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INVERTIBLE ELEMENTS IN THE DIRICHLET SPACE 

BY 

LEON BROWN 

ABSTRACT. It is shown that if a function in the Dirichlet space is inver-
itible then it is cyclic with respect to the operator of multiplication by the 
identity function. 

1. Introduction. By the Dirichlet space D, we mean the collection of functions an
alytic in the open unit disc À whose derivatives are square summable with respect to 
area meaure. Equivalently, these are the functions that map A onto a region of finite area 
(counting multiplicity). In order to study D, we introduce the Bergman space B. This is 
the set of functions analytic in À that are square integrable with respect to area measure. 
With the L2 norm, 

Mil = JA\f\2dA, 

B is a Hilbert space. D is a Hilbert space with the norm 

Il/Ilo=l/(0)|2 + Il/'II,-

In [3] the author and A. L. Shields studied the question of classifying those functions 
in D which are cyclic with respect to the operator Mz\ M J — zf, that is, those functions 
/ such that polynomial multiples of/ are dense in D. In that paper the following question 
was presented (Question 4, p. 276): If E is a "Banach space of analytic functions" and 
/ is invertible in E must/ be cyclic? This question (for the Bergman space) was posed 
in [8] (see Question 25 on page 114). Harold S. Shapiro [7] used the term "weakly in
vertible" in place of cyclic. This question can be rephrased as follows: does invertibility 
imply weak invertibility? In general the answer is no. A counterexample is presented 
by Shamoyan [6]. For the Dirichlet space the answer was, until now, not known, even 
under the additional hypothesis that/ be bounded (see question 9, page 282 of [3]). Our 
goal is to solve this problem: for the Dirichlet space, every invertible function is weakly 
invertible (i.e. cyclic). 

In the second section we present some miscellaneous results and use Carleson's for
mula to analyze the "cut-off functions". We prove the main theorem in the third section. 

2. Miscellaneous results and Carleson's formula. If/ G D, let \f] denote the 
closure in D of polynomial multiples of/ = { P / : / ) G î P } , when fP denotes the set of 
polynomials. 
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LEMMA 1. (Richter and Shields [5, Lemma 3]). Iff €D,ip eDC\ H°°, and (ff <E D, 
then iprf-+ (ff, (<Pr(z) = (f(rzj), and (ff e \f]. 

LEMMA 2. Iftpn e H°° n D and ((fj)(z) —> Hz G A) and \\ (fJ\\D < M thenf is 
cyclic. 

PROOF. By Proposition 2 in [3], a sequence gn in D converges weakly to g G D if and 
only if gn(z) —• g(z)(z G A) and \\gn\\ < M for some constant M. Thus ip„f —• 1 weakly. 
By Lemma 1, tprf E \f]. Since [f] is weakly closed we have 1 in [/"•]. Since polynomials 
are dense in D, 1 is cyclic in D and thus by Proposition 5 in [3], / is cyclic in D. 

REMARK: Note that ipn does not have to be a multiplier of D. However, H°° <£ D and 
(fn must be in D. 

We recall a formula of Carleson [4] for the Dirichlet integral of a function/ (that is for 
11/11 Z

B = Jj\f\zdx dy). This formula is the sum of three nonnegative terms, involving 
respectively the Blashke factor of/, the singular inner factor, and the outer factor. We 
reproduce only the third of these. We shall write/(0 instead off(elî) for the boundary 
values of/. The boundary values of/ exist because D C / / 2 . We introduce the following 
notation: 

(*) 1(f) = I(f;x, 0 = (log \f(x + 0| - log \f(x)\ ) • (\f(x + 0|2 - | /W| 2 ) . 

Then from Carleson's formula we have 

i * i - 2 ^ 

(**) 8^ / ( s i n 2° ^ / ^ ^ ' O ^ ^ H / I I ^ G D ) , 
0 - 7 T 

with equality when/ is an outer function. Note that /(/;x, 0 is nonnegative for all JC, r 
since the two terms on the right side of (*) have the same sign. Hence 1(f) is unchanged 
if we replace each of these terms by its absolute value. 

DEFINITION: (cutoff functions) If/ G D and/ is an outer function then we set 

a) <fn(z) =<p\f;n](z) = exp{ ^ ) $% log | <p*n<j*)\dt} where 
— TX 

U V ) | = \u,(t)\ = 1" i f l /« l>" 
I1MOI IVnWI | | / ( 0 | i f | / ( / ) | < „ 

b) Similarly we define </> (f)(z) — <j> (z) with 

i0V)i = k«i = |/(0| if 1/(0 >1 
1 if | / (0|<l 

LEMMA 3. 

aj v?„ eDand\\ipn\\D < \\f\\D 

b)H'\\B<\\flso<l>£D. 

PROOF, a) | v?„(0)| = v?„(0) = exp{ ^ / log | <pn{t)\ dt} < exp{ £ J log \f(t)\ dt} 
— 7T — 7 T 

= |/(0)|. (since/ is an outer function). 
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To complete the proof we show that || </J|# < W/'WB- Since <pn are outer functions we 
may compute || </>'J|fl from (**). Thus it would be sufficient to prove that I(<pn) < 1(f) 
for all JC, /. 

First we show that 

(1) | k n ( * + 0 | 2 -Wn(x)\2 | < | \f(x + t)\2 ~ | / W | 2 | • 

We consider the following four cases, 
(i) If \f(x +t)\ < n and \f(x)\ < n then <pn(x + /) = \f(x +1)\ and ipn(x) = \f(x)\ and 
(1) follows. 
(ii) If \f(x + f)\ >n and \f(x)\ > n then ipn(x +t) — n and <pn(x) = n and (1) follows, 
(iii) If \f(x + t)\ > n and |/(*)| < n then we have 

n2-\<Pn(x)\2<\f(x + t)\2-\f(x)\2 

= \\f(x + t)\2-\f(xf\. 

(iv) If |/(JC + t)\ <n and \f(x)\ > n then (1) follows in a manner similar to (iii). 
The proof that 

|log | ipn(x +1)\ - log I (fn(x)\ I < |log I (f(x + 01 - log \f(x)\ I 

is treated in a similar manner. Thus I((fn) < 1(f) which completes the proof of a) 
b) We again consider four cases, i) and ii) are similar to ii) and i) of a). 
(iii)If |/(* + f)| > 1 and \f(x)\ < 1 then | \$(x + t)\2 - \<f>(x)\2\ = \f(x + t)\2 - 1 < 

||/(JC + 0 | 2 - | / W | 2 | . 
(iv) is similar to (iii) 
The proof that | log | <f> (x +1)\ - log | <j> (x)\ \ < \ log \f(x +1)\ - log \f(x)\ \ is treated 

in a similar manner. 
This completes the proof of b). 

LEMMA 4. Iff is invertible in D then ip\ — (f\f, 1] G [/] H //°° and (f\ is invertible. 

PROOF. We may assume/(0) > 0. If/ is invertible then/ and 1 / / are outer functions. 
Let ip = tp[l/f; 1] be cut-off function of 1/ / . Thus V G £> H H°° and <p, = fip e 
DH H°° (Lemma 3). Lemma 1 implies that ^ G [f]. The fact that ^f1 = 0 [1 / / ] 
completes the proof. 

3. The main theorem. 
THEOREM. Iff is invertible in D thenf is cyclic in D. 

PROOF. The fact that if g G \f] and g is cyclic, then/ is cyclic and Lemma 4 implies 
that we may assume that without loss of generality / G H°°, ||/||oo < 1 and/(0) > 0. 
Let x/jn — Lp[\j'/; w]. By Lebesgue's bounded convergence theorem |(fijjn)(t)\ converge 
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in L1 to | / • j \ = 1. Thus (f^n)(z) -> l(z £ A). In particular (f^n)(0) is bounded. We 

will show that HC/Y /̂IU i s bounded. Note that if^n)' = fip„ +f^n- We have 

llM'l|fi<ll/IUIIV„'IU<II^IU 
<ll(i//)'IU 

1 n 

\xl>n(z)\ = exp{ — Jpr(6 - t) log |VaO|dt} 

1 * 
< eXP{ — / Pr{0 - t) log |(1//)(0| * } 

— 7 T 

= |(i//)(z)|i z e A . 

Thus | |/V„||S < ll/V/IU = | | # ' / / 2 | | B < | | / ' / /2 | |B = Wd/fYh and we have | ^ f l | | D 

are uniformly bounded. An application of Lemma 2 completes the proof that/ is cyclic. 
We remark that this question is still open for the Bergman space. If one assumes that 

/ is in the Nevanlinna class then it is known that iff is invertible in B then/ is weakly 
invertibility in B ([1], [2]). 
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