ON THE KUIPER-KUO THEOREM

CHUAN I. CHU

ABSTRACT. In this note we shall give a simple and more direct proof of the Kuiper-Kuo Theorem. Also, we shall simplify Kuiper's proof of the Morse Lemma.

1. **Introduction.** In the studying of C^0 - or C^1 -equivalence of jets, Kuiper [5] and Kuo [6] constructed vector fields and local flows to obtain the required homeomorphism or diffeomorphism.

In this note we shall use the technique by Bochner [1] to give an explicit formula of the vector field which is simpler than those used by Kuiper and Kuo. This vector field also provides us a method to show that two jets are C^0 -equivalent.

As an application of this vector field, we shall give a simple proof of Kuiper's version of the Morse lemma [4].

The author would like to thank T. C. Kuo for valuable communications and suggestions.

2. The Kuiper-Kuo Theorem. For a C^k function $f: \mathbb{R}^n \to \mathbb{R}$, let $\nabla f: \mathbb{R}^n \to \mathbb{R}^n$ be the unique C^{k-1} mapping from \mathbb{R}^n into \mathbb{R}^n defined by $df(x)(y) = \nabla f(x) \cdot y$ for all $y \in \mathbb{R}^n$. Here $\nabla f(x) \cdot y$ is the usual inner product in \mathbb{R}^n .

We denote by $J^k(n, 1)$ the space of all k-jets at 0 of all C^k functions $f: \mathbb{R}^n \to \mathbb{R}$ such that f(0) = 0.

THEOREM 2.1. Let $f \in J^k(n, 1)$ satisfy the Kuiper-Kuo condition

(1)
$$\|\nabla f(x)\| \ge c \|x\|^{k-\delta}$$

for all x in a neighborhood U of 0, where 0 < c and $0 < \delta \leq 1$ are constants. Let $g: U \to \mathbf{R}$ be a C^2 function such that $g(x) = O(||x||^{k+1}), \nabla g(x) = O(||x||^k)$. Then f + g is C^0 -equivalent to f. That is, there exists a local homeomorphism ψ at 0 such that $(f + g)(\psi(x)) = f(x)$. Here ψ is defined on some neighborhood U_1 of 0, $U_1 \subseteq U$.

PROOF. For $0 \le t \le 1$, ||x|| small, define B(0, t) = 0, and

(2)
$$B(x, t) = \frac{g(x)}{\|\nabla f(x)\|^2 + t \nabla g(x) \cdot \nabla f(x)} \quad \nabla f(x), x \neq 0$$

Received by the editors June 6, 1989.

AMS subject classification: 58C27.

[©] Canadian Mathematical Society 1991.

Note that for ||x|| small,

$$\| \bigtriangledown f(x) \|^2 + t \bigtriangledown g(x) \cdot \bigtriangledown f(x) \ge \| \bigtriangledown f(x) \|^2 - t \| \bigtriangledown f(x) \| \| \bigtriangledown g(x) \|$$
$$\ge \| \bigtriangledown f(x) \| (\| \bigtriangledown f(x) \| - \| \bigtriangledown g(x) \|)$$
$$\ge c' \| x \|^{2k - 2\delta}.$$

Here c' is some positive constant. Thus B(x, t) is well defined for ||x|| small and $0 \le t \le 1$. Also B is C^1 at (x, t) for $x \ne 0$, ||x|| small.

Next, we consider for $x \neq 0$, ||x|| small,

(3)
$$\frac{\|B(x,t)\|}{\|x\|} \leq \frac{|g(x)|}{\|x\|(\|\nabla f(x)\| - \|\nabla g(x)\|)} \leq c_1 \frac{|g(x)|}{\|x\|^{k+1-\delta}} \leq c_2 \|x\|^{\delta}.$$

Here c_1 and c_2 are positive constants. Thus *B* is uniformly continuous for $0 \le t \le 1$. Note that this also shows that *B* is differentiable at (0, t) and dB(0, t) = 0 for all *t*. Consider the differential equation

(4)
$$\frac{\partial \phi}{\partial t}(x, t) = -B(\phi(x, t), t), \ \phi(x, 0) = x$$

Since B is continuous, (4) has a solution. We have to show that (4) has a unique solution. Suppose $x \neq 0$. Then (4) has a unique solution $\phi(x, t)$ with initial condition x since

Suppose $x \neq 0$. Then (4) has a unique solution $\phi(x, t)$ with initial condition x since B(x, t) is C^1 for $x \neq 0$.

Then from (3) we have

$$\left\|\frac{\partial\phi}{\partial t}(x, t)\right\| = \left\|B(\phi(x, t), t)\right\| \le a \left\|\phi(x, t)\right\|$$

for some positive constant *a* and ||x|| small.

Now

$$\begin{aligned} \frac{\partial}{\partial t} \left(\|\phi(x, t)\|^2 \right) &= -2\phi(x, t) \cdot \frac{\partial \phi}{\partial t} (x, t) \\ &\leq \|\phi(x, t)\|^2 + \left\| \frac{\partial \phi}{\partial t} (x, t) \right\|^2 \\ &\leq (1 + a^2) \|\phi(x, t)\|^2. \end{aligned}$$

Thus

$$\frac{\partial}{\partial t} \left(\left\| \phi(x, t) \right\|^2 \right) \ge -b \left\| \phi(x, t) \right\|^2,$$

here $b = 1 + a^2$. Hence $\|\phi(x, t)\| \ge e^{-bt} \|x\|$. Thus a solution curve with initial condition $x \ne 0$ will not meet a solution curve with initial condition x = 0. Thus the solution curve of (4) is unique and hence ϕ is continuous. (c.f. Hartman [2])

Define F(x, t) = f(x) + tg(x) for $x \in U, 0 \le t \le 1$.

Then it is straightforward to see that $d/dt (F(\phi(x, t), t)) \equiv 0$. Thus $F(\phi(x, t), t) \equiv$ const. Hence $\psi(x) = \phi(x, 1)$ yields the required local homeomorphism.

THEOREM 2.2. If $\delta = 1$ then the assumption of g can be taken to be: g is C^2 and $g(x) = o(||x||^k)$ and $\nabla g(x) = o(||x||^{k-1})$.

REMARK 2.3. Theorem 2.1 and Theorem 2.2 lead to the C^0 -sufficiency of k-jets for C^{k+1} functions and C^k functions respectively. For C^0 -sufficiency of jets, we refer to the works of Koike [3], Kuiper [5] and Kuo [6].

REMARK 2.4. The vector field B(x, t) could also be applied to some g such that $g(x) = O(||x||^k)$ as well.

Let $f(x_1, x_2) = x_1^4 + x_2^4 \in J^4(2, 1)$ and $g(x_1, x_2) = bx_1^2 x_2^2$ with 0 < b < 2. Then it is easy to see that

$$\| \nabla f(x_1, x_2) \| \ge 2(x_1^2 + x_2^2)^{3/2} > b(x_1^2 + x_2^2)^{3/2} \ge \| \nabla g(x_1, x_2) \|$$

if $(x_1, x_2) \neq (0, 0)$. In this case, B(x, t) is defined and uniformly continuous for $0 \leq t \leq 1$ and ||x|| < 1 say.

Hence $x_1^4 + x_2^4$ is C⁰-equivalent to $x_1^4 + x_2^4 - bx_1^2x_2^2$.

3. C^k -smoothness of **B**. In this section, we shall discuss some sufficient conditions that yield the C^k -differentiability of *B*.

PROPOSITION 3.1. Let $f \in J^k(n, 1)$ be such that $\| \bigtriangledown f(x) \| \ge c \|x\|^{k-1}$, $f(x) = O(\|x\|^{k_0})$ for $\|x\|$ small and $k_0 \le k$. Let p be a real number such that $p \ge k-k_0$. Suppose g is C^2 defined on a small neighborhood of 0 with the property that $g(x) = o(\|x\|^{k+p})$, $\bigtriangledown g(x) = o(\|x\|^{k+p-1})$ and $d(\bigtriangledown g)(x) = o(\|x\|^{k+p-2})$. Then B is C^1 .

PROOF. B is clearly C^1 for $x \neq 0$, ||x|| small. Also we have seen in the proof of Theorem 2.1 that $\partial B/\partial x$ (0,t) = 0. To show $\partial B/\partial x$ (x,t) is continuous at (0,t) we consider for $x \neq 0$, $y \in \mathbf{R}^n$ that

$$\frac{\partial B}{\partial x}(x, t)(y) = \frac{dg(x)(y)}{\|\nabla f(x)\|^2 + t \nabla g(x) \cdot \nabla f(x)} \nabla f(x) + \frac{g(x)}{\|\nabla f(x)\|^2 + t \nabla g(x) \cdot \nabla f(x)} \times d(\nabla f)(x)(y) \\ - g(x) \frac{2 \nabla f(x) \cdot d(\nabla f)(x)(y) + td(\nabla g)(x)(y) \cdot \nabla f(x) + t \nabla g(x) \cdot d(\nabla f)(x)(y)}{\left(\|\nabla f(x)\|^2 + t \nabla g(x) \cdot \nabla f(x)\right)^2} \nabla f(x).$$

Thus,

$$\begin{split} \left\| \frac{\partial B}{\partial x} \left(x, t \right) \right\| &\leq \frac{\left\| \bigtriangledown g(x) \right\|}{\left\| \bigtriangledown f(x) \right\| - \left\| \bigtriangledown g(x) \right\|} + \frac{\left| g(x) \right| \left\| d \bigtriangledown f(x) \right\|}{\left\| \bigtriangledown f(x) \right\|^{2} + t \bigtriangledown g(x) \cdot \bigtriangledown f(x)} \\ &+ \frac{2 \left| g(x) \right| \left\| d(\bigtriangledown f(x) \right\|)}{\left(\left\| \bigtriangledown f(x) \right\| - \left\| \bigtriangledown g(x) \right\| \right)^{2}} + \frac{\left| g(x) \right| \left\| d \bigtriangledown g(x) \right\|}{\left(\left\| \bigtriangledown f(x) \right\| - \left\| \bigtriangledown g(x) \right\| \right)^{2}} \\ &+ \frac{\left\| \bigtriangledown g(x) \right\| \left\| d(\bigtriangledown f(x) \right\| \left\| g(x) \right\|}{\left\| \bigtriangledown f(x) \right\| - \left\| \bigtriangledown g(x) \right\| \right)^{2}}. \end{split}$$

Then it is easy to see that the right hand side of the above inequality is $o(||x||^{p+k_o-k})$. Thus, $\partial B / \partial x (x, t) \to 0$ uniformly for $0 \le t \le 1$. Therefore, $\partial B / \partial x (x, t)$ is continuous at (0, t). Similarly, we can show that $\partial B / \partial t$ is continuous. Thus B is C^1 .

COROLLARY 3.2. Suppose $f \in J^k(n, 1)$ is homogeneous of degree k. Assume that f and g satisfy the conditions in Proposition 3.1. Then f is C^1 -equivalent to f + g. Hence f is C^1 -sufficient for C^{k+p} functions (cf. Theorem 2 of Kuiper [5]).

LEMMA 3.3. Let U be an open set in \mathbb{R}^n containing 0. Suppose that Q: $U \to \mathbb{R}$ is C^s ($s \ge 1$) and such that $|Q(x)| \ge c||x||^r$ for $x \in U, c > 0, r > 0$. Assume that $Q(x) = O(||x||^{r_o})$ where $0 < r_o \le r$. Let k be a positive integer such that $k \ge 2^s r - (2^s - 1)r_o + s$. For C^k map P: $U \to \mathbb{R}^m$ such that $j^k(P) = 0$, define H: $U \to \mathbb{R}^m$ by

$$H(x) = \frac{P(x)}{Q(x)}, x \neq 0, H(0) = 0.$$

Then H is C^s .

PROOF. We prove by induction on *s*. First, we assume that s = 1. Clearly, *H* is C^1 at $x \neq 0, x \in U$. Now for $x \neq 0, x \in U$, consider

$$\frac{\|H(x)\|}{\|x\|} = \frac{\|P(x)\|}{\|x\| |Q(x)|} \le \frac{\|P(x)\|}{c\|x\|^{r+1}}.$$

Since $j^k(P) = 0$, $o(P(x)) = k \ge 2r - r_o + 1 \ge r + 1$. Hence
$$\frac{\|H(x)\|}{\|x\|} \to 0 \quad \text{as} \quad x \to 0.$$

This shows that H is differentiable at 0 and dH(0) = 0.

Now for $x \neq 0, x \in U$, we have

$$dH(x) = \frac{dP(x)}{Q(x)} - \frac{dQ(x)}{Q^2(x)} P(x)$$

and hence

$$||dH(x)|| \leq \frac{||dP(x)||}{|Q(x)|} + \frac{||dQ(x)||}{|Q(x)|^2} ||P(x)||$$

Again, since $k \ge 2r - r_o + 1$, $||dH(x)|| \to 0$ as $x \to 0$. This shows that H is C^1 .

Assume the lemma holds for s - 1, $s \ge 2$. Suppose that $k \ge 2^{s}r - (2^{s} - 1)r_{o} + s$. Then since $k \ge 2(r - r_{o}) + r_{o} + 1$, *H* is C^{1} .

Define $H_1, H_2: U \to L(\mathbb{R}^n, \mathbb{R}^m)$ (= the linear space of all linear maps from \mathbb{R}^m into \mathbb{R}^m) by

$$H_1(x) = \frac{dP(x)}{Q(x)} \qquad x \neq 0, \ H_1(0) = 0$$
$$H_2(x) = \frac{dQ(x)}{Q^2(x)} P(x) \qquad x \neq 0, \ H_2(0) = 0$$

Since o(P(x)) = k, o(dP(x)) = k - 1. Also, by assumption we have $k - 1 \ge 2^{s-1}(r - r_o) + r_o + s - 1$. Hence, by the induction hypothesis, H_1 is C^{s-1} . Also from the fact that $o(P(x)dQ(x)) = k+r_o - 1$, $O(Q^2(x)) = 2r_o$ and $k+r_o - 1 \ge 2^{s-1}(2r) - (2^{s-1} - 1)(2r_o) + s - 1$ we have, by the induction hypothesis, H_2 is C^{s-1} . Thus from $dH(x) = H_1(x) - H_2(x)$ we have that dH is C^{s-1} . That is, H is C^s .

178

COROLLARY 3.4. Let $f \in J^r(n, 1)$ satisfy $\| \nabla f(x) \| \ge c \|x\|^{r-1}$ and $f(x) = O(\|x\|^{r_o})$ for $\|x\|$ small, $0 < r_o \le r, c > 0, r \ge 2$. Let $k \ge 2^{s+1}(r-r_o) + s + r_o - 1$ and g be C^k with $j^k g = 0$. Then B(x, t) defined by (2) is C^s for $0 \le t \le 1$ and $\|x\|$ small. Here we assume $s \ge 1$.

PROOF. Take $Q(x, t) = \| \nabla f(x) \|^2 + t \nabla g(x) \cdot \nabla f(x)$ and $P(x) = g(x) \nabla f(x)$. Then apply the above lemma to B(x, t) and $\partial B / \partial t(x, t)$.

REMARK 3.5. Lemma 3.3 is a sufficient condition for general mappings. However, in our case, B(x, t) is rather special. We can apply the technique used by Taken [7] to improve the condition to $k \ge s(r - r_o) + s + r - 1$. For s = 1, this is already shown in the proof of Proposition 3.1.

COROLLARY 3.6. Suppose $f \in J^r(n, 1)$ is homogeneous of degree r satisfying $|| \bigtriangledown f(x)|| \ge c ||x||^{r-1}$ for ||x|| small. Let $k \ge r$ and g be C^k with $j^k g = 0$. Then B defined by (2) is C^{k-r+1} .

COROLLARY 3.7. Same as in Corollary 3.6 with $r = r_o = 2$. Then B is C^{k-1} .

EXAMPLE 3.8. $-x_1^2 + x_2^2 + x_2^3$ is C^1 -equivalent to $-x_1^2 + x_2^2$. However, $-x_1^2 + x_2^2 + x_2^{7/2}$ is C^2 -equivalent to $-x_1^2 + x_2^2$.

THEOREM 3.9 (KUIPER-MORSE). Let $f: \mathbb{R}^n \to \mathbb{R}$ be a C^k function, $k \ge 2$. Assume that 0 is an isolated non-degenerate critical point of f, f(0) = 0. Put $f_2 = j^2(f)$. Then f is C^{k-1} -equivalent to f_2 . That is, there exists a neighborhood U of 0 in \mathbb{R}^n and a C^{k-1} diffeomorphism $\psi: U \to \psi(U)$ such that $f(x) = f_2(\psi(x))$ for $x \in U$.

PROOF. Let $f_k = j^k(f)$ and $g = f - f_k$. If $g \equiv 0$, then $f = f_k$; so we can apply Part A of Kuiper [4].

Assume that $g \not\equiv 0$. Then g is C^k and $j^k g = 0$. Since f_2 is non-degenerate, $\| \bigtriangledown f_2(x) \| \ge c \|x\|$ for $\|x\|$ small, c > 0. Hence $\| \bigtriangledown f_k(x) \| \ge c_1 \|x\|$ for some constant $c_1 > 0$ and $\|x\|$ small.

Define

$$B(x, t) = \frac{g(x)}{\|\nabla f_k(x)\|^2 + t \nabla g(x) \cdot \nabla f_k(x)} \quad \nabla f_k(x) \text{ for } x \neq 0$$

and $B(0, t) = 0, 0 \le t \le 1$.

Then by Corollary 3.4, *B* is C^{k-1} . Hence its local flow ϕ is also C^{k-1} . (c.f. Hartman [2]). That is, $f = f_k + g$ is C^{k-1} -equivalent to f_k . By part *A* of Kuiper [4], f_k is C^{k-1} -equivalent to f_2 .

CHUAN I. CHU

REFERENCES

1. M. A. Buchner, A note on C¹ equivalence, J. Math. Anal. Appl. 121(1987) 91–95.

2. P. Hartman, Ordinary Differential Equations, Second Ed. Birkhauser, Boston, 1982.

3. S. Koike, On v-sufficiency and (h)-regularity, Publ. Res. Inst. Math. Sci. Kyoto Univ. 17(1981) 565-575.

4. N. H. Kuiper, C^r functions near non-degenerate critical points, Mimeographed, Warwick Univ. 1966.

 N. H. Kuiper, C¹-equivalence of functions near isolated critical points, Symposium on Infinite Dimensional Topology, No. 69, Princeton Univ. Press, 1972.

6. T. C. Kuo, On C⁰-sufficiency of jets of potential functions, Topology, 8(1969) 167–171.

7. F. Takens, A Note on Sufficiency of Jets, Inventiones Math. 13(1971), 225-231.

Department of Mathematics Hong Kong Baptist College 224 Waterloo Road, Kowloon Hong Kong