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Lomonosov’s Techniques
and Burnside’s Theorem
Mikael Lindström and Georg Schlüchtermann

Abstract. In this note we give a proof of Lomonosov’s extension of Burnside’s theorem to infinite dimensional
Banach spaces.

1 Introduction

In [L2] Lomonosov proved an extension of Burnside’s theorem to infinite dimensional
Banach spaces. The proof is based on the argument of de Branges’ proof of the Stone-
Weierstrass theorem. In the Hilbert space case, Brown [B] proved the extended Burnside
theorem for commutative subalgebras using Lomonosov’s celebrated invariant subspace
techniques for compact operators [L1]. On Hilbert spaces, Simonic [S] recently obtained
an extended version of Burnside’s theorem for weakly closed subalgebras. In this note we
also make use of Lomonosov’s invariant subspace techniques for compact operators to ob-
tain a proof of the extended Burnside theorem for infinite dimensional Banach spaces. We
are grateful to the referee for informing us that a similar project has independently been
carried out by Chevreau, Li and Pearcy in [CLP].

All Banach spaces E will be complex. By an operator we mean a bounded linear map.
We denote by L(E) the algebra of all operators on the Banach space E. If A is subalgebra of
L(E), then we denote by A∗ the subalgebra {T∗ : T ∈ A} of L(E∗). The uniform operator
topology on L(E) is the topology of norm convergence and the weak operator topology on
L(E) is the topology of pointwise weak convergence. That the subalgebra A ⊂ L(E) has
a non-trivial invariant subspace means that there exists a non-trivial closed subspace of E
that is invariant under all operators in A.

Let ‖T‖e denote the essential norm of T ∈ L(E), i.e., the distance from the compact
operators,

‖T‖e = inf{‖T − K‖ : K ∈ K(E)}.

Recall that λ ∈ C is called an eigenvalue of finite algebraic multiplicity, if λ is an isolated
point of σ(T) and is a pole of the resolvent (λI − T)−1 of T, with spectral projection P (cf.
[K], III-6.5); n = dim R(P) is the algebraic multiplicity of λ. If T ∈ L(E), then

re(T) = sup{|λ| : λ ∈ σ(T) but not an eigenvalue of finite algebraic multiplicity},

is the essential spectral radius and re(T) = limn ‖Tn‖
1
n
e ≤ ‖T‖e. For more details, see the

works of Lebow-Schechter [LS], Voigt [V] and Weis [W].
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2 Results

Since the map T 	→ T∗ is isometric, we get the following simple result.

Lemma 2.1 If A is a uniformly closed subalgebra of L(E), then A∗ is also a uniformly closed
subalgebra of L(E∗).

The proofs of Lemma 2.2 and Theorem 2.3 are based on ideas from [B] and [L1].

Lemma 2.2 Let A ⊂ L(E) be a subalgebra. Suppose that for every non-zero l ∈ E∗ the set
{T∗(l) : T ∈ S} is dense in E∗, where S := {T ∈ A : ‖T‖e ≤

1
24}. Then there is an R ∈ S

such that 1 is an eigenvalue of finite algebraic multiplicity of R∗.

Proof Let l0 ∈ E∗ with ‖l0‖ = 2. Consider D = {l ∈ E∗ : ‖l − l0‖ ≤ 1}. By assumption,
for l ∈ D there is a Tl ∈ S, such that ‖T∗l (l)− l0‖ ≤

1
4 . Since ‖Tl‖e ≤

1
24 , there is Kl ∈ K(E)

such that ‖Tl − Kl‖ ≤
1

23 . Since every K∗l : (D,w∗) → (E∗, ‖ · ‖) is continuous, we obtain
that for each l ∈ D, there is a relatively weak*-open neighbourhood Vl ⊂ D of l with

‖K∗l (m)− K∗l (l)‖ <
1

8
for all m ∈ Vl.

For all m ∈ Vl,

‖T∗l (m)− T∗l (l)‖ ≤ ‖Tl − Kl‖ · ‖m‖ +
1

8
+ ‖Tl − Kl‖ · ‖l‖ <

1

2
.

Hence ‖T∗l (m)− l0‖ ≤ ‖T∗l (m)− T∗l (l)‖ + ‖T∗l (l)− l0‖ <
3
4 for all m ∈ Vl. Thus

T∗l (Vl) ⊂ D for each l ∈ D.

By Alaoglu’s theorem D is weak*-compact, so there is a finite number l1, . . . , lp ∈ D with
D =

⋃p
i=1 Vli . Using the partition of unity, there are continuous functions fi : (D,w∗) →

[0, 1], i = 1, . . . , p, such that
∑p

i=1 fi(l) = 1 for all l ∈ D and fi(l) = 0 for l ∈ D \ Vli

and 1 ≤ i ≤ p. Define g : (D,w∗) → (D,w∗) by g(l) :=
∑p

i=1 fi(l)T∗li (l). Then g is
well-defined and continuous. Since D is convex and w*-compact, Schauder’s fixed point
theorem implies that there exists a non-zero m ∈ D, such that g(m) = m. Put R :=∑p

i=1 fi(m)Tli . Then R ∈ L(E) and R∗(m) = m, so 1 is an eigenvalue of R∗. Further,
‖R‖e ≤

1
24 and consequently ‖R∗‖e ≤

1
24 . Hence re(R∗) ≤ 1

24 , so 1 is an eigenvalue of finite
algebraic multiplicity of R∗.

Theorem 2.3 (Lomonosov, 1991) Let E be an infinite dimensional Banach space and let A

be a weakly closed subalgebra of L(E) with A 
= L(E). Then there exist nonzero u ∈ E∗∗,
l ∈ E∗ such that

|u
(
T∗(l)

)
| ≤ ‖T‖e for all T ∈ A.

Proof Suppose not; then by the Hahn-Banach theorem A∗ does not have a non-trivial
invariant subspace. Furthermore we may assume that there is no non-zero l ∈ E∗, such
that {T∗(l) : T ∈ S} is not dense in E∗, where S := {T ∈ A : ‖T‖e ≤

1
24}. Otherwise, by

the Hahn-Banach theorem there is a non-zero u ∈ E∗∗ such that |u
(
T∗(l)

)
| ≤ 1 for every
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T ∈ S. Thus there is a non-zero v ∈ E∗∗ with |v
(

T∗(l)
)
| ≤ ‖T‖e for all T ∈ A. Hence, the

assumption of Lemma 2.2 is fulfilled, and we find an R ∈ S, such that 1 is an eigenvalue of
finite algebraic multiplicity of R∗. Thus P : E∗ → E∗ has finite rank, where

P =
1

2πi

∫
Γ

(λI − R∗)−1 dλ

and Γ is a closed curve enclosing 1 and no other point of σ(R∗) lies within or on Γ. Since
‖R∗‖e ≤

1
24 , it follows that every |λ| > 1

24 , λ ∈ σ(R∗), is an eigenvalue of finite algebraic
multiplicity. Therefore all λ ∈ Γ belongs to the unbounded component of the resolvent
set ρ(R∗). Since (λI − R∗)−1 exists in L(E∗) for every λ ∈ Γ, it thus follows from Theo-
rem 10.18 in [R] and Lemma 2.1 that (λI − R∗)−1 ∈ A∗ for all λ ∈ Γ (note that we may
assume that I∈ A, since the algebra generated by A and I satisfies the assumption of the
theorem). Hence we get by Lemma 2.1 that

∫
Γ

(λI − R∗)−1 dλ ∈ A∗, so P ∈ A∗. Since A∗

has no non-trivial invariant subspace and A∗ contains a finite rank operator, Theorem 8.2
in [RR] (cf. Lemma 10 in [L2]) implies that A∗ ⊂ L(E∗) is weakly dense. But then also
A ⊂ L(E) is weakly dense, so A = L(E) contradicting the assumption A 
= L(E).
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