € C is called an eigenvalue of finite algebraic multiplicity, if A is an isolated
point of o(T) and is a pole of the resolvent (A\I — T) ™! of T, with spectral projection P (cf.
[K], II1-6.5); n = dim R(P) is the algebraic multiplicity of \. If T € L(E), then

1o(T) = sup{|A| : A € o(T) but not an eigenvalue of finite algebraic multiplicity},

1
is the essential spectral radius and r.(T) = lim, ||T"||¢ < ||T||.. For more details, see the
works of Lebow-Schechter [LS], Voigt [V] and Weis [W].
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2 Results

Since the map T — T is isometric, we get the following simple result.

Lemma 2.1 If A is a uniformly closed subalgebra of L(E), then A* is also a uniformly closed
subalgebra of L(E*).

The proofs of Lemma 2.2 and Theorem 2.3 are based on ideas from [B] and [L1].

Lemma 2.2 Let A C L(E) be a subalgebra. Suppose that for every non-zero 1 € E* the set
{T*(I) : T € 8} is dense in E*, where $ := {T € A : ||T||e < 3;}. Then thereisanR € §
such that 1 is an eigenvalue of finite algebraic multiplicity of R*.

Proof Letly € E* with ||ly|| = 2. Consider D = {I € E* : ||l — Iy|| < 1}. By assumption,
for! € Dthereisa T; € 8, such that || T} (1) — lo|| < . Since || Tj|[e < 5, thereis K; € K(E)
such that | T; — Kj|| < 5. Since every K} : (D,w*) — (E*, || - ||) is continuous, we obtain
that for each | € D, there is a relatively weak*-open neighbourhood V; C D of | with

1
||Kl*(m) - Kl*(l)H < g forallm € Vl~

Forallm € vy,

i " 1 1
T (m) = Tr D < 1T = Kill - ]| + 5 + 1T = Kill - |1} < 3

Hence || T} (m) — lo|| < || T} (m) — T; (|| + || T} (1) — || < 3 forall m € V. Thus
T/ (V) C D foreachl € D.

By Alaoglu’s theorem D is weak*-compact, so there is a finite number [, ...,I, € D with
D = |JI_, Vi,.. Using the partition of unity, there are continuous functions f;: (D, w*) —
[0,1],i = 1,...,p, such that Zle fi(l) = 1foralll € Dand fi(I) = 0forl € D\ 'V,
and 1 < i < p. Define g: (D,w*) — (D,w*) by g(I) := f:l fi(l)T[f(l). Then g is
well-defined and continuous. Since D is convex and w*-compact, Schauder’s fixed point
theorem implies that there exists a non-zero m € D, such that g(m) = m. Put R :=
Zf;l fitm)T;,. Then R € L(E) and R*(m) = m, so 1 is an eigenvalue of R*. Further,
[R[le < 5; and consequently ||[R*||. < 5;. Hence r.(R*) < 3, so 1 is an eigenvalue of finite
algebraic multiplicity of R*. ]

Theorem 2.3 (Lomonosov, 1991) Let E be an infinite dimensional Banach space and let A
be a weakly closed subalgebra of L(E) with A # L(E). Then there exist nonzero u € E**,
I € E* such that

lu(T*(D))| < ||T|le forall T € A.

Proof Suppose not; then by the Hahn-Banach theorem A* does not have a non-trivial
invariant subspace. Furthermore we may assume that there is no non-zero I € E*, such
that {T*(I) : T € 8} is not dense in E*, where § := {T € A : | T|. < 5;}. Otherwise, by
the Hahn-Banach theorem there is a non-zero u € E** such that [u(T*())| < 1 for every
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T € 8. Thus there is a non-zero v € E** with [v(T*(1))| < || T|| forall T € A. Hence, the
assumption of Lemma 2.2 is fulfilled, and we find an R € §, such that 1 is an eigenvalue of
finite algebraic multiplicity of R*. Thus P: E* — E* has finite rank, where

1

pP= -
271

/(/\1 —R%7ld
T

and I' is a closed curve enclosing 1 and no other point of o(R*) lies within or on I'. Since
1

|R*[le < 55, it follows that every |A| > 52, A € o(R*), is an eigenvalue of finite algebraic
multiplicity. Therefore all A\ € T' belongs to the unbounded component of the resolvent
set p(R*). Since (A\I — R*)™! exists in L(E*) for every A € T, it thus follows from Theo-
rem 10.18 in [R] and Lemma 2.1 that (\I — R*)™! € A* forall A € T (note that we may
assume that I€ A, since the algebra generated by A and I satisfies the assumption of the
theorem). Hence we get by Lemma 2.1 that (A — R*)~'dX € A*,so P € A*. Since A*
has no non-trivial invariant subspace and A* contains a finite rank operator, Theorem 8.2

in [RR] (¢f. Lemma 10 in [L2]) implies that A* C L(E*) is weakly dense. But then also

A C L(E) is weakly dense, so A = L(E) contradicting the assumption A # L(E). [ |
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