ON THE KUIPER-KUO THEOREM

CHUAN I. CHU

Abstract

In this note we shall give a simple and more direct proof of the KuiperKuo Theorem. Also, we shall simplify Kuiper's proof of the Morse Lemma.

1. Introduction. In the studying of C^{0} - or C^{1}-equivalence of jets, Kuiper [5] and Kuo [6] constructed vector fields and local flows to obtain the required homeomorphism or diffeomorphism.

In this note we shall use the technique by Bochner [1] to give an explicit formula of the vector field which is simpler than those used by Kuiper and Kuo. This vector field also provides us a method to show that two jets are C^{0}-equivalent.

As an application of this vector field, we shall give a simple proof of Kuiper's version of the Morse lemma [4].

The author would like to thank T. C. Kuo for valuable communications and suggestions.
2. The Kuiper-Kuo Theorem. For a C^{k} function $f: \mathbb{R}^{n} \rightarrow \mathbf{R}$, let $\nabla f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be the unique C^{k-1} mapping from \mathbf{R}^{n} into \mathbf{R}^{n} defined by $d f(x)(y)=\nabla f(x) \cdot y$ for all $y \in \mathbf{R}^{n}$. Here $\nabla f(x) \cdot y$ is the usual inner product in \mathbf{R}^{n}.

We denote by $J^{k}(n, 1)$ the space of all k-jets at 0 of all C^{k} functions $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ such that $f(0)=0$.

Theorem 2.1. Let $f \in J^{k}(n, 1)$ satisfy the Kuiper-Kuo condition

$$
\begin{equation*}
\|\nabla f(x)\| \geqq c\|x\|^{k-\delta} \tag{1}
\end{equation*}
$$

for all x in a neighborhood U of 0 , where $0<c$ and $0<\delta \leqq 1$ are constants. Let $g: U \rightarrow \mathbf{R}$ be a C^{2} function such that $g(x)=O\left(\|x\|^{k+1}\right), \nabla g(x)=O\left(\|x\|^{k}\right)$. Then $f+g$ is C^{0}-equivalent to f. That is, there exists a local homeomorphism ψ at 0 such that $(f+g)(\psi(x))=f(x)$. Here ψ is defined on some neighborhood U_{1} of $0, U_{1} \subseteq U$.

Proof. For $0 \leqq t \leqq 1,\|x\|$ small, define $B(0, t)=0$, and

$$
\begin{equation*}
B(x, t)=\frac{g(x)}{\|\nabla f(x)\|^{2}+t \nabla g(x) \cdot \nabla f(x)} \nabla f(x), x \neq 0 \tag{2}
\end{equation*}
$$

Received by the editors June 6, 1989.
AMS subject classification: 58C27.
(c) Canadian Mathematical Society 1991.

Note that for $\|x\|$ small,

$$
\begin{aligned}
\|\nabla f(x)\|^{2}+t \nabla g(x) \cdot \nabla f(x) & \geqq\|\nabla f(x)\|^{2}-t\|\nabla f(x)\|\|\nabla g(x)\| \\
& \geqq\|\nabla f(x)\|(\|\nabla f(x)\|-\|\nabla g(x)\|) \\
& \geqq c^{\prime}\|x\|^{2 k-2 \delta} .
\end{aligned}
$$

Here c^{\prime} is some positive constant. Thus $B(x, t)$ is well defined for $\|x\|$ small and $0 \leqq t \leqq$ 1. Also B is C^{1} at (x, t) for $x \neq 0,\|x\|$ small.

Next, we consider for $x \neq 0,\|x\|$ small,

$$
\begin{align*}
\frac{\|B(x, t)\|}{\|x\|} & \leqq \frac{|g(x)|}{\|x\|(\|\nabla f(x)\|-\|\nabla g(x)\|)} \\
& \leqq c_{1} \frac{|g(x)|}{\|x\|^{k+1-\delta}} \tag{3}\\
& \leqq c_{2}\|x\|^{\delta} .
\end{align*}
$$

Here c_{1} and c_{2} are positive constants. Thus B is uniformly continuous for $0 \leqq t \leqq 1$.
Note that this also shows that B is differentiable at $(0, t)$ and $d B(0, t)=0$ for all t.
Consider the differential equation

$$
\begin{equation*}
\frac{\partial \phi}{\partial t}(x, t)=-B(\phi(x, t), t), \phi(x, 0)=x \tag{4}
\end{equation*}
$$

Since B is continuous, (4) has a solution. We have to show that (4) has a unique solution.
Suppose $x \neq 0$. Then (4) has a unique solution $\phi(x, t)$ with initial condition x since $B(x, t)$ is C^{1} for $x \neq 0$.

Then from (3) we have

$$
\left\|\frac{\partial \phi}{\partial t}(x, t)\right\|=\|B(\phi(x, t), t)\| \leqq a\|\phi(x, t)\|
$$

for some positive constant a and $\|x\|$ small.
Now

$$
\begin{aligned}
-\frac{\partial}{\partial t}\left(\|\phi(x, t)\|^{2}\right) & =-2 \phi(x, t) \cdot \frac{\partial \phi}{\partial t}(x, t) \\
& \leqq\|\phi(x, t)\|^{2}+\left\|\frac{\partial \phi}{\partial t}(x, t)\right\|^{2} \\
& \leqq\left(1+a^{2}\right)\|\phi(x, t)\|^{2} .
\end{aligned}
$$

Thus

$$
\frac{\partial}{\partial t}\left(\|\phi(x, t)\|^{2}\right) \geqq-b\|\phi(x, t)\|^{2}
$$

here $b=1+a^{2}$. Hence $\|\phi(x, t)\| \geqq e^{-b t}\|x\|$. Thus a solution curve with initial condition $x \neq 0$ will not meet a solution curve with initial condition $x=0$. Thus the solution curve of (4) is unique and hence ϕ is continuous. (c.f. Hartman [2])

Define $F(x, t)=f(x)+\operatorname{tg}(x)$ for $x \in U, 0 \leqq t \leqq 1$.
Then it is straightforward to see that $d / d t(F(\phi(x, t), t)) \equiv 0$. Thus $F(\phi(x, t), t) \equiv$ const. Hence $\psi(x)=\phi(x, 1)$ yields the required local homeomorphism.

Theorem 2.2. If $\delta=1$ then the assumption of g can be taken to be: g is C^{2} and $g(x)=o\left(\|x\|^{k}\right)$ and $\nabla g(x)=o\left(\|x\|^{k-1}\right)$.

REmark 2.3. Theorem 2.1 and Theorem 2.2 lead to the C^{0}-sufficiency of k-jets for C^{k+1} functions and C^{k} functions respectively. For C^{0}-sufficiency of jets, we refer to the works of Koike [3], Kuiper [5] and Kuo [6].

REMARK 2.4. The vector field $B(x, t)$ could also be applied to some g such that $g(x)=$ $O\left(\|x\|^{k}\right)$ as well.

Let $f\left(x_{1}, x_{2}\right)=x_{1}^{4}+x_{2}^{4} \in J^{4}(2,1)$ and $g\left(x_{1}, x_{2}\right)=b x_{1}^{2} x_{2}^{2}$ with $0<b<2$. Then it is easy to see that

$$
\left\|\nabla f\left(x_{1}, x_{2}\right)\right\| \geqq 2\left(x_{1}^{2}+x_{2}^{2}\right)^{3 / 2}>b\left(x_{1}^{2}+x_{2}^{2}\right)^{3 / 2} \geqq\left\|\nabla g\left(x_{1}, x_{2}\right)\right\|
$$

if $\left(x_{1}, x_{2}\right) \neq(0,0)$. In this case, $B(x, t)$ is defined and uniformly continuous for $0 \leqq t \leqq 1$ and $\|x\|<1$ say.

Hence $x_{1}^{4}+x_{2}^{4}$ is C^{0}-equivalent to $x_{1}^{4}+x_{2}^{4}-b x_{1}^{2} x_{2}^{2}$.
3. C^{k}-smoothness of \mathbf{B}. In this section, we shall discuss some sufficient conditions that yield the C^{k}-differentiability of B.

Proposition 3.1. Let $f \in J^{k}(n, 1)$ be such that $\|\nabla f(x)\| \geqq c\|x\|^{k-1}, f(x)=$ $O\left(\|x\|^{k_{0}}\right)$ for $\|x\|$ small and $k_{0} \leqq k$. Let p be a real number such that $p \geqq k-k_{0}$. Suppose g is C^{2} defined on a small neighborhood of 0 with the property that $g(x)=o\left(\|x\|^{k+p}\right)$, $\nabla g(x)=o\left(\|x\|^{k+p-1}\right)$ and $d(\nabla g)(x)=o\left(\|x\|^{k+p-2}\right)$. Then B is C^{1}.

Proof. B is clearly C^{1} for $x \neq 0,\|x\|$ small. Also we have seen in the proof of Theorem 2.1 that $\partial B / \partial x(0, t)=0$. To show $\partial B / \partial x(x, t)$ is continuous at $(0, t)$ we consider for $x \neq 0, y \in \mathbf{R}^{n}$ that

$$
\begin{array}{r}
\frac{\partial B}{\partial x}(x, t)(y)=\frac{d g(x)(y)}{\|\nabla f(x)\|^{2}+t \nabla g(x) \cdot \nabla f(x)} \nabla f(x)+\frac{g(x)}{\|\nabla f(x)\|^{2}+t \nabla g(x) \cdot \nabla f(x)} \\
\times d(\nabla f)(x)(y)
\end{array}
$$

Thus,

$$
\begin{aligned}
& \left\|\frac{\partial B}{\partial x}(x, t)\right\| \leqq \frac{\|\nabla g(x)\|}{\|\nabla f(x)\|-\|\nabla g(x)\|}+\frac{|g(x)|\|d \nabla f(x)\|}{\|\nabla f(x)\|^{2}+t \nabla g(x) \cdot \nabla f(x)} \\
& +\frac{2|g(x)|\|d(\nabla f)(x)\|}{(\|\nabla f(x)\|-\|\nabla g(x)\|)^{2}}+\frac{|g(x)|\|d \nabla g(x)\|}{(\|\nabla f(x)\|-\|\nabla g(x)\|)^{2}} \\
& +\frac{\|\nabla g(x)\|\|d(\nabla f)(x)\||g(x)|}{\|\nabla f(x)\|(\|\nabla f(x)\|-\|\nabla g(x)\|)^{2}}
\end{aligned}
$$

Then it is easy to see that the right hand side of the above inequality is $o\left(\|x\|^{p+k_{o}-k}\right)$. Thus, $\partial B / \partial x(x, t) \rightarrow 0$ uniformly for $0 \leqq t \leqq 1$. Therefore, $\partial B / \partial x(x, t)$ is continuous at $(0, t)$. Similarly, we can show that $\partial B / \partial t$ is continuous. Thus B is C^{1}.

Corollary 3.2. Suppose $f \in J^{k}(n, 1)$ is homogeneous of degree k. Assume that f and g satisfy the conditions in Proposition 3.1. Thenf is C^{1}-equivalent to $f+g$. Hence f is C^{1}-sufficient for C^{k+p} functions (cf. Theorem 2 of Kuiper [5]).

Lemma 3.3. Let U be an open set in \mathbf{R}^{n} containing 0 . Suppose that $Q: U \rightarrow \mathbf{R}$ is $C^{s}(s \geqq 1)$ and such that $|Q(x)| \geqq c\|x\|^{r}$ for $x \in U, c>0, r>0$. Assume that $Q(x)=$ $O\left(\|x\|^{r_{o}}\right)$ where $0<r_{o} \leqq r$. Let k be a positive integer such that $k \geqq 2^{s} r-\left(2^{s}-1\right) r_{o}+s$. For C^{k} map $P: U \rightarrow \mathbf{R}^{m}$ such that $j^{k}(P)=0$, define $H: U \rightarrow \mathbf{R}^{m}$ by

$$
H(x)=\frac{P(x)}{Q(x)}, x \neq 0, H(0)=0
$$

Then H is C^{s}.
Proof. We prove by induction on s. First, we assume that $s=1$.
Clearly, H is C^{1} at $x \neq 0, x \in U$. Now for $x \neq 0, x \in U$, consider

$$
\frac{\|H(x)\|}{\|x\|}=\frac{\|P(x)\|}{\|x\||Q(x)|} \leqq \frac{\|P(x)\|}{c\|x\|^{r+1}} .
$$

Since $j^{k}(P)=0, o(P(x))=k \geqq 2 r-r_{o}+1 \geqq r+1$. Hence

$$
\frac{\|H(x)\|}{\|x\|} \rightarrow 0 \quad \text { as } \quad x \rightarrow 0
$$

This shows that H is differentiable at 0 and $d H(0)=0$.
Now for $x \neq 0, x \in U$, we have

$$
d H(x)=\frac{d P(x)}{Q(x)}-\frac{d Q(x)}{Q^{2}(x)} P(x)
$$

and hence

$$
\|d H(x)\| \leqq \frac{\|d P(x)\|}{|Q(x)|}+\frac{\|d Q(x)\|}{|Q(x)|^{2}}\|P(x)\|
$$

Again, since $k \geqq 2 r-r_{o}+1,\|d H(x)\| \rightarrow 0$ as $x \rightarrow 0$. This shows that H is C^{1}.
Assume the lemma holds for $s-1, s \geqq 2$. Suppose that $k \geqq 2^{s} r-\left(2^{s}-1\right) r_{o}+s$. Then since $k \geqq 2\left(r-r_{o}\right)+r_{o}+1, H$ is C^{1}.

Define $H_{1}, H_{2}: U \rightarrow L\left(\mathbf{R}^{n}, \mathbf{R}^{m}\right)$ (= the linear space of all linear maps from \mathbf{R}^{m} into \mathbf{R}^{m}) by

$$
\begin{aligned}
& H_{1}(x)=\frac{d P(x)}{Q(x)} \quad x \neq 0, H_{1}(0)=0 \\
& H_{2}(x)=\frac{d Q(x)}{Q^{2}(x)} P(x) \quad x \neq 0, H_{2}(0)=0 .
\end{aligned}
$$

Since $o(P(x))=k, o(d P(x))=k-1$. Also, by assumption we have $k-1 \geqq 2^{s-1}(r-$ $\left.r_{o}\right)+r_{o}+s-1$. Hence, by the induction hypothesis, H_{1} is C^{s-1}. Also from the fact that $o(P(x) d Q(x))=k+r_{o}-1, O\left(Q^{2}(x)\right)=2 r_{o}$ and $k+r_{o}-1 \geqq 2^{s-1}(2 r)-\left(2^{s-1}-1\right)\left(2 r_{o}\right)+s-1$ we have, by the induction hypothesis, H_{2} is C^{s-1}. Thus from $d H(x)=H_{1}(x)-H_{2}(x)$ we have that $d H$ is C^{s-1}. That is, H is C^{s}.

COROLLARY 3.4. Letf $\in J^{r}(n, 1)$ satisfy $\|\nabla f(x)\| \geqq c\|x\|^{r-1}$ and $f(x)=O\left(\|x\|^{r_{o}}\right)$ for $\|x\|$ small, $0<r_{o} \leqq r, c>0, r \geqq 2$. Let $k \geqq 2^{s+1}\left(r-r_{o}\right)+s+r_{o}-1$ and g be C^{k} with $j^{k} g=0$. Then $B(x, t)$ defined by (2) is C^{s} for $0 \leqq t \leqq 1$ and $\|x\|$ small. Here we assume $s \geqq 1$.

Proof. Take $Q(x, t)=\|\nabla f(x)\|^{2}+t \nabla g(x) \cdot \nabla f(x)$ and $P(x)=g(x) \nabla f(x)$. Then apply the above lemma to $B(x, t)$ and $\partial B / \partial t(x, t)$.

Remark 3.5. Lemma 3.3 is a sufficient condition for general mappings. However, in our case, $B(x, t)$ is rather special. We can apply the technique used by Taken [7] to improve the condition to $k \geqq s\left(r-r_{o}\right)+s+r-1$. For $s=1$, this is already shown in the proof of Proposition 3.1.

Corollary 3.6. Suppose $f \in J^{r}(n, 1)$ is homogeneous of degree r satisfying $\| \nabla$ $f(x)\|\geqq c\| x \|^{r-1}$ for $\|x\|$ small. Let $k \geqq r$ and g be C^{k} with $j^{k} g=0$. Then B defined by (2) is C^{k-r+1}.

Corollary 3.7. Same as in Corollary 3.6 with $r=r_{o}=2$. Then B is C^{k-1}.
EXAMPLE 3.8. $-x_{1}^{2}+x_{2}^{2}+x_{2}^{3}$ is C^{1}-equivalent to $-x_{1}^{2}+x_{2}^{2}$. However, $-x_{1}^{2}+x_{2}^{2}+x_{2}^{7 / 2}$ is C^{2}-equivalent to $-x_{1}^{2}+x_{2}^{2}$.

THEOREM 3.9 (KUIPER-MORSE). Let $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ be a C^{k} function, $k \geqq 2$. Assume that 0 is an isolated non-degenerate critical point of $f, f(0)=0$. Put $f_{2}=j^{2}(f)$. Then f is C^{k-1}-equivalent to f_{2}. That is, there exists a neighborhood U of 0 in \mathbf{R}^{n} and a C^{k-1} diffeomorphism $\psi: U \rightarrow \psi(U)$ such that $f(x)=f_{2}(\psi(x))$ for $x \in U$.

PROOF. Let $f_{k}=j^{k}(f)$ and $g=f-f_{k}$. If $g \equiv 0$, then $f=f_{k}$; so we can apply Part A of Kuiper [4].

Assume that $g \not \equiv 0$. Then g is C^{k} and $j^{k} g=0$. Since f_{2} is non-degenerate, $\left\|\nabla f_{2}(x)\right\| \geqq$ $c\|x\|$ for $\|x\|$ small, $c>0$. Hence $\left\|\nabla f_{k}(x)\right\| \geqq c_{1}\|x\|$ for some constant $c_{1}>0$ and $\|x\|$ small.

Define

$$
B(x, t)=\frac{g(x)}{\left\|\nabla f_{k}(x)\right\|^{2}+t \nabla g(x) \cdot \nabla f_{k}(x)} \nabla f_{k}(x) \text { for } x \neq 0
$$

and $B(0, t)=0,0 \leqq t \leqq 1$.
Then by Corollary $3.4, B$ is C^{k-1}. Hence its local flow ϕ is also C^{k-1}. (c.f. Hartman [2]). That is, $f=f_{k}+g$ is C^{k-1}-equivalent to f_{k}. By part A of Kuiper [4], f_{k} is C^{k-1} equivalent to f_{2}. Hence by transitivity, f is C^{k-1}-equivalent to f_{2}.

References

1. M. A. Buchner, A note on C^{1} equivalence, J. Math. Anal. Appl. 121(1987) 91-95.
2. P. Hartman, Ordinary Differential Equations, Second Ed. Birkhauser, Boston, 1982.
3. S. Koike, On ν-sufficiency and (\bar{h}-regularity, Publ. Res. Inst. Math. Sci. Kyoto Univ. 17(1981) 565-575.
4. N. H. Kuiper, C^{r} functions near non-degenerate critical points, Mimeographed, Warwick Univ. 1966.
5. N. H. Kuiper, C^{1}-equivalence offunctions near isolated critical points, Symposium on Infinite Dimensional Topology, No. 69, Princeton Univ. Press, 1972.
6. T. C. Kuo, On C^{0}-sufficiency of jets of potential functions, Topology, 8(1969) 167-171.
7. F. Takens, A Note on Sufficiency of Jets, Inventiones Math. 13(1971), 225-231.

Department of Mathematics
Hong Kong Baptist College
224 Waterloo Road, Kowloon
Hong Kong

