Lomonosov's Techniques and Burnside's Theorem

Mikael Lindström and Georg Schlüchtermann

Abstract. In this note we give a proof of Lomonosov's extension of Burnside's theorem to infinite dimensional Banach spaces.

1 Introduction

In [L2] Lomonosov proved an extension of Burnside's theorem to infinite dimensional Banach spaces. The proof is based on the argument of de Branges' proof of the Stone-Weierstrass theorem. In the Hilbert space case, Brown [B] proved the extended Burnside theorem for commutative subalgebras using Lomonosov's celebrated invariant subspace techniques for compact operators [L1]. On Hilbert spaces, Simonic [S] recently obtained an extended version of Burnside's theorem for weakly closed subalgebras. In this note we also make use of Lomonosov's invariant subspace techniques for compact operators to obtain a proof of the extended Burnside theorem for infinite dimensional Banach spaces. We are grateful to the referee for informing us that a similar project has independently been carried out by Chevreau, Li and Pearcy in [CLP].

All Banach spaces E will be complex. By an operator we mean a bounded linear map. We denote by $\mathcal{L}(E)$ the algebra of all operators on the Banach space E. If \mathcal{A} is subalgebra of $\mathcal{L}(E)$, then we denote by \mathcal{A}^* the subalgebra $\{T^*:T\in\mathcal{A}\}$ of $\mathcal{L}(E^*)$. The uniform operator topology on $\mathcal{L}(E)$ is the topology of norm convergence and the weak operator topology on $\mathcal{L}(E)$ is the topology of pointwise weak convergence. That the subalgebra $\mathcal{A}\subset\mathcal{L}(E)$ has a non-trivial invariant subspace means that there exists a non-trivial closed subspace of E that is invariant under all operators in E.

Let $||T||_e$ denote the essential norm of $T \in \mathcal{L}(E)$, *i.e.*, the distance from the compact operators,

$$||T||_{e} = \inf\{||T - K|| : K \in \mathcal{K}(E)\}.$$

Recall that $\lambda \in \mathbb{C}$ is called an *eigenvalue of finite algebraic multiplicity*, if λ is an isolated point of $\sigma(T)$ and is a pole of the resolvent $(\lambda I - T)^{-1}$ of T, with spectral projection P(cf, [K], III-6.5); $n = \dim R(P)$ is the *algebraic multiplicity* of λ . If $T \in \mathcal{L}(E)$, then

 $r_e(T) = \sup\{|\lambda| : \lambda \in \sigma(T) \text{ but not an eigenvalue of finite algebraic multiplicity}\},$

is the essential spectral radius and $r_e(T) = \lim_n ||T^n||_e^{\frac{1}{n}} \le ||T||_e$. For more details, see the works of Lebow-Schechter [LS], Voigt [V] and Weis [W].

Received by the editors February 4, 1998; revised October 22, 1998.

AMS subject classification: 47A15.

© Canadian Mathematical Society 2000.

2 Results

Since the map $T \mapsto T^*$ is isometric, we get the following simple result.

Lemma 2.1 If A is a uniformly closed subalgebra of L(E), then A^* is also a uniformly closed subalgebra of $L(E^*)$.

The proofs of Lemma 2.2 and Theorem 2.3 are based on ideas from [B] and [L1].

Lemma 2.2 Let $A \subset \mathcal{L}(E)$ be a subalgebra. Suppose that for every non-zero $l \in E^*$ the set $\{T^*(l): T \in S\}$ is dense in E^* , where $S := \{T \in A: \|T\|_e \leq \frac{1}{24}\}$. Then there is an $R \in S$ such that 1 is an eigenvalue of finite algebraic multiplicity of R^* .

Proof Let $l_0 \in E^*$ with $||l_0|| = 2$. Consider $D = \{l \in E^* : ||l - l_0|| \le 1\}$. By assumption, for $l \in D$ there is a $T_l \in \mathcal{S}$, such that $||T_l^*(l) - l_0|| \le \frac{1}{4}$. Since $||T_l||_e \le \frac{1}{24}$, there is $K_l \in \mathcal{K}(E)$ such that $||T_l - K_l|| \le \frac{1}{23}$. Since every $K_l^* : (D, w^*) \to (E^*, ||\cdot||)$ is continuous, we obtain that for each $l \in D$, there is a relatively weak*-open neighbourhood $V_l \subset D$ of l with

$$||K_l^*(m) - K_l^*(l)|| < \frac{1}{8}$$
 for all $m \in V_l$.

For all $m \in V_l$,

$$||T_l^*(m) - T_l^*(l)|| \le ||T_l - K_l|| \cdot ||m|| + \frac{1}{8} + ||T_l - K_l|| \cdot ||l|| < \frac{1}{2}.$$

Hence $||T_l^*(m) - l_0|| \le ||T_l^*(m) - T_l^*(l)|| + ||T_l^*(l) - l_0|| < \frac{3}{4}$ for all $m \in V_l$. Thus

$$T_l^*(V_l) \subset D$$
 for each $l \in D$.

By Alaoglu's theorem D is weak*-compact, so there is a finite number $l_1,\ldots,l_p\in D$ with $D=\bigcup_{i=1}^p V_{l_i}$. Using the partition of unity, there are continuous functions $f_i\colon (D,w^*)\to [0,1],\ i=1,\ldots,p$, such that $\sum_{i=1}^p f_i(l)=1$ for all $l\in D$ and $f_i(l)=0$ for $l\in D\setminus V_{l_i}$ and $1\le i\le p$. Define $g\colon (D,w^*)\to (D,w^*)$ by $g(l):=\sum_{i=1}^p f_i(l)T_{l_i}^*(l)$. Then g is well-defined and continuous. Since D is convex and w^* -compact, Schauder's fixed point theorem implies that there exists a non-zero $m\in D$, such that g(m)=m. Put $R:=\sum_{i=1}^p f_i(m)T_{l_i}$. Then $R\in \mathcal{L}(E)$ and $R^*(m)=m$, so 1 is an eigenvalue of R^* . Further, $\|R\|_e\le \frac1{24}$ and consequently $\|R^*\|_e\le \frac1{24}$. Hence $r_e(R^*)\le \frac1{24}$, so 1 is an eigenvalue of finite algebraic multiplicity of R^* .

Theorem 2.3 (Lomonosov, 1991) Let E be an infinite dimensional Banach space and let A be a weakly closed subalgebra of $\mathcal{L}(E)$ with $A \neq \mathcal{L}(E)$. Then there exist nonzero $u \in E^{**}$, $l \in E^*$ such that

$$|u(T^*(l))| \le ||T||_e$$
 for all $T \in \mathcal{A}$.

Proof Suppose not; then by the Hahn-Banach theorem \mathcal{A}^* does not have a non-trivial invariant subspace. Furthermore we may assume that there is *no* non-zero $l \in E^*$, such that $\{T^*(l): T \in \mathcal{S}\}$ is not dense in E^* , where $\mathcal{S} := \{T \in \mathcal{A}: \|T\|_e \leq \frac{1}{24}\}$. Otherwise, by the Hahn-Banach theorem there is a non-zero $u \in E^{**}$ such that $|u(T^*(l))| \leq 1$ for every

 $T \in S$. Thus there is a non-zero $v \in E^{**}$ with $|v(T^*(l))| \le ||T||_e$ for all $T \in A$. Hence, the assumption of Lemma 2.2 is fulfilled, and we find an $R \in S$, such that 1 is an eigenvalue of finite algebraic multiplicity of R^* . Thus $P: E^* \to E^*$ has finite rank, where

$$P = \frac{1}{2\pi i} \int_{\Gamma} (\lambda I - R^*)^{-1} d\lambda$$

and Γ is a closed curve enclosing 1 and no other point of $\sigma(R^*)$ lies within or on Γ . Since $\|R^*\|_{\varepsilon} \leq \frac{1}{24}$, it follows that every $|\lambda| > \frac{1}{24}$, $\lambda \in \sigma(R^*)$, is an eigenvalue of finite algebraic multiplicity. Therefore all $\lambda \in \Gamma$ belongs to the unbounded component of the resolvent set $\rho(R^*)$. Since $(\lambda I - R^*)^{-1}$ exists in $\mathcal{L}(E^*)$ for every $\lambda \in \Gamma$, it thus follows from Theorem 10.18 in [R] and Lemma 2.1 that $(\lambda I - R^*)^{-1} \in \mathcal{A}^*$ for all $\lambda \in \Gamma$ (note that we may assume that $I \in \mathcal{A}$, since the algebra generated by \mathcal{A} and I satisfies the assumption of the theorem). Hence we get by Lemma 2.1 that $\int_{\Gamma} (\lambda I - R^*)^{-1} d\lambda \in \mathcal{A}^*$, so $P \in \mathcal{A}^*$. Since \mathcal{A}^* has no non-trivial invariant subspace and \mathcal{A}^* contains a finite rank operator, Theorem 8.2 in [RR] (cf. Lemma 10 in [L2]) implies that $\mathcal{A}^* \subset \mathcal{L}(E^*)$ is weakly dense. But then also $\mathcal{A} \subset \mathcal{L}(E)$ is weakly dense, so $\mathcal{A} = \mathcal{L}(E)$ contradicting the assumption $\mathcal{A} \neq \mathcal{L}(E)$.

References

- [B] S. W. Brown, Lomonosov's theorem and essentially normal operators. New Zealand J. Math. 23(1994), 11– 18.
- [CLP] B. Chevreau, W. S. Li and C. Pearcy, A new Lomonosov lemma. J. Operator Theory, (to appear).
- [K] T. Kato, Perturbation theory for linear operators. Springer-Verlag, Berlin, Heidelberg, New York, 1966.
- [LS] A. Lebow and M. Schechter, Semigroups of operators and measures of non-compactness. J. Funct. Anal. 7(1971), 1–26.
- [L1] V. Lomonosov, Invariant subspaces for operators commuting with compact operators. Functional Anal. Appl. 7(1973), 213–214.
- [L2] _____, An extension of Burnside's theorem to infinite dimensional spaces. Israel J. Math. **75**(1991), 329–339.
- [RR] H. Radjavi and P. Rosenthal, *Invariant Subspaces*. Springer-Verlag, New York, 1973.
- [R] W. Rudin, Functional Analysis. McGraw-Hill, New York, 1973.
- [S] A. Simonic, An extension of Lomonosov's techniques to non-compact operators. Trans. Amer. Math. Soc. 348(1996), 975–995.
- [V] J. Voigt, A perturbation theorem for the essential spectral radius of the strongly continuous semigroups. Monatsh. Math. 90(1980), 153–161.
- [W] L. Weis, A generalization of the Vidav-Jörgens perturbation theorem for semigroups and its application to transport theory. J. Math. Anal. Appl. 129(1988), 6–23.

Department of Mathematics Åbo Akademi University FIN-20500 Åbo Finland

email: mikael.lindstrom@abo.fi

Mathematisches Institut der Universität München Theresienstr. 39 D-80333 München

Germany

email: schluech@rz.mathematik.uni-muenchen.de