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EUCLIDEAN WINDOWS

STEFANIA CAVALLAR and FRANZ LEMMERMEYER

Abstract

In this paper we study number fields which are Euclidean with re-
spect to functions that are different from the absolute value of the
norm, namely weighted norms that depend on a real parameterc. We
introduce the Euclidean minimum of weighted norms as the set of
values ofc for which the function is Euclidean, and we show that
the Euclidean minimum may be irrational and not isolated. We also
present computational results on Euclidean minima of cubic number
fields, and present a list of norm-Euclidean complex cubic fields that
we conjecture to be complete.

Introduction

Let R be an integral domain. A functionf : R −→ R>0 is called aEuclidean function on
R if it satisfies the following conditions withκ = 1:

(i) f (R) ∩ [0, c] is finite for everyc > 0;

(ii) f (r) = 0 if and only if r = 0;

(iii) for all a, b ∈ R with b 6= 0 there exists aq ∈ R such thatf (a − bq) < κ · f (b).

If f : R −→ R>0 is a function satisfying conditions (i) and (ii), then the infimum of all
κ ∈ R such that condition (iii) holds is called theEuclidean minimum ofR with respect to
f , and will be denoted byM(R, f ); thus for alla, b ∈ R \ {0} and everyε > 0 there is a
q ∈ R (possibly depending onε) such thatf (a − bq) < M(R, f ) · f (b) + ε.

If f is a multiplicative function, then we can replace condition (iii) by the equivalent
condition that for everyξ ∈ K (K being the quotient field ofR) there is aq ∈ R such that
f (ξ − q) < κ. The infimum of allκ ∈ R such that this condition holds for a fixedξ is
denoted byM(ξ, f ); clearlyM(R, f ) is the supremum of theM(ξ, f ).

If R = OK is the ring of integers in a number fieldK, then the absolute value of the norm
satisfies conditions (i) and (ii), and a folklore conjecture states thatM(K) := M(R, |N |)
coincides with the inhomogeneous minimum of the norm form ofOK . (This conjecture is
known to hold for number fields with unit rank at most 1.) LetC1 be a set of representatives
moduloOK of all ξ = a/b ∈ K with M(ξ) = M(K) (hereM(ξ) := M(ξ, |N |)); then we
say thatM(K) is isolatedif there is aκ2 < κ such thatM(ξ) 6 κ2 for all ξ ∈ K that are not
represented by some point inC1. In that case, we define the second minimumM2(K) (as
well as higher minimaMk(R)) as in [13] or [6] by considering only the minima of points
that are not represented by points inC1, and so on.

ReplacingK in these definitions byK = Rn (this is the topological closure of the image
of K under the standard embeddingK −→ Rn; for totally real fields we haveK = K⊗QR),
the Euclidean minimum becomes the inhomogeneous minimum of the norm form ofK;
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Euclidean windows

we clearly haveMj(K) > Mj(K) whenever these minima are defined, and it is conjectured
thatM1(K) = M1(K) is rational.

The aim of this paper is to explain how the Euclidean minimum ofOK with respect
to ‘weighted norms’ can be computed in some cases; we shall show that the Euclidean
minimum for certain weighted norms inQ(

√
69) is irrational and not isolated, thereby

showing that these conjectured properties for minima with respect to the usual norm do not
carry over to weighted norms.

1. Weighted norms

Let K be a number field,OK its ring of integers, andp a prime ideal inOK . Then, for
any real numberc > 0,

φ : q 7−→
{

Nq, if q 6= p,
c, if q = p,

defines a map from the set of prime idealsq of OK into the positive real numbers, which
can be uniquely extended to a multiplicative mapφ : IK −→ R>0 on the groupIK of
fractional ideals. Puttingf (α) = φ(αOK) for any α ∈ K× and f (0) = 0, we get a
functionf = fp,c : K −→ R>0 which H. W. Lenstra [14] called aweighted norm.

Our aim is to study examples of number fields that are Euclidean with respect to some
weighted norm. Lenstra [14] showed thatQ(ζ3) andQ(ζ4) are such fields, but the first
examples that are not norm-Euclidean were given by D. Clark [7,8].

A formal condition forfp,c to be a Euclidean function is the finiteness of the sets
{fp,c(α) < λ : α ∈ OK} for all λ ∈ R. This property is easily seen to be equivalent to
c > 1.

For weighted normsf = fp,c on K, we define (following [13]) theEuclidean window
of p, w(p), by

w(p) = {c ∈ R : fp,c is a Euclidean function onOK}.
Proposition 1.1. The Euclidean window is a(possibly empty)interval contained in(1,∞).

Proof. Assume thatw(p) is not empty, and letr, t ∈ w(p) with r < t . Then it is sufficient
to show thatfp,s is a Euclidean function onOK for everyr 6 s 6 t . NowOK is Euclidean
with respect, for example, tofp,r , soOK is a principal ideal domain; hence everyξ ∈ K

has the formξ = α/β with (α, β) = 1. Moreover, there existγr , γt ∈ OK such that

fp,r (α − βγr) < fp,r (β), fp,t (α − βγt ) < fp,t (β).

If p - β, then

fp,s(α − βγt ) 6 fp,t (α − βγt ) < fp,t (β) = fp,s(β);
if p | β, on the other hand, thenp - α, and hencep - (α − βγr), and

fp,s(α − βγr) = fp,r (α − βγr) < fp,r (β) 6 fp,s(β).

Thusfp,s is indeed a Euclidean function onOK .

In this paper, we investigate Euclidean windows for various algorithms in some quadratic
and cubic number fields; we shall give examples of empty, finite and infinite Euclidean
windows, and we show that the first minima with respect to weighted norms need not be
rational. First, however, we shall show that the Euclidean minima for weighted norms need
not be continuous functions ofc for rings of integers with finite unit groups.
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2. Weighted norms inZ

The Euclidean window for primes inZ can easily be determined, as follows.

Proposition 2.1. The Euclidean minimumM(fp,c) of a weighted norm inZ is given by

M(fp,c) =


∞ if c < p,
1
2 if c = p,

1 if c > p.

Moreover,w(p) = [p, ∞).

Proof. We first show thatM(fp,c) = ∞ if c < p (this implies thatw(p) ⊆ [p, ∞)). To
this end, putb = pn and

a =
{

1
2(pn − 1) if p 6= 2,

2n−1 − 1 if p = 2.

Thenp - (a−bq); hencefp,c(a−bq) = |a−bq| for all q ∈ Z. If the minimumκ = M(fp,c)

were finite, there would exist aq ∈ Z such thatfp,c(a −bq) < κfp,c(b) = κcn. But clearly
|a| 6 |a − bq| = fp,c(a − bq), and hence we get|a|c−n < κ for all n ∈ N; however, since
c < p, the expression on the left-hand side tends to∞ with n.

Since it is well known thatM(fp,p) = 12, we next show thatM(fp,c) = 1 if c > p . To
this end, chooseα, β ∈ N, not divisible byp, such thatp < α/β < c. If we put a = pnβn

andb = αn + pnβn, then we get

fp,c

(a

b

)
= cnβn

αn + pnβn
= cn

(α/β)n + pn
>

cn

cn + pn
,

fp,c

(a

b
− 1

)
= αn

αn + pnβn
,

and both expressions tend to 1 asn goes to∞. Note also thatfp,c(a/b−q) > |a/b−q| > 1
for all q ∈ N \ {0, 1}, since the denominator of(a/b − q) is prime top, and sincec > p.

ThusM(fp,c) > 1 if c > p; but we can easily show thatM(fp,c) 6 1 by proving
that fp,c is a Euclidean function for allp > c. In fact, suppose thata, b ∈ Z \ {0} are
given, and that they are relatively prime. Ifp | b, thenp - (a − bq) for all q ∈ Z; hence
fp,c(a − bq) = |a − bq|, and we can certainly findq ∈ Z such that|a − bq| < |b|. But
|b| 6 fp,c(b) sincec > p.

Now consider the casep - b; then we chooseq ∈ Z such that|a−bq|, |a−b(q+1)| 6 b.
But r = a − bq and r ′ = a − b(q + 1) cannot both be divisible byp; if p - r, then
fp,c(r) = |r| < |b| = fp,c(b), and ifp - r ′, thenfp,c(r

′) < fp,c(b).

3. Weighted norms inQ
(√

14
)

Since it is well known that an imaginary quadratic number field is Euclidean if and only
if it is norm-Euclidean, only the case of real quadratic fields is interesting. We shall deal
with only two examples here: one isQ(

√
14), which has been studied often in this respect

(see the work of Bedocchi [2], Nagata [15,16] and Cardon [3]), and the other isQ(
√

69),
which was shown to be Euclidean with respect to a weighted norm by Clark [7] (see also
work by Niklasch [17] and Hainke [11]);Q(

√
69) is discussed in Sections4 and5.
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Consider the quadratic number fieldK = Q(
√

14). It is well known thatM1(K) =
5/4 andM2(K) = 31/32 (see [13]); moreover,M1 is attained exactly at the points
ξ ≡ (1 + √

14)/2 modOK . Now we claim that the following proposition is true.

Proposition 3.1. For K = Q(
√

14) andp = (2,
√

14) we havew(p) ⊆ (
√

5,
√

7).

Proof. Putα = 1 + √
14, andβ = 2. Then|N(α − βγ )| is an odd integer greater than

or equal to 5 for allγ ∈ OK . Thusfp,c(α − βγ ) = |N(α − βγ )| > 5, and iffp,c is a
Euclidean function, we must have 5< fp,c(β) = c2. This shows thatc >

√
5.

In order to show thatc <
√

7 we look at the idealq = (7,
√

14) = (7 + 2
√

14) of
norm 7. Iffp,c is Euclidean, then every residue class moduloq must contain an elementα

such thatfp,c(α) < fp,c(q) = 7.
Since the unit group generates the subgroup{−1,+1} of (OK/q)× (andfp,c(±1) = 1),

and since±3+√
14 ≡ ±3 modq (wherefp,c(±3+√

14) = |N(±3+√
14)| = 5), we must

find elements in the residue classes±2 modq. The only possible candidates are powers of
4+√

14, because the only ideals of odd norm less than 7 are(0), (1), and(3±√
14), none

of which yields elements equivalent to±2 modq. Moreover,±4+√
14 ≡ ±3 modq, and

we see that if there exist elementsα ≡ 2 modq with fp,c(α) < 7, thenα = 2 is one of
them. Butfp,c(2) = c2, and we find thatc <

√
7.

We remark that it is not known whetherw(p) is empty or not.

If we look at prime ideals other than(2,
√

14), the situation is quite different.

Proposition 3.2. Let K = Q(
√

14), and letp be a prime ideal inOK of normNp ≡
±1 mod 8. Thenw(p) = ∅.

Proof. Assume thatfp,c is a Euclidean function. Then there exists an

α = x + y
√

14 ≡ 1 + √
14 mod 2

such thatfp,c(α) < fp,c(2) = 4. Sinceα cannot be a unit, this is possible only ifα is divisible
byp. If α is divisible by some other prime idealq, thenfp,c(q) = Nq > 5, and we conclude
thatfp,c(p) < 1, a contradiction. Thus(α) = pm for somem > 1. Butp = (a + b

√
14)

sinceK has class number 1, andb must be even since±p = a2 − 14b2 ≡ ±1 mod 8: thus
a + b

√
14 6≡ 1 + √

14 mod 2, and again we have a contradiction.

4. The Euclidean algorithm inQ(
√

69)

Next we study the fieldQ(
√

69); we shall prove the following result, which corrects a
claim announced without proof in [13], namely thatM2(K) < M2(K), and thatM2(K) is
isolated.

Theorem 4.1. In K = Q(
√

69), we have

M1 = 25

23
, C1 = {± 4

23

√
69
}
,

M2 = 15

46

(
11− √

69
)

, C2 = {
(±Pr, ±P ′

r )
}
, r > 0

where

Pr = 1

2
ε−r +

(
4

23
+ 1

2
√

69
ε−r

)√
69, P′

r = 1

2
ε−r −

(
4

23
+ 1

2
√

69
ε−r

)√
69.
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HereMj denotes thej th inhomogeneous minimum of the norm form ofOK , Cj is a set of
representatives moduloOK of the points whereMj is attained, andε = (25+ 3

√
69)/2 is

the fundamental unit ofK. The second minimum,M2(K) = M2(K), is not isolated.

The proof of Theorem4.1 is based on methods developed by Barnes and Swinnerton-
Dyer [1]. In the discussion that follows, we shall regardK as a subset ofR2 via the embedding
(x +y

√
69)−→ (x, y). Conversely, any pointP = (x, y) ∈ R2 = K corresponds to a pair

ξP = x + y
√

69,ξ ′
P = x − y

√
69. These elements are not necessarily inK; nevertheless,

we call ξ ′
P = x − y

√
69 theconjugateof ξP . Note, for example, thatξP = √

69 alone
does not determineP , since bothP = (0, 1) and P = (

√
69,0) correspond to such

a ξP . The ‘K-valuations’ | · |1 and | · |2 are defined by|(x, y)|1 = |x + y
√

69| and
|(x, y)|2 = |x − y

√
69|, with a positive square root of 69.

Using the technique described in [6], it is easy to cover the whole fundamental domain
of the latticeOK with a bound ofk = 0.875, except for±S0 ∪ ±S1 ∪ ±S2 ∪ ±T , where

S0 = [−0.00085, 0.00085] × [0.1739,0.1742];
S1 = [ 0.01917, 0.02005] × [0.1763,0.1765];
S2 = [−0.02005,−0.01917] × [0.1763,0.1765];
T = [ 0.4999 , 0.5001 ] × [0.2341,0.2342].

We find, transforming these exceptional sets by multiplication with the unitsε and
ε = (25− 3

√
69)/2, for example, that

εS0 ⊂ 18+ 2
√

69+ [−0.012, 0.041] × [0.172, 0.179];
that is,εS0 − (18 + 2

√
69) is contained in covered regions orS0 ∪ S1, which we shall

denote byεS0 − (18+ 2
√

69)⊂̃S0 ∪ S1. Similar calculations show that

εS0 − (
18+ 2

√
69
) ⊂̃ S0 ∪ S1; εS0 + (

18− 2
√

69
) ⊂̃ S0 ∪ S2;

εS1 − (
18+ 2

√
69
) ⊂̃ T ; εS1 + (

18− 2
√

69
) ⊂̃ S0 ∪ S2;

εS2 − (
18+ 2

√
69
) ⊂̃ S0 ∪ S1; εS2 + (

19− 2
√

69
) ⊂̃ T ;

εT − (
61+ 7

√
69
)
/2 ⊂̃ S2; ε T + (

18− 2
√

69
) ⊂̃ S1.

Remark. The inclusions on the right-hand side can be computed from those on the left: for
example, all exceptional points inS2 must come fromT , so the exceptional points inε−1S2
must be congruent moduloOK to points inT , and since(61+ 7

√
69)/2ε = 19− 2

√
69,

we conclude thatεS2 + (19− 2
√

69)⊂̃T .

We shall need the following result (this is [6, Proposition 2]).

Proposition 4.2. Let K be a number field, andε a non-torsion unit ofEK . Suppose that
S ⊂ F̃ has the following property.

There exists a uniqueθ ∈ OK such that, for allξ ∈ S, the elementεξ − θ lies
in a k-covered region of̃F , or again inS.

Then everyk-exceptional pointξ0 ∈ S satisfies|ξ0−θ/(ε − 1)|j = 0 for everyK-valuation
| · |j such that|ε|j > 1.

We also need a method to compute Euclidean minima of given points. Recall that the
orbit of ξ ∈ K is the set Orb(ξ) = {εξ : ε ∈ EK}, whereEK is the unit group ofOK . Note
that all the elements in an orbit have the same minimum.
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Proposition 4.3. Letm ∈ N be square-free, letK = Q(
√

m ) be a real quadratic number
field, letε > 1 be a unit inOK , and letξ ∈ K. If M(K, ξ) < k for some realk, then there
exists an elementη = r + s

√
m ∈ K with the following properties.

(i) η ≡ ξj modOK for someξj ∈ Orb(ξ).

(ii) |Nη| < k.

(iii) |r| < µ, |s| < µ/
√

m, whereµ = (
√

k/2)(
√

ε + 1/
√

ε).

Proof. Assume thatM(K, ξ) < k; then there is anα ∈ OK such that|N(ξ − α)| < k.
Choosem ∈ Z such that

√
k/ε 6 |(ξ − α)εm| <

√
kε, and putη = (ξ − α)εm. Then we

prove the three parts of the proposition as follows.

(i) η = (ξ − α)εm ≡ ξεm modOK , and clearlyξεm ∈ Orb(ξ).

(ii) |Nη| = |N(ξ − α)| < k.

(iii) Write η = r + s
√

m andη′ = r − s
√

m. Then|η| <
√

kε and|η′| = |ηη′|/|η| <

k/|η| 6
√

kε. Thus 2|r| = |η + η′| 6 |η| + |η′| and 2|s|√m = |η − η′| 6 |η| + |η′|.
Using the lemma below, this yields the desired bounds.

This concludes the proof.

Lemma 4.4. If x, y are positive real numbers such thatx < a, y < a andxy < b, then
x + y < a + b/a.

Proof. 0 < (a − x)(a − y) = a2 − a(x + y) + xy < a2 − a(x + y) + b.

Now we are ready to determine a certain class of exceptional points insideS0.

Claim 4.1. If P is an exceptional point inS0 that stays insideS0 under repeated applications
of the maps

α :ξ 7−→ ε−1ξ + 18− 2
√

69, (1)

β :ξ 7−→ εξ −
(
18+ 2

√
69
)

, (2)

thenP = (18+ 2
√

69)/(ε− 1) = (0, 4/23). Moreover,M(P) = 25/23.

This follows directly from Proposition4.2; the Euclidean minimumM(P) = 25/23 is
easily computed using Proposition4.3. Any exceptional point that does not stay insideS0
must eventually come throughT ; it is therefore sufficient to consider exceptional points in
T from now on.

Let P0 ∈ T be such an exceptional point, and define the series of pointsP0, P1, P2, . . .

recursively byPj+1 = α(Pj ). ThenP1 ∈ S1, and now there are the following two possibil-
ities.

(A) Pj ∈ S0 for all j > 2.

(B) There is ann > 2 such thatPn ∈ S1.

Before we can go in the other direction, we have to adjustP0 somewhat. In fact,β(P0) ∈
T implies thatβ(P0)−ε⊂̃S2; thus we can define a sequence of pointsP0−1,P−1, P−2, . . .
by P−1 = β(P0 − 1) andP−j−1 = β(P−j ) for j > 1. Again, there are two possibilities.

(C) P−j ∈ S0 for all j > 2.

(D) There is ann > 2 such thatP−n ∈ S1.
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Claim 4.2. If P0 ∈ T is an exceptional point satisfying conditions (A) and (C), then

P0 =
(

1

2
,

4

23
+ 1

2
√

69

)
≈ (0.5,0.234105).

Note that this point is not contained inK. Of course, we knew this before: every point
in K has a finite orbit, whereasP0 does not.

For a proof, we apply Proposition4.2 to the setS = {P0, P1, P2, . . . }; this shows that
any ξ = Pj lies on the line|ξ + (18 − 2

√
69)/(ε − 1)|2 = 0 (theK-valuation| · |2 is

chosen so that|ε|2 > 1); that is,ξ ′ = −(4/23)
√

69. Applying the same proposition to
S = {P0 − 1, P−1, P−2, . . . } gives∣∣∣∣∣ξ − 18+ 2

√
69

ε − 1

∣∣∣∣∣
1

= 0, with
18+ 2

√
69

ε − 1
= 4

23

√
69;

hence suchP0 = (x, y) satisfyx + y
√

69 = 1 + (4/23)
√

69.
Thus any pointξ = P0 giving rise to a doubly infinite sequence(Pj )j∈Z that stays inside

S0 moduloOK for all j 6= 0, ±1 satisfiesξ = 1 + (4/23)
√

69 andξ ′ = −(4/23)
√

69. If
we writeP0 = (x, y), then this gives

x = 1

2
(ξ + ξ ′) = 1

2
and y = 1

2
√

69
(ξ − ξ ′) = 4

23
+ 1

2
√

69
≈ 0.2341059,

as claimed.
Before we go on exploring the other possibilities, we study the orbit ofP0, and compute

its Euclidean minimum.

Claim 4.3. The pointsPr ≡ ε−rP0 modOK in the orbit ofP0 coincide with thePr given
in Theorem4.1.

This is done by induction: the caser = 0 is clear. For the induction step, notice that

ε−1(x, y) =
(

25

2
x − 207

4
y,

25

2
y − 3

2
x

)
;

now

ε−1Pr =
(

25

4
ε−r − 18− 207

2
√

69
ε−r ,

50

23
+ 25

4
√

69
ε−r − 3

4
ε−r

)
= (−18,2) +

((25

4
− 3

4

√
69
)
ε−r ,

4

23
+
(

− 3

4
+ 25

4
√

69

)
ε−r

)
= (−18,2) +

(
1

2
ε−r−1,

4

23
+ 1

2
√

69
ε−r−1

)
≡ Pr+1 modOK.

Next, one can compute thatεP0 = (61/2, 7/2)−P ′
1 and can show, again by induction, that

εrP0 ≡ −P ′
r modOK for all r > 0. Thus the orbit ofP0 under the action of the unit group

EK of OK is represented moduloOK by the points{±Pr, ±P ′
r : r > 0}.

Claim 4.4. The pointsPr have Euclidean minimum

M(K, Pr) = M(K, P0) = 15

46

(
11− √

69
)

.
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First, we observe that the pointsPr have the same Euclidean minimum, since they all
belong to the same orbit. Now assume thatε = t + u

√
m has positive norm. We want to

apply Proposition4.3and findε−1 = t − u
√

m; hence(√
ε + 1√

ε

)2

= 2t + 2 and µ =
√

k(t + 1)

2
.

In the case wherem = 69, we havet = 25/2, and henceµ/
√

m = √
k
√

27/276<
√

k/3.
The orbit of P0 = 1/2 + (

4/23 + (1/2
√

69)
)√

69 is {±Pr, ±P ′
r : r ∈ N0}, so it

is clearly sufficient to computeM(K, Pr) for r > 0. We start withP0 itself. The only
η ≡ P0 modOK satisfying the bounds of Proposition4.3 have the formP0 + a for some
a ∈ Z, or P0 − (b + √

69)/2 for some oddb ∈ Z. The minimal absolute value of the norm
of these elements is

∣∣N(η − (5 + √
69)/2

)∣∣ = (15/46)(11− √
69).

Similarly, the minimal norm for theη ≡ P1 modOK is attained atP1 + (5 − √
69)/2,

and again equals(15/46)(11− √
69).

Finally, consider theη ≡ Pr modOK for somer > 2. ThenPr = xr + yr

√
69 with

|xr | 6 0.00081=: δ0 and|yr − 4/23| < 0.0001=: δ1. The minimal absolute value of the
norm ofPr+a for somea ∈ Z is attained fora = 1, and equals

∣∣(1+δ0)
2−69(4/23−δ1)

2
∣∣ >

1.07; similarly, we find that
∣∣N(Pr − (b + √

69)/2)
∣∣ > 1.07.

Thus we have seen that inf{|N(Pr − α)| : α ∈ OK, r ∈ Z} is attained forr = 0 and
α = (5 + √

69)/2, givingM(K, P0) = (15/46)(11− √
69), as claimed.

Before we go on, let us recall what we now know:K = Q(
√

69) has first minimum
M1(K) = 25/23, andM1 is isolated. Moreover, the orbit of everyk-exceptional point
for k = 0.875 that is not congruent to±(4/23)

√
69 modOK has a representative in the

exceptional setT . Finally, if the orbit of such a point visitsT exactly once, then the point is
P0 = 1/2+(4/23+(1/2

√
69)
)√

69, and its minimum isM(K, P0) = (15/46)(11− √
69).

Claim 4.5. Any exceptional pointQ 6= P0 in T has Euclidean minimum

M(K, Q) < M(K, P0) = 15

46

(
11− √

69
)

,

andM2(K) = M(P0) is attained only at points in the orbit ofP0.

In fact, letQ0 6= P0 be an exceptional point inT , and consider the orbit{Qr : r ∈ Z}
of Q0, where theQj are defined byQj ≡ ε−jQ0 modOK . SinceQ0 6= P0, we know that
we are in one of the following situations:

1. (A) and (D) hold;

2. (B) and (C) hold;

3. (B) and (D) hold.

In each case, there exists a pointQ 6= P0 in T ,with an orbit that moves intoT both to the
right and to the left:

· · · T −→ S2 −→ S0 · · · S0 −→ S1 −→ Q −→ S2 −→ S0 · · · S0 −→ S1 −→ T · · · .

(3)

Now we prove the following lemma.

Lemma 4.5. Suppose that there is aQ0 ∈ T such thatQ1 = β(Q0 − 1) ∈ S2 and
Qm+1 = (x, y) = βm(Q1) ∈ S1 with β as in map(2). Thenx − y

√
69 < −(4/23)

√
69.
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Proof. WriteQn = (xn, yn) and putξ ′
n = xn −yn

√
69. Thenξ ′

1 ≈ −1.48< −(4/23)
√

69;
now we use induction to show thatξ ′

n < −(4/23)
√

69 for 16 n 6 m.
In fact, if Qn+1 = β(xn, yn), then

ξn+1
′ = (

εξn − (18+ 2
√

69)
)′

= ε′ξ ′
n − 18+ 2

√
69

< −ε′ 4

23

√
69− 18+ 2

√
69

= − 4

23

√
69.

A similar result holds for the other direction.

Lemma 4.6. Suppose there is aQ0 ∈ T such thatQ−1 = α(Q0) ∈ S1 and Q−m−1 =
(x, y) = αm(Q−1) ∈ S2. Thenx + y

√
69 > 1 + (4/23)

√
69.

Proof. The proof is similar.

This shows that, in orbit (3), we have

ξ > ξ0 = 1 + 4

23

√
69 and ξ ′ < ξ ′

0 = − 4

23

√
69

for the pointQ = (x, y) andξ = x + y
√

69,ξ ′ = x − y
√

69. Putα = ξ0 − (5 + √
69)/2

andα′ = ξ ′
0 − (5 − √

69)/2. Then−αα′ = (15/46)(11− √
69), and, sinceα < 0 and

α′ > 0, 0 <
(
ξ − (5 + √

69)/2
)(

ξ ′ − (5 − √
69)/2

)
< −αα′. Thus any such point has

Euclidean minimum strictly smaller than(15/46)(11− √
69).

Claim 4.6. The second minimumM2(K) is not isolated.

This is accomplished by constructing a series of rational pointsQr ∈ K \ C2 such that
limr→∞ M(Qr) = M2(K). To this end, we look for a pointQr ∈ T − 1 that gets mapped
(multiplication byε plus reduction moduloOK ) to S2, stays inS0 exactlyr times, and then
goes toS1 and back to the point inT congruent toQr modOK ; thenQr will satisfy the
following equation:

εr+4Qr = εr+4 + (εr+3 + · · · + ε + 1)(18+ 2
√

69) + Qr.

(For more details, see the analogous construction of the pointsRr in Section5.) This gives

Qr = 1 + 4

23

√
69+ 1

εr+4 − 1
.

Table1 gives explicit coordinates for small values ofr.
We claim thatM(Qr) tends toM2(K) = (15/46)(11− √

69) ≈ 0.87827 asr −→ ∞.
Applying Proposition4.3 shows that, for givenr > 0, the Euclidean minimum ofQr is
attained atQr − ((5+ √

69)/2
)
. Writing n = r + 4 andQr − ((5+ √

69)/2
) = (ξ, ξ ′) we

have

ξ = −3

2
− 15

46

√
69+ 1

εn − 1
,

ξ ′ = −3

2
+ 15

46

√
69+ 1

ε−n − 1
= −5

2
+ 15

46

√
69− 1

εn − 1
,
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Table 1: Euclidean minima of someQr

r Qr M(Qr)

− 1 1
2 + 97

414

√
69 541

621 ≈ 0.871175523

0 1
2 + 70

299

√
69 13651

15548 ≈ 0.877990738

1 1
2 + 2423

10350

√
69 340876

388125 ≈ 0.878263446

2 1
2 + 6989

29854

√
69 8508391

9687623 ≈ 0.878274371

3 1
2 + 30239

129168

√
69 212369041

241802496 ≈ 0.878274809

4 1
2 + 174445

745154

√
69 5300717776

6035374823 ≈ 0.878274826

and now we find that∣∣∣N(Qr − 5 + √
69

2

)∣∣∣ = −ξξ ′ = 165− 15
√

69

46
− 1

εn − 1

(
− 1 + 15

23

√
69
)
.

Since the ‘error term’
1

εn − 1

(
− 1 + 15

23

√
69
)

is positive and tends to 0 asn −→ ∞, Claim4.6follows, and Theorem4.1 is proved.

5. Weighted norms inQ
(√

69
)

Now we study the weighted normfp,c defined byp = (23,
√

69). We claim that the
following theorem holds.

Theorem 5.1. LetR = OK be the ring of integers inK = Q(
√

69), and letp = (23,
√

69)

be the prime ideal above23. Then the Euclidean window off = fp,c is w(p) = (25,∞);
the Euclidean minimum is

M1(OK, fp,c) = max
{25

c
,

75

23

(− 8 + √
69
)}

for all c ∈ w(p), andM1 is isolated exactly whenc ∈ [23, (23/15)(8+ √
69)

)
.

Using the method described in [7], with some modifications described in the next section,
we can cover the fundamental domain ofOK with a bound ofk = 0.99 except for a set
surrounding(0, 0) that contains no exceptional point, and±S1 ∪ ±S2 ∪ ±S′

2, where

S1 = [−0.0084, 0.0084] × [0.1739,0.175];
S2 = [0.2086,0.2087] × [0.19903,0.19904];
S′

2 = [0.2086,0.2087] × [−0.19904, −0.19903].
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Transforming by units, we find that

εS1 − (
18+ 2

√
69
) ⊂̃ S1 ∪ S2; εS1 + (

18− 2
√

69
) ⊂̃ S1 ∪ (−S′

2);
εS2 − (

23+ 3
√

69
) ⊂̃ S′

2; εS2 + (
18− 2

√
69
) ⊂̃ S1;

εS′
2 + (

18+ 2
√

69
) ⊂̃ −S1; εS′

2 − (
23− 3

√
69
) ⊂̃ S2.

Claim 5.1. If P is an exceptional point that stays insideS1 under repeated transformations
by ε andε−1, thenP = (0, 4/23)has Euclidean minimumM(P, fp,c) = 25/c.

This is easy to see. Again, this enables us to reduce everything to exceptional points
P ∈ S2, and for the orbit(Pj ) of suchP (wherePj+1 is the image ofPj under multiplication
by ε plus reduction moduloOK ) there are the following possibilities.

(a) Pj ∈ −S1 andP−j ∈ S1 for all j > 2.

(b) There existm 6= n such thatPm, Pn ∈ S2.

Claim 5.2. If P0 ∈ S2 is an exceptional point with property (a), then

P0 =
(

−115+ 15
√

69

46
,
−5 + √

69

2
√

69

)
≈ (0.20868169,0.19903536).

For a proof, suppose thatP0 is a point inS2 with property (a). Then

P1 = −εP0 + (
23+ 3

√
69
) ∈ −S′

2,

andP2 = εP1− (18+2
√

69) is a point for which the transforms by powers ofε stay inside
S1. By Proposition4.2, this implies that

∣∣P2 − (4/23)
√

69
∣∣
1 = 0, and going back toP0 we

find that
∣∣P0 − (− 5 + (19/23)

√
69
)∣∣

1 = 0.
Similarly, any exceptional pointξ ∈ S2 with transforms by powers ofε that stay inside

S1 satisfies
∣∣ξ + (4/23)

√
69
∣∣
2 = 0. Thus any point satisfying property (a) hasx-coordinate

ξ + ξ ′

2
= −115+ 15

√
69

46

andy-coordinate

ξ − ξ ′

2
√

69
= −5 + √

69

2
√

69
,

as claimed.
Note that there is no obvious definition of a ‘Euclidean minimum’ ofP0 with respect to

weighted normsfp,c, sincefp,c is a continuous function onK (with respect to the topology
inherited from the embeddingK −→ R2) if and only if c = p; that is, if and only iffp,c is
the absolute value of the usual norm. Thus we cannot extendfp,c by continuity toR2. On
the other hand, we can put

M(P, fp,c) = sup{M(Pr, fp,c) : Pr ∈ K, lim Pr = P };
that is, we define theminimum at a pointP ∈ K as the supremum of the minima atPr ∈ K

over all sequences(Pr) converging toP in the topology mentioned above. IfP ∈ K, then
clearlyM(P, fp,c) > M(P, fp,c), as the constant seriesPr = P shows. We do not know
of any example where this last inequality is strict.
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Claim 5.3. We haveM(P0) 6 κ0 = (75/23)(−8+ √
69) for all c > 23. Moreover, any

K-rational exceptional point with property (b) has minimum strictly smaller thanκ0. In
particular, we haveM1(K) = 25/c for all c ∈ [23, (25/23)(24+ 3

√
69)], andM1 is

isolated for these values ofc, except possibly whenc = (25/23)(24+ 3
√

69).

We start by observing that

|N(P0 − 2)| = 94− 10
√

69

23
≈ 0.47538092916, and∣∣∣∣N (

P0 − 1

2

(
5 + √

69
))∣∣∣∣ = −600+ 75

√
69

23
≈ 0.99986042255.

Using the same technique as in Lemmas4.5 and4.6, we can show that theK-rational
points in S2 that satisfy condition (b) have a minimum that is strictly smaller thanκ0;
observe that the differenceη1 − η2 for η1 = (5 + √

69)/2 andη2 = 2 is not divisible
by p, and hence we havefp,c(P0 − ηj ) 6 |N(P0 − ηj )| for j = 1 or j = 2. Since any
sequence ofK-rational pointsPr converging toP0 eventually stays insideS2 this also
proves thatM1(OK, fp,c) = 25/c as long as 25/c > κ0; but the last inequality holds for
all c 6 (23/15)(8+ √

69) ≈ 25.0034899. It also shows that the minimum is isolated for
these values, except possibly whenc = (23/15)(8+ √

69).

Claim 5.4. We haveM(P0, fp,c) = κ0 = (75/23)(−8+ √
69) for all c > 23, and

M(P0, fp,c) = M(P) = (94− 10
√

69)/23 forc = 23.

In order to show thatκ0 is a lower bound forM(P0) for c > 23, we construct a series
of K-rational points converging toP0, with minima that converge toκ0. We do this in the
following way: assume thatRr ∈ S2 gets mapped toS′

2, stays in−S1 exactlyr − 2 times
and then gets mapped to the point−Rr ∈ −S2. Then

εRr − (23+ 3
√

69) ∈ S′
2,

ε2Rr − ε(23+ 3
√

69) + (18+ 2
√

69) ∈ −S1, . . . ,

εrRr − εr−1(23+ 3
√

69) + (18+ 2
√

69)(1 + ε + · · · + εr−2) ∈ −S1

and finally (
εr+1 + 1

)
Rr = εr

(
23+ 3

√
69
)− (

18+ 2
√

69
)εr − 1

ε − 1
.

Now we use(εr − 1)/(ε − 1) = (εr+1 − 1)/(ε − 1)− εr to find(
εr+1 + 1

)
Rr = εr

(
41+ 5

√
69
)− (

18+ 2
√

69
)εr+1 − 1

ε − 1

= εr+1(− 5 + √
69
)− (

18+ 2
√

69
)εr+1 − 1

ε − 1
.

Dividing through byεr+1 + 1 and simplifying, we get

Rr = −5 + 19

23

√
69+ 1

εr+1 + 1

(
5 − 15

23

√
69

)
.

The explicit coordinates for the first few points are given in Table2.

Claim 5.5. The Euclidean minimum ofRr (r > 2) with respect tofp,c is attained atRr −2
or Rr − (5 + √

69)/2.

347https://doi.org/10.1112/S1461157000000334 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000334


Euclidean windows

Table 2: Euclidean minima of someRr

r Rr

∣∣N(Rr − 1
2(5 + √

69)
)∣∣ ∣∣N(Rr − 2

)∣∣
1 1

5 + 1
5

√
69 23

25 = 0.92 12
25 = 0.48

2 5
24 + 43

216

√
69 3875

3888 ≈ 0.996656378 1849
3888 ≈ 0.475565843

3 130
623 + 124

623

√
69 388025

388129 ≈ 0.999732047 184512
388129 ≈ 0.475388337

4 125
599 + 1073

5391

√
69 9686225

9687627 ≈ 0.999855279 4605316
9687627 ≈ 0.475381225

5 649
3110 + 619

3110

√
69 2417687

2418025 ≈ 0.999860216 1149483
2418025 ≈ 0.475380941

6 3120
14951+ 26782

134559

√
69 6034532375

6035374827 ≈ 0.999860414 2935561516
6035374827 ≈ 0.475380929

In fact, by applying Proposition4.3 to Rr , one checks that the two smallest values of
|N(Rr − η)| occur forη1 = 2 orη2 = (5+ √

69)/2; one also verifies that|N(Rr − 2)| ≈
0.47 and

∣∣N(Rr − (5+√
69)/2

)∣∣ ≈ 0.99. Since the denominator ofRr −η is not divisible
by p for anyη ∈ OK (it dividesεr+1 + 1 ≡ 2 modp), and sinceη1 − η2 is an integer not
divisible byp, our claim follows.

Where the minimum with respect tofp,c is attained depends on whether the numerator
of Rr − 2 is divisible byp or not: if it is not, then the Euclidean minimum is attained there,
and we haveM(P, fp,c) = |N(Rr − 2)| < 1/2. If this numerator, however,is divisible by
p, thenfp,c(Rr − 2) can be made as large as we please by adding weight top, and in this
case the minimum is attained atRr − (5 + √

69)/2 for large values ofc.

Claim 5.6. The numerator ofRr − 2 is divisible byp if and only if r ≡ 10 mod 23. In this
case, it is even divisible by(23)= p2.

Let us computeRr modp. Sinceε ≡ 1 modp, we find that

εr+1 − 1

ε − 1
= 1 + ε + · · · + εr ≡ r + 1 modp;

hence

2Rr = εr
(
23+ 3

√
69
)− (

18+ 2
√

69
)εr − 1

ε − 1
≡ 5r modp,

and thereforeRr − 2 ≡ 0 modp if and only if 5r ≡ 4 mod 23, which in turn is equivalent
to r ≡ 10 mod 23.

The second part of the claim follows by observing that

εs ≡ (
1 + 13

√
69
) ≡ 1 + 13s

√
69 mod 23;

in particular,

ε23m+10 ≡ 1 + 13
√

69 mod 23

and
εr − 1

ε − 1
= εr−1 + · · · + ε + 1 ≡ r + 1 + 13

r(r + 1)

2

√
69 mod 23.
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With a little more effort, we can show much more, namely that there is a subsequence of
Rr −2 with numerators divisible by an arbitrarily large power ofp. In fact, the numerator of
Rr −2 will be divisible bypk if and only if Tr = 23(εr+1 +1)(Rr −2) ≡ 0 modpk+2, and
hereTr is an algebraic integer. An elementary calculation shows that the last congruence is
equivalent to

εr+1 ≡ −47+ 5
√

69

22
=: α modpk+2. (4)

This will hold for arbitrarily largek if and only if there is a 23-adic integers = r + 1 such
that

εs = α (5)

holds inKp = Q23(
√

69). Since both sides are congruent 1 modp, we can take theπ -adic
logarithm (withπ = (23+ 3

√
69)/2 ) and gets = (logπ α)/(logπ ε) as an equation inKp,

and equation (5) holds if we can show thats is inZ23. To this end, letσ denote the non-trivial
automorphism ofKp/Q23. Since logπ is Galois-equivariant, and sinceε1+σ = α1+σ = 1,
we get

sσ = logπ ασ

logπ εσ
= − logπ α

− logπ ε
= s.

Thus s ∈ Q23, and since it is aπ -adic unit, s ∈ Z23 as desired. We remark that
s = 11+ 13 · 23+ 15 · 232 + 5 · 233 + 3 · 234 + · · · .

This proves Claim5.4, and completes the proof of Theorem5.1.

6. Weighted norms in cubic number fields

Using the idea of Clark (see [7,8, 11,17]; it actually first appeared in work by Lenstra
[14, p. 35]), we slightly modified the programs described in [6] in order to examine weighted
norms in cubic fields. Many of the results in this section were obtained by the first author,
and described in [5]; see Table3 for the results obtained so far.

The idea is simple. Assume thatK is a number field with class number 1, such that
M = M1(K) > 1 andM2(K) < 1; assume that #C1(K) is finite, and write the points
ξ ∈ C1(K) (1 6 i 6 t) in the formξi = αi/βi , where(αi, βi) = 1. Assume, moreover,
that there is a prime idealp such thatp | βi for all i.

Now consider the weighted normfp,c; by making c big enough we can certainly
arrange thatfp,c(ξi) < 1 for all i 6 t ; in fact, if pm ‖ gcd(β1, . . . , βt ), then
fp,c(ξi) 6 M(Np)mc−m; thus we need only to choosec > Np

m
√

M. (Actually, this shows
thatw(p) ⊆ (Np

m
√

M, ∞).)
To guarantee that, for everyξ ∈ K, there exists aγ ∈ OK such thatfp,c(ξ − γ ) < 1,

we shall look forγ1, γ2 ∈ OK such that|NK/Q(ξ − γi)| < 1 for i = 1,2 andp - (γ1 − γ2);
then at least one of theξ − γi , sayξ − γ1, has a numerator that is not divisible byp, and
this implies thatfp,c(ξ − γ1) 6 |N(ξ − γ1)| < 1.

Modifications of the programs described in [6] allow us to find new examples of cubic
fields that are not norm-Euclidean, but are Euclidean with respect to some weighted norm.
We represented prime ideals of the maximal orderOK = Z ⊕ αZ ⊕ βZ in the form
p = (p, α + a), p = (p, β + aα + b) or p = (p), according to whetherp has degree 1, 2
or 3. Testing the divisibility of an integer ofOK by p can then be done using only rational
arithmetic.
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Table 3: Euclidean windows for cubic fields

discK M1(K) M2(K) Np w(p)

−367 1 9/13 13 (13,279/8)

−351 1 9/11 11 (11,∞)

−327 101/99 < 0.9 11 (101/9,∞)

−199 1 < 0.47 7 (7,∞)

985 1 5/11 5 (5,∞)

1345 7/5 < 0.4 5 (7,∞)

1825 7/5 < 0.5 5 (7,∞)

1929 1 3/7 7 (7,∞)

1937 1 5/9 3 (3,∞)

2777 5/3 17/19 3 ∅

2836 7/4 7/8 2 (
√

7,∞)

2857 8/5 < 0.5 5 (8,∞)

3305 13/9 37/45 3 (
√

13,5)

3889 13/7 1 7 (13,∞)

4193 7/5 < 0.65 5 (7,∞)

4345 7/5 11/13 5 (7,∞)

4360 41/35 7/10 7 (41/5,∞)

5089 17/11 7/11 11 (17,∞)

5281 1 < 0.6 5 (5,∞)

5297 21/11 23/33 11 (21,∞)

5329 9/8 63/73 23 (9,73)

5369 21/19 17/19 19 (21,∞)

5521 23/7 8/7 7 (23,∞)

7273 973/601 729/601 601 (973,∞)

7465 1 < 0.8 5 (5,∞)

7481 1 < 0.7 5 (5,∞)
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Let us callξ ∈ K coveredif there existγ1, γ2 ∈ OK such that|NK/Q(ξ − γi)| < 1 and
p - (γ1 − γ2); if ξ is covered, then so isεξ for any unitε ∈ O×

K (this allows us to use the
program E–3 of [6]).

We first consider the fieldK generated by a rootα of x3 + x2 − 6x − 1; we have
discK = 985, and the only point with minimum greater than or equal to 1 is

ξ1 = 3α − α2

α − 1
= 2 − α + 2α2

5
.

The idealp = (α−1)occurring in the denominator is a prime ideal of norm 5. Our programs
cover a fundamental domain ofK, except for the possible exceptional pointsξ = 0 and
ξ = ξ1. Thusfp,c is a Euclidean function for everyc > Np = 5; that is,w(p) = (5,∞).

Now letK be the field with discK = 1937 generated by a rootα of x3 + x2 − 8x + 1.
It has Euclidean minimumM(K) = 1 attained at(4 + 4α2)/9; in fact, |N(ξ1)| = 1 for
ξ1 = (−14+ 9α + 4α2)/9, and the prime ideal factorization ofξ1 is

(ξ1) = (3, α2 + 1)(3, α+ 1)−2.

Our programs cover a fundamental domain ofK, except for the possible exceptional
points ξ0 = 0, ξ = ξ1 and ξ = (1 + α2)/3. This last point has Euclidean minimum
1/3 = |N(1 − 3α + α2)/3|with respect to the usual norm, and since(1−3α+α2)/3 = p−1,
adding weight top does not increase its minimum.

Our third example is the cubic fieldK with discriminant discK = 3305, generated by
a rootα of x3 − x2 − 10x − 3. It has minimumM1 = 13/9, attained at(1− 2α − 4α2)/9,
with |N(ξ1)| = 13/9 for ξ1 = (−71 + 52α + 32α2)/9. Its prime ideal factorization is
(ξ1) = (13, α− 1)(3, α)−2; we thus add weightc >

√
13 top = (3, α), and we can cover

a fundamental domain ofK, except for the possible exceptional pointsξ0 = 0, ξ = ξ1 and
ξ = (2 − α + 2α2)/5. NowM(ξ) = |N(ξ2)| = 3/5, whereξ2 = (−3 + 4α + 2α2)/5 has
the prime ideal factorization(ξ2) = p(5, α + 2)−1. Thus the weighted prime ideal occurs
in the numerator ofξ2, and we havefp,c(ξ2) < 1 if and only ifc < 5; since|N(ξ)| > 1 for
all ξ ≡ ξ2 modOK , this implies thatw(p) = (

√
13,5).

Finally, consider the cubic fieldK with discriminant discK = 3889. Its first minimum
is attained atξ1 = (3−α −3α2)/7, and its denominator is the prime idealp that divides the
denominator ofξ2 = (2−3α−2α2)/7, where the second minimumM2(K) = 1 is attained.
(Something similar happens for discK = 5521 and discK = 7273, whereM2(K) > 1;
in these cases, we have to verify thatM3(K) < 1.) Here we find the possible exceptional
pointsξ = 0, ξ1, andξ2, as well as

η1 = 1

7
(1 − α − 2α2), η2 = 1

7
(2 − 2α + 3α2) and η3 = 1

7
(3 − 3α + α2).

Since their denominator is the prime ideal(7,2 + α), their Euclidean minimum is 1/7, for
both the usual and the weighted norm.

Some of our examples of cubic fields that are Euclidean with respect to some weighted
norm were found independently by Amin Coja-Oghlan, and are described in his thesis [10].

7. Norm-Euclidean cubic fields

We take this opportunity to report on recent computations concerning norm-Euclidean
cubic fields. Calculations for the totally real cubic fields up to discK 6 13,000 have
produced the results shown in Table4
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Table 4: Norm-Euclidean real cubic fields

discK E N 6

0 < d 6 1000 26 1 27

1000< d 6 2000 29 5 34

2000< d 6 3000 31 4 35

3000< d 6 4000 36 6 42

4000< d 6 5000 28 7 35

5000< d 6 6000 35 7 42

6000< d 6 7000 30 8 38

7000< d 6 8000 37 10 47

8000< d 6 9000 30 11 41

9000< d 6 10000 29 10 39

10000< d 6 11000 34 9 43

11000< d 6 12000 37 16 53

12000< d 6 13000 31 6 37

6 413 100 513

The columnsE andN display the number of norm-Euclidean and non-norm-Euclidean
number fields of fields with discriminants in the indicated intervals.

We also have to correct the entries for the fields with discriminant 3969 in our tables in
[6]: the fieldK1 generated by a root ofx3−21x−28 hasM1(K1) = 4/3,M2(K1) = 31/24
andM3(K1) = 1, and the fieldK2 generated byx3 − 21x − 35 hasM1(K2) = 7/3 and
M2(K2) = 125/63.

For complex cubic fields, calculations by R. Quême have indicated that the fields with
discriminants discK = −999 and discK = −1055 are not norm-Euclidean, and we have
subsequently been able to verify thatM(K) > 294557/272112 for discK = −999, that
M(K) > 1483/1370 for discK = −1055, and that there are no norm-Euclidean number
fields with−876> discK > −1600, suggesting the following conjecture.

Conjecture.There are exactly 58 norm-Euclidean complex cubic fields, and their discrimi-
nants are:−23,−31,−44,−59,−76,−83,−87,−104,−107,−108,−116,−135,−139,
−140,−152,−172,−175,−200,−204,−211,−212,−216,−231,−239,−243,−244,
−247,−255,−268,−300,−324,−356,−379,−411,−419,−424,−431,−440,−451,
−460,−472,−484,−492,−499,−503,−515,−516,−519,−543,−628,−652,−687,
−696,−728,−744,−771,−815,−876.

Note that, by a result of Cassels [4], there are only finitely many norm-Euclidean complex
cubic number fieldsK, and in fact their discriminant is bounded by| discK| < 170 520.

In the real case, the situation is not so clear. The numerical data suggest that the proportion
of norm-Euclidean fields is decreasing with discK, but they do not yet support the conjecture
that the norm-Euclidean real cubic number fields have density 0 among the real cubic fields
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Table 5: Norm-Euclidean complex cubic fields

d = | discK| E N 6

0 < d 6 200 18 1 19
200< d 6 400 15 9 24
400< d 6 600 16 10 26
600< d 6 800 7 20 27
800< d 6 1000 2 29 31

1000< d 6 1200 0 29 29
1200< d 6 1400 0 35 35
1400< d 6 1600 0 27 27

6 58 160 218

with class number 1; in particular, there may be infinitely many norm-Euclidean real cubic
number fields.

8. Some open problems

In this last section we should like to mention several open problems concerning the Eu-
clidean algorithm with respect to weighted norms. One of the most widely studied questions
is, of course, whetherZ[√14] is Euclidean with respect to somefp,c, wherep = (2,

√
14).

Is it true, in particular, thatw(p) = (
√

5,
√

7) in this case?
More generally, assume thatK is a number field with unit rank> 1. Isw(p) always an

open subset of(1,∞) ⊂ R for every prime idealp in OK? If this were the case, then there
would also exist number fields such thatfp,c is a Euclidean function for somec < Np, since
there do exist number fields withw(p) ⊇ [p, ∞) for suitable primes (take norm-Euclidean
fields, for example).

A related question is whetherM(fp,c) is a continuous function ofc on [Np, ∞) for
number fields with unit rank> 1.

The cubic field with discriminant discK = −335 hasM1(K) = 1; the minimum is
attained at points that have different prime ideals above 5 in their denominators. Calculations
have not yet confirmed thatOK is Euclidean with respect to a norm that is weighted at two
different prime ideals. Similar remarks apply to algorithms with respect to functions that are
not multiplicative: instead of giving weightc to a prime idealp, one could look at functions
with f (p) = Np andf (p2) = c for somec > Np2. This idea is applicable whenever
the denominators of the exceptional points are divisible by the square of a prime ideal; for
example, forZ[√14].
Acknowledgements. We thank—in chronological order—Hendrik Lenstra, Gerhard Niklasch
and David Kohel for the argument used to prove Claim5.4.

Note added in proof. Malcolm Harper [12] has proved that, in particular, the ringZ[√14] is
Euclidean with respect to a suitable Euclidean function, by extending the methods used in
[9]. The question of whetherZ[√14] is Euclidean with respect to a weighted norm remains
open.
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