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CYLINDRICAL FLOW IN AND OVER CHANNELS OF IRREGULAR 
SHAPE 

By E. M. SHOEMAKER 

(Department of Mathematics, Simon Fraser University, Burnaby, British Columbia V5A IS6, Canada) 

ABSTRACT. Earlier work by Nye (1965), who obtained 
numerical solutions for axial independent flow of a 
non-linear Glen material in channels of rectangular, elliptic, 
and parabolic cross-sections with a nUll-slip basal condition, 
is extended by using an inverse technique. Exact analytical 
solutions are obtained for flow in irregular-shaped channels 
(subject to symmetry restrictions) for both a Newtonian and 
an n = 3 Glen material. The cross-sections are regulated 
by multi-parameters. Solutions are obtained for two types of 
channel: (a) those whose side walls meet the free ice surface 
vertically, and (b) periodic channel arrays whose basal 
profiles do not intersect the free ice surface, i.e. overfilled 
channels. Solutions for the second type have not been 
presented previously. The solutions for the 11 = 3 Glen 
material employ a small parameter which limits the 
geometry vanatlOn to perturbations on semicircular or 
uniform-depth channels. Basal slip conditions can be 
incorporated although results are not presented here. 

RESUME. Fluoge cy lindrique dOlls et sur des chelloux de 
forme irreguliere. Le premier travail de Nye (1965), qui 
obtint des solutions numenques pour des ecoulements 
independants de la direction axiale d'un corps de Glen non 
lineaire dans des chenaux de section droite rectangulaires, 
elliptiques et paraboliques sans glissement sur le lit, est 
etendu it l'aide d'une technique d'inversion. Des solutions 
analytiques exactes sont obtenues pour l'ecoulement dans des 
chenaux de formes irregulieres (soumises neanmoins aux 
regles de la symetrie a la fois pour un corps newtonien et 
un corps de Glen oil Il = 3. Les sections droites sont 
determinees par des parametres multiples. Les solutions sont 
obtenues pour deux sortes de chenaux (a) ceux pour qui la 
surface libre coupe normalement la rive, (b) ceux 
periodiques pour lesquels le profil du lit ne coupe pas la 

INTRODUCTION 

Nye (I965) examined the steady rectilinear flow of 
a Glen material in channels of prescribed cross-section : 
rectan gular, elliptic, and parabolic, under a zero-velocit y 
ba sal condition. The analysis consisted necessarily of a 
full y numerical solution of the partial differential 
equations. Nye also presented two analytical solutions 
for fl ow in an infinitely wide channel of uniform depth 
and in a semi-<:ircular filled channel. He also presented 
an analytical solution due to W. Chester (private 
communication between Chester and Nye) for a slightly 
elliptic channel obtained by a standard perturbation of 
the solution for a semicircular channel. Finally, he noted 
that a standard perturbation could not be performed on 
the solution for the infinitely wide channel of uniform 
depth. 

The emphasis here will be on analytical solutions 
because such solutions are more adaptable for qualitative 
studies . Although we shall again assume a zero-velocit y 
ba sal condition, the techniques exhibited can be applied 
to other basal conditions such as a Weertman (1957 , 
1964) sliding law . There are two reasons why we res tri ct 

surface libre, c'est-it-dire des chenaux noyes. Des solutions 
pour ce second genre n'ont jamais ete presentees auparavant. 
Les solutions pour un corps de Glen avec Il = 3, utilise un 
petit parametre qui limite les variations geometriques aux 
perturbations des chenaux semi-circulaires ou d'epaisseur 
uniforme. Les conditions de glissement a la base peuvent 
etre introduites bien que ces resultats ne soient pas 
presentes. 

ZUSAMMENFASSUNG . Zylilldrisches Fliessell ill ulld iiber 
Kallnlell VOIl ullregelmnssiger Gestalt. Fruhere Arbeiten von 
Nye (\965), der numerische Losungen fUr das 
achsunabhtingige Fliessen eines nichtlinearen Glen'schen 
Materials in Kanalen mit rechteckigen, elliptischen und 
parabolischen Querschnitten bei Fehlen von Gleiten am 
Untergrund erhielt, werden durch Anwendung einter 
inversen Technik erweitert. Exakte analytische Losungen 
ergeben sich fUr den Fluss in unregelmassig geformten 
Kantilen (unter gewissen Symmetrie-Bedingungen) sowohl fur 
ein Newton'sches Material sowie solches mit einem 
Glen-Exponenten n = 3. Die Querschnitte werden durch 
eine Schar von Parametern erfasst. Die Losungen geiten fUr 
zwei Kanaltypen: (a) soiche, deren Seitenwande senkrecht 
auf die freie Eisoberflache treffen, und (b) periodische 
Kanalanordnungen, deren Grundprofile die freie 
Eisoberfliiche nicht schneiden, d.h. uberlaufende Kanale . 
Losungen fUr den zweiten Typ wurden bisher noch nicht 
angegeben. Die Losungen fur Material mit dem 
Glen-Exponenten Il = 3 verwenden einen kleinen Parameter, 
der die geometrischen Variation en auf Abweichungen von 
halbkreisformigen Kanalen oder solchen mit gleichformiger 
Tiefe beschrankt. Bedingungen fur das Gleiten am 
Untergrund konnen eingefUhrt werden, doch werden 
entsprechende Ergebnisse nicht vorgelegt. 

the study to the non-sliding case. First, a direct 
comparison with Nye's work is then possible. Second, 
the whole subject of sliding laws is currently at issue. 

For brevity, Nye ' s assumptions, notation, coordinate 
sys tem, and sign conventions (his fig. la and b) are used 
throughout. We are concerned with the steady cylindrical 
flow of a homogeneous, isotropic Glen material. In 
addition , we assume that the xy plane is a plane of 
symmetry. (The x-axis lies on the ice surface and points 
down-slope with the y-axis into the bed through the 
thalweg .) 

The equilibrium equations reduce to the single 
equation 

(hxy 
a y 

+ aTxz 
az 

- pg sin a (I) 

wh e re a is the bed slope. Glen ' s flow law reduces to 

au 

ay 

au n-I 
AT Txy' az (2) 
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where T '" (TX/ + Txz2)1/2. We shall consider two 
cases: 

n = I, a Newtonian material, and n = 3, which is a 
popular but not universal choice to represent ice. Under 
assumptions invoked here, A is a constant. 

A solution involves finding the two stress 
co~ponents Txy ' TXZ and longitudinal velocity u which 
satIsfy (I) and (2) along with certain boundary 
conditions . The boundary conditions consist of the free 
surface condition 

Txy (O,z) = 0 (3) 

and the null-velocity condition u = 0 on a basal profile 
as yet to be determined. In addition , symmetry implies 
that 

TXZ (y,O) = O. (4) 

In cases of flows periodic in z condition, (4) is replaced 
by 

0, m 0,1 ,2, .... (4') 

ANALYSIS FOR A NEWTONIAN MATERIAL 

Most creep data for ice apply above 1 bar. At this 
high stress range there is considerable variation in 
values of n measured in the laboratory and calculated 
from field measurements. (see, for example, Pa terson 
(1981).) However, there is no ambiguity in the conclusion 
that n > I, i.e. the behaviour is non-Newtonian. 

Laboratory tests carried out at sma ll total creep 
strains and at low st resses show n ~ I, (see, e.g. 
Landauer, 1955; lellinek and Brill, 1956; Bromer and 
Kingery, 1968; Mellor and Testa, 1969; and Colbeck and 
Evans, 1973). However, Weertman (1973) offers the 
explanation that, because the total creep strains are so 
small in these experiments, it is unlikely that the 
dislocation density has reached th e steady-state va lue. 
Values of n calculated from field observation at low 
stresses vary, but in general exceed unity . Shreve and 
Sharp (1970) from analysis of bore-hole data , Nye ( 1953) 
from tunnel closure, and Thomas (1971) and Dorrer 
(1971) from ice shelf spreading support a value n ~ 3. 
On the other hand, Gerrard and others (i 952) from 
bore-hole data as reexamined by Nye (1957) indicates a 
lower value n ;;0 2. (This is my calculation from Nye's 
figure 6, Curve T I ' taken at the base of th e glacier.) 

The situation involving the measurement of the 
index n at low stresses is further clouded by the fact 
that there are no field measurements at stresses as low 
as 0.25 bar. In addition, as pointed out by Pa terson 
(1981) and by Morland and Shoemaker (1982) for the 
case of ice shelves, there are serious difficulties 
involved in calculating n from any field data. It would 
seem that until this ambiguity is removed in favour of 
a value of n much greater than one there is 
justification for treating the linear case here . 

Consider the following class of functions as 
prospective velocity field in Equation (2): 

u 

m l 

a;K [I [; r -2 Bi 

i=1 

~2 C. cos iy cosh 
Llb 

i=1 

iz iy 
cos -cosh-

b b 

(5) 

Here, K = pga sin a is a characteristic stress as used by 
Nye, the basal stress for an infinitely wide channel of 
depth a. Coefficient b is a horizontal length scale. 
Coefficients Bi and Ci are arbitrary at this stage. For the 
special case Bi = Ci = 0, all i, Equation (5) reduces to the 
velocity field for an infinitely wide channel of depth a 
(Nye, 1965). 

Flow Equations (2) with n = I determine the 
associated stress components 
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aK [- !; - I 
21 

iz iy 
Txy - iBi cos sinh + 

2 b b b 

i=1 

I r iy ~z ] + - iCi sin cosh 
b b 

(6a) 

i=1 

aK 

[~ ~I iz iy 
TXZ 2 

iBi sin cosh 
z b 

i=1 (6b) 

I ~12 iy iz 
- iCi cos b sinh 
b b 

i=1 

Equilibriu m Equation 
Equa tions (6), as are 
(4). 

(I) is satisfied identically by 
the boundary conditions (3) and 

Rather than attempting to choose coefficients so 
that the null velocity condition is satisfied on a 
predetermined basal profile, it is easier and far more 
flexible to adopt an inverse approach, thus assigning 
coefficients and determining the resultant null velocity 
profile . To this end we shall examine two special cases 
which will prove to be sufficiently general to illustrate 
the possibilities of the method . 

BASAL PROFILES INTERSECTING z-AXIS 

If Cl is the only non-zero coefficient in Equation 
(5) the null-velocity profile is determined as the solution 
to 

2 

Cl cos ~ cosh ~ + [; ] = I . (7) 

With the characteristic length a fixed, Equation (7) 
contains two parameters. It is a simple numerical task to 
determine the ranges of band C I which place the 
thalweg at z = 0 as required. 

Figure 1 graphs the right half of six basal profiles 
on axes y / a, z/ a; three intersect the y / a axis a t 0.3 and 

2 
z/ a 

3 4 

Fig . 1. The right half of six basal profiles correspollding 
to a Newto/liall material and null-velocity basal 
cOllditioll. Parameter values are: 
Curve A: b = a, Cl = 0.6668; 
Curve B: b = 2a, Cl = 0.5429; 
Curve C: b = 3a , Cl = 0.5242; 
Curve D: b = a, Cl = 0.95254; 
Curve E: b 2a, Cl 0.92033; 
Curve F: b = 3a, Cl = 0.9146. 

three at 0.7. The profiles resemble ellipses. Our primary 
interest is in shape modification, not scale. Scale can 
always be adjusted by varying the constant a. With scale 
removed from consideration, two parameters remain for 
shape modification and this is reduced to one if the 
width / depth ratio of the channel is specified. 

To illustrate the flexibility of a one-parameter 
modification to shape with a fixed width / depth ratio we 
consider basal profile families which have the same 
intercepts on y/ Yi' z/ Yi axes, where Yi is the y intercept 
of any curve. Let c = z;!Yi be the fixed ratio of the 
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intercepts. Substituting the intercepts (0, cYi) and (Yi'O) 
into Equation (7) gives 

C1. = sech (cYj/b), 

cosh(cyj/b) = cos(Yi/b)/(I - (Yi/a)2). 

(8 ) 

(9) 

With a = I, and band c assigned, Yi is determined 
from Equation (9) and Cl from Equation (8). The basal 
profiles are then found from Equation (7) as before. 

Figure 2 illustrates profiles corresponding to c = I 
and c = 2. It is clear that the single parameter which 

o 
O.-------------r------------,------. 

2 
Z/Yi 

Fig. 2. The right half of seven basal profiles plolled on 
Y I Yi, z l Yi axes. Parameter values are: 
Curve A: b = a95a. Cl = a9024; 
Curve B: b a8a, Cl = Q6381; 
Curve C: b a7 a, Cl = a4855; 
Curve D: b 1.55 , Cl = Q9555; 
Curve E: b 1.5a, Cl = Q8859; 
Curve F: b a Cl = Q3271; 
Curve G: b a75a , Cl = Q1454. 

governs shape affords considerable vaflatlOn. Velocity 
and stress results are not illustrated ' these are easily 
obtained from Equations (5) and (6) and are 
qualitatively similar to Nye's results. 

BASAL PROFILES NOT INTERSECTING z-AXIS 

If BI is the only non-zero coefficient in Equation 
(5), the null-velocity profile is determined as the 
solution to 

z y ~a-]2 BI cos b cosh b + la I. (10) 

Profiles of this class are periodic in z and may not 
intersect the z-axis. In that event exact solutions are 

o 

1~~~~ ____ ~~~~~====~ 
o 1 2 

Z/ Yi 

Fig . 3. The right half of seven periodic basal profiles 
plolled on y l Yi' z l Yi coordinates. The ice surface 
corresponds to the top of the box. Parameter values are: 
Curve A: bl a a53 , B1 - 0.1529; 
Curve B: bl a 0.45 , BI - 0.0861; 
Curve C: bl a a40 , BI - 0 .0500; 
Curve D: bl a a32 , BI - 0.000011852; 
Curve E: bl a 1.175, BI = - 0 .9591; 
Curve F: bl a a8, BI = - 0.2308; 
Curve G: bl a a65, BI = - 0.016929. 

S hoemaker: Cy lilldrical flow ill irregular challllels 

provided for Newtonian flow in overfilled channels (an 
ice sheet flowing over a periodic array of cylindrical 
channels in the direction of the cylindrical axes). Since 
this problem has not been previously considered we 
illustrate some details of the velocity and stress fields. 

Figure 3 graphs families of half wavelength basal 
prof~les plotted on axes y /Yi' z/Yi - similar to Figure 2 . 
Profiles are shown for c = I and c = 2 where c is the 
ratio of the half wavelength to ice depth at the thalweg. 
With c and b/ a given, the dimensionless half wavelength 
z/a is found from the condition cos zi / b = I or 

(11 ) 

The dimensionless intercept yj/a is then given by 

(12) 

Finally, B I is found from Equation (10) which gives 

(13) 

Note that all basal profiles are smooth and intersect 
the Y/ Yi axis orthogonally . Thus, curve A approximates a 
V ~haped profile but the bottom is actually rounded at 
the thalweg. 

Figure 4 illustrates dimensionless velocity profiles 
and dimensionless boundary stresses corresponding to 
curve E of Figure 3. Dimensionless velocity is defined 
by 

u = u/[a~K) (14) 

where aAK/ 2 is the surface velocity in an infinitely 
wide channel of uniform depth a for a linear material. 
In terms of dimension less variables Y = y / y ' , Z = z/ y. 
where Yi is given by Equation (12) J J 

U = I - [;: Yy -B I cos ["~] cosh r:l (14') 

In Figure 4, since b/ a = 1.175 and c = 2 the channel 
depth at the thalweg is y/a = 1.85 from Equation (12). 
Thus, the maximum channel depth is greater than a 
which explains why values of U exceed unity . 

B 
0 0 .2 0.4 0 .6 0 .8 1.0 1.2 1.4 1.6 1.8 

0 .2 

0 .4 

;>..-
'- 0 .6 >. 

0 .8 o 

1.0 

E 

Fig. 4. Dimensionless velocity profiles U at intervals of 0.2 
and dimensionless boulldary stresses T for the case 
c = .2 bl a = 1.175 , Bl = - 0.9591. The inner boundary 
tick marks indicate equal stress increments over intervals 
OB, BC, CC ' ; C'D , DE, alld EO 011 which stress varies 
monotonically. ( The increments are /lot the same for all 
intervals.) Key stresses are: 
0: T = aa , B: T = 0.408 , C: T = ao , C' : T = 0.230 , 
D: T = 1.23, E: T = a906. 

Dimensionless effective stress is defined by 

_ /T2 T2 
T - xy + xz / K. (15) 

In dimensionless variables (Y,Z) this becomes 
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T = [[lib Y + Bl : cos .:0 s inh II~ 2 + 
ca 2 b c c-J 

+ [aB l sin "Z cosh II
YJ 2] 1/2 

2b c c 

(15 ') 

where Tx y and TXZ are computed from Equation (6). 
Because T is proportional to grad U for a linea r 

mate ria l one ca n visualize the profiles of T from the 
boundary values of T a nd profiles of U illustrated. The 
boundary stresses are given by the tic marks on the 
inner boundary wh ich are spaced at equa l increments of 
T ove r arcs OB, BC, CC I , C'D, DE, and EO on which 
stress varies monotonica ll y. The increments are not the 
sa me for all intervals. The key st resses are: 0: T = 0.0, 
B: T = 0.408, C: T = 0.0 , C ' : T = 0.230, D: T = 1.23 , 
E: T = 0.906 . Thus, T has an overall maximum at point 
D and a relative maximum at point B. The boundary 
stress on OBC is sinusoidal as can be seen from Equation 
(15 1

) . The fact that T = 0 at point C follows from the 
sym metry of the periodic channel array. The stress 
would not va nish at C nor be sinusoidal on the free 
sur face for an isolated valley. 

The Nye sha pe factor is easily computed. Thus , the 
dimens ionless shear stress at th e thalweg , assuming plane 
flow, is equa l to the dimensionless ice depth , or 1.85. 
The ac tual dimensionless stress is 0.906. Thus, the Nye 
shape factor value is f = 0.49 . 

PROFILES FOR IZ = 3 NOT INTERSECTING z-AXIS 

For a non-linear material it is difficult to produce 
an interesting class of velocity fields which is associated 
wit h an equilibrium stress field through Glen's flow law. 
Taking a new approach we consider the equilibrium 
stress field 

Y 
_Ky _ EK(J z 

Txy = ~f'(O dO cos- (16a) 
a a2 0 b 

EK by z 
TXZ = fl( y) sin (l6b) 

a2 b 

where b/ a and E are parameters and unknown function 
f must satisfy the condition that f I be bounded . 
Equations (16) are substituted into Glen's flow law (2) 
with n = 3. This gives 

au = A { 
ay 

Z ]2 
~f'W cos b + 

y 
(l7a) 

[
by Z]2} + EK a

2 
fl( y) sin b [ 

K y EK J ---- ~f'W 
a a2 

d~ .cos~} 
o 

y 
au A{ [KY + EK 
az a a2 J zr ~f'(s) d~ ·cos b + 

0 (l7b) 

[EK by f l (y) sin ~r} [EK by sin : ]. + -- fl( y) 
a2 a 2 

Equations (17) thus result in expansions in powers of E 
ou t to E3. Provided conditions can be established such 
that the E2 and E3 terms are uniformly dominated by 
the EO and El terms (better yet , that the E2 and E3 
terms are also uniforml y dominated by the El term), for 
suitably small E the E2 and E3 terms may be neglected. 
(These conditions will be considered later.) Equations 
(17) may then be integrated , yielding a velocity field 
which is associated with the equilibrium stress fi eld 
through the flow law only out to the first order E 
term . 

180 

The velocity field resulting from this procedure is 

AK
3 [ y4] ~]2 r1:>]2 Z 

u -4- a 1--;0 - AEK3
L; L; y fl(y) cos b o (18) 

The constant of integration was determined by the 
condition that for E = 0 the veloc ity be that of an 
n = 3 Glen material flowing in a uniform channel of 
depth a. 

The procedure also produces a differential equation 
for the determination of fey) in Equations (16) and (18). 
Thus, 

yfll l + 4f" 
3yf' 

-IT O. (19) 

Letting f' = g gives a form of the modified Bessel 
equation whi ch has the regular solution 

fl(y) C l [ ~y cosh [~y ]- sinh [I1Y] ]/y3. 

(20) 

Note that lim f' (y) = /lC 1/ b3; thus f and f I are 
y....() 

bounded. Moreover, from Equa ti on (16b) TXZ(O,Z) = 0 
which was not a required condition. The boundary 
condition TXZ(Y'O) = 0 is satisfied by Equation ( 16b) 
while the other boundary condition Txy(O,Z) = 0 is 
satisfied by Eq u atio n (l6a). 

TX~ 
(2 ). 

y 

The quantity J ~f'(s) de necessary for determining 

o 

in Equation (16a), is found by integration usi ng 
This gives 

y 

J ~f' (O d~ ~ [sinh [~y )] , (2 1) 
y 

0 

The constant Cl is determined by the condition that 
for lE I = I the EO terms in Equations (l6a and b) are 
just sufficient to dominate the El terms throughout the 
flow field. It is fairl y easy to show that 

r 

a(y i)2 
Cl Min 

[sinh fiYi )-1 ~Yi] 

a 

~Yi)J b (Yj)3 
(22) 

[fly. ~Y ' ] -;-1 cosh -;-1 _ sinh 

Here Yi is the y-intercept of the zero-velocity basal 
pro fi le which is yet to be determined . With Cl' yj/a, 
b/ a, and E given, the stress and velocity fields are 
known . The analysis is valid for I E I small compared 
with unity but because the bound ing procedure leading 
to Equation (22) was fairly crude it is expected that the 
useful range of I E I will be somewhat larger. 

We illustrate results in Figure 5 for fixed aspect 
ratio c defined as previously for the Newtonian material 
leading to Figure 3. With c prescribed, the intercepts 
zj/a and yj/a are again given by Equations (11) and 
(\2), respectively. Substituting the intercept (Yi'O) into 
Equation (18) with u = 0 and solving for E results in 
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0 1.4 1.6 2.6 2.8 3.0 

0.2 

0.4 

>.-
......... 
>. 0.6 

............. 
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. .................... = ... = .... = .... = .... = .... ~C ______ E 

/<~;:~:::::=~:~~=--=--====~-.-.-.-.-.-.-F--0.8 

1.0 

Fig. 5. Tire right half of six periodic basal 
Cur ve A: bl a U.4, E = - 0.470; 
Curve B: bl a 0.35. E = - 0.248; 
Curve C: b/ a 0.9, E = - 0.294; 

a
3 [1-[::fJ 

E = .(23) 

4c l [;f [4 cosh [~ ]- sinh [S] J 

At this stage, with the input parameters c and b/ a 
prescribed and z/a, y/a determined from Equations (I I) 
and (12), Cl is found from Equation (22), E from 

Equatio n (23), fl from Equation (20) and r ~f'(U d~ from 

o 

Equation (21). Velocity is then given by Equation (18) and 
the stress components by Equation (16). 

It is evident from Equations (16) and (I8), noting 
that f I is bounded, that the perturbation on stress and 
veloci ty is not felt at the free surface y = O. This 
property is built into the general expansions (I7) for 
au / a y and au / az before truncation; thus, both au / a y and 
au / az approach zero to order y3 at y = O. This 
behaviour is appropriate if the basal profile is a 
perturbation on a horizontal base. 

Note that with Cl given by Equation (22), uniform 
domination of the El terms by the EO terms is assured 
for lE I ~ 1 However, there is no assurance of a similar 
uniform domination of the E2 and E3 terms . A practical 
numerical measure of this domination will be discussed 
later. 

Again, defining a dimensionless ve locity by 
U = 4u / Ak 3 a where AK 3a is the free-surface velocity in 
a channel of depth a and u sing dimensionless variables 

profiles for all 11 = 3 Glell material. Parameters 
CurveD: bl a = 0.7 , E = - 0.124; 
Curve E: bl a 1.3, E = - 0.186 ; 
Curve F: bl a = 1.0 , E = - 0.441. 

are: 

Y = y/ Yi' Z = z/Yi' the dimension less veloc ity field 
from Equations (18) and (20) is 

U = [I [~ ; yn -
[~n Y cosh [fl:Y) - (24) 

-sinh [fl:Y)] cos [:Z]. 

(Note that Cl' from Equation (22), has the dimension 
[length]3) . 

Figure 5 graphs the right half of a range of 
zero-velocity basal profiles determined for fixed c and 
b/ a with E and Cl determined by the previously 
outlined procedures. The profiles are found by setting 
~ = 0 in Equation (24). The results indicate that lE I 
Increases rapidly as c decreases. Also, the cusp-line 
behaviour at the y-intercept, noted previously for the 
n = I material in Figure 3, again appears for c = I as 
I E I increases. For c = 2 and 3 deep valley profiles (not 
illustrated) can be produced corresponding to the range 
I El < 0.5. Solutions for such cases should be useful for 
approximating Nye shape factors. 

The dimension less effective stress T defined by 
Equation (IS) becomes 

T {[~!:y c a 
+ EC I:.... a I 

na 3 b Y 
[sinh r:y

] - [i3:Y]] cos :Z r + 

(25) 

! 8 ! 
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Because stresses and velocities are associated through the 
flow la w only to the first power of e, rela ti ve errors in 
the velocity-stress relation of order e2 are present in 
Equations (24) and (25). To remove this undesirable 
feature of the solution we can, alternatively , regard 
Equation (24) as a given velocity field. Stresses can then 
be derived by in verti ng Glen's flow law, Equation (2). 
This results in the associated stress field 

Figure 6 illustrates profiles of U and boundary 
values of Ta corresponding to b / a = 0.8, c = 2, 
e = - Q2352 . Here, Yi = 1.257 a, computed from 
Equation (12), is the maximum ice depth at z = 0; the 
mInimum ice depth is 0.886 a at z/ Yi = ± 2 This 
represen ts a perturbation between + 25% to - 11 % on 
the depth of a uniform channel. The ratio of the half 
width of the glacier valley to the depth of valley at the 

[ [
y]3 3eC y [ l3y ] - K ;;: + --t- sinh Vb cos z/ b 

{[[; ] 3 + 3:;1 y sinh [l~y cos ~r + [e~41b [4y 
cosh [~] - sinh [4]] sin H fZ 

3eC1 
--'1 - Y sinh 

a 

This stress field satisfies equilibrium only out to first 
order e and differs by order e 2 from the original stress 
field . In terms of the dimension less variables Y = y/ Yi' 
z = z/ Yi' the dimensionless associated effective stress 
becomes 

(26) 

thalweg is w/ 2h = 2/ 0.295 s 7, a value which is well 
within the range of actual glacier valleys. (Shoemaker 
(in press) presents w / 2h values for various glacier and 
fjord valleys which correspond to the range I ~ w/2h 
00). 

- Y + -- - Y sinh .;....::..-- y cos {[[lib ]3 )IIeC; b [1311] 
ca ca3 a c ["~]r + 

(27) 

[!lll [ l3"y ] ((3"Y]] - c- Y cosh .; :'-c- - sinh [ --c- si n 

Several numerical examples suggest the following 
conclusions: (i) T and Ta differ uniformly by well less 
than I el ' (ii) the values of Ta / T tend to oscillate slowly 
about unity, (iii) the relative error I (T-Ta)/ TI , for fixed 
z/ Yi' is minimized at the base and maximized near the 
free surface, (iv) overall equilibrium is satisfied to at 
least two figures. This latter conclusion is arrived at by 
numerical integration of the basal drag. (v) Finall y, 
comparison of T and Ta values for several numerical 
examples supports the conclusion that there is 
sa ti sfactory domination of the e2 and e3 terms in 
Equation (17) provided le I is small compared to unity . 

0 .2 0 .4 0.6 OB 1.0 1.2 1.4 1.6 1.B 2.0 
0 C 

0.2 
099 

0.4 0.95 

:;;.,- 08 

"- 0 .6 >-
C' 

O.B 

1.0 
E 

Z/ Yj 

Fig . 6. Dimensionless velocity profiles U and boulldary 
associated effective stresses y.a for the case c = .2 
b/ a = a8 . e = 0.235. The tick marks illdicate equal 
stress increase over intervals CC', C' E. and EO. y.a = 0 
on QC. The key stresses are: 0: ya = 0; 
C' : ya = 1.028; E: ya = a898. 
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The Nye shape factor for the example is f = 0.71. 
This can be compared to the value f = 0.73 
corresponding to a linear material flowing in profile F 
of Figure 3, a very similar but slightly deeper profile. 
Thus, the Nye shape factor is very insensitive to the 
non-linear flow law. The velocity profiles corresponding 
to profile F of Figure 3, however, are qualitatively 
dissimilar to those of Figure 6. Rather, they a re similar 
to Figure 4 in that they intersect the free surface; the 
dimensionless velocity U varies between 1.23 and 0.769 
on the free surface of profile F of Figure 3. Moreover, 
the velocity gradients corresponding to Figure 6 are 
much steeper near the base and much less steep near the 
free surface as compared with the linear case. This 
result is, of course, consistent with the flow law. 

PROFILES FOR 11 = 3 INTERSECTING z-AXIS 

Nye (1965) presented an analytical solution due to 
W. Chester for a slightly elliptic channel. A standard 
perturbation technique was employed. We shall again 
consider a multi-parameter inverse technique which will 
involve four independent small parameters. Nye's 
solution will be obtained by setting three of the 
parameters, equal to zero. The emphasis will be upon 
exhibiting a variety of channel shapes for which exact 
solutions can be obtained corresponding to a 
zero-velocity basal condition. 

The single equilibrium equation in cylindrical 
coordinates is 

- K/ a (28) 
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We consider the stress field z/ Yj 

T = K[- r/2a + rx 
(29) 

'"' - K [J '2) '2) ~ J ,'" (2)9) 1 (30) 

which reduces to the stress field for flow in a 
semicircular channel of · radius a if E2j = O. As before, 
K is the basal shear stress in a channel of un if orm 
depth a. 

The free-surface boundary condition is 

Tex(r,n/2) = 0 (3 I) 

and symmetry implies that 

O. (32) 

Both boundary conditions are satisfied by Equation (30). 
Substitution of Equations (29) and (30) into 

Equation (28) determines functions g2j in terms of f 2j 
such that equilibrium is satisfied. Thus 

(33) 

Glen's flow law (2) in cylindrical coordinates is 

(2' ) 

The stress field given by Equations (29) and (30) along 
with (33) is substituted into Equation (2'). This results 
in an expansion in E out to third powers. Truncating 
the higher powers enables one to obtain a velocity field 
which is associated with the stress field out to first 
power of Eo Differential equations also result for the 
determination of f 2j' These are 

with the regular solutions 

The resultant velocity field is 

U = 
AK3 a 

32 

o (34) 

(35) 
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Fig. 7. Five profile perlurbaliolls on a semicircular filled 
challllel. 

where the constant of integration was determined by the 
condition that Equation (36), if E2j = 0, reduces to 
Nye's solution for flow in a semicircular channeL The 
stress fields will not be investigated here but are easily 
obtained by substitution of Equation (35) into Equations 
(29) and (30). 

The restriction of "small perturbations" are satisfied 
if the coefficients in Equation (36), e .g. I E61 2/ 91 E61 
(-I + ~) are small compared with unity. These 
coefficients E2' E4' E6' and E8 are the effective small 
parameters. 

To within the accuracy of the perturbation scheme 
Nye's solution for an elliptic channel is obtained if 
E4 = E6 = E8 =. O. . . 

Figure 7 Illustrates varIOUS basal profIles which 
sa tisfy the small parameter restriction. The values of the 
effecti ve small parameters for the four cases where 
there is only one non-zero E2j are: E2 = 0.625, 
E4 = 0.246, E6 = 0.155, E8 = 0.113. Thus, the solution 
corresponding to the ellipse-like channel, which is 
similar to Nye's solution, may violate the 
small-parameter restriction. Parameter values are 
acceptably small for the other examples. The effect of 
E4' E6' and '8 upon shape may be ascertained by 
comparison of the profiles. By using even higher-<lrder 
terms it should be possible to match profiles which are 
of particular interest. However, it must be noted that all 
such profiles must satisfy the condition that Iw2/ h - d 
be small compared to unity . Most glacier valleys fall 
outside this range . 

CONCLUSION 

The inverse technique exhibited here was developed 
by the author primarily for use in obtaining exact 
solutions where a sliding law is included, an extension 
of Shoemaker (in press). In the form exhibited here, the 
technique is applicable to cold-based glaciers. The flow 
law, however, is restricted to be homogenous . 

2 r -2 + JT09 
+ 3 E4 [;. r cos 4e + 9'E6 (-\ + /1(9) [~] cos 6e + (36) 

1 r -2 + /T93 ] } 
+ 8 Eg(-l + / 193) [~] cos 8e 
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