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Abstract

Given two C!-functions g: R — R, u: [0, 1] — R such that 2(0) = (1) = 0, g(0) = 0, we prove
that there exists ¢, with 0 < ¢ < 1, such that u’'(c) = g(u(c)). This result implies the classical
Rolle’s Theorem when g = 0. Next we apply our result to prove the existence of solutions of
the Dirichlet problem for the equation x”’ = f(¢, x, x').

1980 Mathematics subject classification (Amer. Math. Soc.): 34 B 15.

0. Introduction

Let f:[0,1] x R x R — R be a continuous function and suppose that there
exist a continuous function ¢: [0, c0) — (0, 00) and a constant R > 0 such
that

f(t,x,0)x >0 if |[x| =R,
If(t.x, ) < o(ly]) if x| <R
It is well known that

0.1. THEOREM. The Dirichlet problem
0.1) x" = f(t,x,x), x(0)=x(1)=0
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has at least one solution if

/oos¢(s)“1ds> R
0

For instance see [1] or [2].

In this paper we prove a generalized Rolle’s Theorem and we apply this
result to obtain the following generalization of Theorem 0.1.

0.2. THEOREM. Suppose that there are (ry, so), (r,51) ERx R, <0< ry,
such that

(i) f(t,x,50) 2 0 if ro < x < roexp(K),

(i) f(t,x.51) <0 ifrexp(K) <x <n,
where K = max{|so/ro|, |s1/r1|}. Assume further that

(iii) | £ (¢, x, ¥)| < é(Jy]) if riexp(K) < x < roexp(K),

(iv) [;7 so(s)~! ds > max{—r,, ro}exp(K).
Then the problem (0.1) has at least one solution v such that riexp(K) <v <rp
exp(K).

1. A general existence principle

In the following, C? denotes the space of functions u: [0, 1] — R of class
C? such that «(0) = u(1) = 0, with the usual norm ||u||; = max{||ulo, i =
0, 1,2}, where ||ud|o = sup{|u(¢)|: 0 < t < 1}. For reference purposes, we
state the following general, and now classical, result (see [2] for details).

1.1. THEOREM. Let U be an open and bounded neighborhood of 0 € C}
such that the problem

x"=Af(t, x,x"), x(0)=x(1)=0

has no solutions in the boundary 8U of U for 0 < A < l.. Then the problem
(0.1) has at least one solution in the closure cl(U) of U.

2. A Nagumo inequality

In this section we obtain a priori bounds for derivatives:
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2.1. PROPOSITION. Let v € CZ. If v'(ty) # O then there is an interval
[a, b] C [0, 1] such that v and v' have constant sign in (a, b); ty € {a,b} and
v’ has a zero at one of the endpoints of [a, b].

PrOOF. We consider two cases.

Case 1; v(ty) # 0. Since v(0) = v(1) = 0 there is an interval [c,d] C [0, 1]
such that v(¢) # 0if t € (¢, d),v(c¢) = v(d) = 0 and ¢ < t5 < d. In particular
v'(t;) = 0 for some ¢, € [c,d] and hence there is an interval [a, b] C [c, d]
such that ¢y € {a,b},v'(a)-v'(b) = 0 and v'(¢) # 0 for ¢ € (a, b), as required.

Case 2; v(to) = 0. Since v'(ty) # O there is an interval [c,d] C [0, 1] such
that ¢ € {c,d},v(c) =v(d)=0and v(t) # 0 if t € (c,d). The proof follows
as in the first case.

2.2. CorROLLARY. Let ¢: [0, 00) — (0, 00) be a continuous function and let
v € C3 be such that |v"(t)] < ¢([v'(1)]) (0 < t < 1). Then

jv'(0)]
/ so(s) s <vlle (O<t<1).
0

PrROOF. Let #5 € [0, 1] be such that v’'(¢y) # 0 and take [a, b] C [0, 1] as
given by Proposition 2.1. If we follow the proof of Theorem 3.1 of [2] then
we get

[v’ (t0)|
/ ! s8(6)-1 ds < 1v(@) — v(B),
0

so the proof is complete, since v has constant sign in (a, b).

3. A generalized Rolle’s Theorem

From now on 4: R — R denotes a function of class C!. Given u € CZ and
a € [0, 1] we define

ug(t) = u(t)exp (— /at h(u(s))ds) ,

M(u) = {a €[0, 1]): maxu, = u(a) > 0},
m(u) = {a € [0, 1]: miny, = u(a) < 0}.

(3.1)

3.1. LEMMA. Ifmaxu > 0 (respectively mina < 0) then M (u) (respectively
m(u)) is a nonempty set.
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ProoF. If maxu > 0 we get max ug = ug(a) > 0 for some a € [0, 1]. On
the other hand u, = kuy for some k > 0 and hence 0 < max u; = k max g =
kuo(a) = ugs(a) = u(a); or a € M(u). Similarly m(u) # @ if minu < 0.

3.2. ReMaARKS. (a) If a € M(u) one has ¥/ (a) = 0 and u/(a) < 0, which
is equivalent to

(3.2) u'(a) = u(a)h(u(a))
and
(3.3) u'(a) < u'(a) - [h(u(a)) + u(a)h'(u(a))].

(b) If a € m(u) we obtain (3.2) and the reverse of inequality (3.3).
Notice that maxu, = u,(a) (respectively minu, = uy(a)) if a € M(u)
(respectively a € m(u)).

REMARK. Let u: [0, 1] — R a differentiable function and define u, by (3.1)
for a € [0,1]. If u(0) = u(1) = 0 we get u,(0) = uy(1) = 0 and hence
u/(c) = 0 for some ¢ € (0,1). Therefore «'(c) = u(c)h(u(c)). This result
implies Rolle’s Theorem when 4 = 0.

For each r > 0 let

U(r)={ue C3: M(u) # D, u,(t) <r if (a, t) € M(u) x [0,1]},
V(-r)={ue C¢: m(u) # 3B, us(t) > r if (a,t) € m(u) x [0, 1]},
Ur,0)=Uryuu©),V(-r,0)=V(-r)uV(0),

where U(0) = {u € C}: M(u) =3} and V(0) = {u € CZ: m(u) = 3}.
We give now some properties of the sets U(r,0), v(—r, 0), that we shall use
in the next section.

3.3. ProPOSITION. (a) Ifu ¢ U(r,0) and u € C} (respectively u ¢ V(—r,0))
then there is a € M (u) (respectively a € m(u)) such that u(a) > r (respectively
u(a) < -r).

(b) U(r,0), V(—r,0) are open sets (r > 0).

(c) 8(U(re,0) NV (ry,0)) C(8U(ro,0)) U (8V(r1,0)),r1 <0< 1.

(d) If |h(x)| < K for all x € R (some K > 0) and u € cl{U(ry, 0) NV (r,0))
Jor some ry <0 < ry, then ryexp(K) < u(t) <rgexp(K) (0<t<1).

ProoF. (a) This is trivial.

(b) Let {u,} be a sequence in CZ which tends to u € C? in the || ||,-norm;
then {u,q,} converges uniformly to u, if a, — a. Since [0, 1] is a compact
set it is not difficult to prove that the complement of U(r,0) (respectively
V(r,0)) is a closed set.

(c) This is a consequence of (b).
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Finally, to prove (d), notice first that U(rg, 0)N ¥ (r;, 0) is the union of the
sets U(ro) NV (ry), U(ro)nV(0), V(ry) NU(0) and U(0) N V(0). Secondly, by
Lemma 3.1, U(0) ={u€ C3: u<0}and V(0) ={u e C3: u>0}. Ifu#0
it is easy to prove that one has the following cases: (i) there are @, b € [0, 1]
such that maxu, < rp and minu, > ry; (ii) ¥ > 0 and max ¥, < ry for some
ae{0,1];

(iii) ¥ < 0 and minu, > r, for some b € [0, 1].

The proof follows from the fact that

u(t) = ugs(t)exp (/t h(u(s))ds) fora,t €[0,1].

4. The proof of Theorem 0.2
Let p, gp > 0 be such that

P sds
/0 m8—0>max{—r1,ro}e7‘p(K)-

For some ¢; > 0 one has

(4.1) /Op :ﬁ—(ss)ii% = max{—r, rotexp(K + ¢;).

CLAM. If there is € € (0, ¢;) such that
(42)  |f(t.x.»)| < $(lyl) for r exp(K + &) < x < roexp(K +¢)

then the problem (0.1) has at least one solution ¥ such that rj exp(K) <
v(t) < rpexp(K).

Proof of the claim. By the Tietze-Uryshon Lemma there is a continuous
functin A: R x R — [—1, 1] such that A(x, s59) = 1 if ryp < x < rpexp(k), and
Alx,s1)=-1if rjexp(K) < x < ry.

For each integer n such that ney > 1, we let f,(¢,x,y) = f(t,x,¥) +

n~!A(x, y). Now fix n with neg > 1, and notice that there is § = §, > 0 with
6 < min{e, 1/n} such that

(4.3) Sa(t.x,50) >0 ifrg < x <rgexp(K +4),
(4.9) (. x,51)<0 ifriexp(K+d6)<x<n.

Choose a C!-function & = h,: R — R such that h(r;) = s;/r;,h'(r;) =
—si/r}, h(x) = so/s if x > rg, h(x) = s,/x if x < ry, and |h(x)| < K + 6 for
x €R.
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Given u € C} and a € [0, 1] define u, by (3.1) and let U be the open and
bounded neighborhood of 0 € C? defined by u € U if and only if

ueU(r,00nV(r,0), |l¥llo<p. |l <R,
where R = R, > 0 is chosen such that
(4.5) |falt, x, ¥)| < R if |x| < M := max{—r,, ro}exp(K + J),

and
yI<p(0<t,A<1).
We shall prove that the problem
(4.6); x" = Afu(t, x, x"), x(0)=x(1)=0
has no solutions on U for 0 < 1 < 1.

Suppose that u € cl(U) is a solution of (4.6); for some A € (0,1); by
Proposition 3.3(d) we obtain

(4.7) ryexp(K +d) < u(t) < rgexp(K + 4)

and by (4.6);, (4.5) and (4.2), |u"(¢)] < 1/n + ¢(|u'(¢)]) since < &. On the
other hand, neg > 1 and d < ¢ < &, and therefore

/p s[1/n + ¢(s)|"'ds > max{—r;, ro}exp(K + &) > ||ulo,
0

and by Corollary 2.2 we get ||[u’|lo < p. Thus, by (4.5) and (4.6);, || |lo < R.

If u € 8U then u € (8U(ry,0) U (8V(r;,0)) and we suppose first that
u € 8U(ry,0). In this case, by Proposition 3.3(a), there is a € M(u) such
that max u, = u,(a) = u(a) > ry and by remarks 3.2 and the definition of A
we have

u'(a) = u(a)h(u(a)) = so
and
u"(a) < solh(u(a)) + u(a)h’(u(a))]1 = 0

as h(u(a)) = so/u(a) and k'(u(a)) = —so/u(a)?.

But this is a contradiction since, by (4.7) and (4.3), "' (a) = A f.(a, u(a), so)
> (. This contradiction proves that u ¢ dU(rp, 0). Analagously u ¢ aV (r;,0)
and then u ¢ oU. So, by Theorem 1.1, the problem (4.6), has at least one
solution v, such that ||v)]lo < o, |lv)ll £ R and ryexp(K + 1/n) < va(t) <
roexp(K + 1/n). Remember that 6 < 1/n. Now it is easy to prove that {v,}
has a subsequence which converges in C? to a solution of (0.1). So the proof
of the claim is finished.

Now take an arbitrary ¢ € (0, ¢;) and a continuous function a: R — R such
that

a(x)=x if rexp(K) < x < rpexp(X),
af[r; exp(K + €), roexp(K + ¢€)]) C [r1 exp(K), ro exp(K)],
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and define g(¢, x, y) = f(t,a(x), y). We have
g(t, x,5)>0 if rp < x < rpexp(K),
g(t,x,5)<0 ifriexp(K) <x<r,
|g(t. x, ) < #(ly]) if riexp(K +¢) < x < roexp(K +é).
Then, by the claim, there exists at least one solution v of the problem

x" = g(t,x,x"), x(0)=x(1)=0

such that r) exp(K) < v(t) £ rpexp(K). In particular a{v(?)) = v(t) (0 <
t < 1) and hence v is a solution of (0.1). So the Proof of Theorem 0.2 is
complete.

References

[1] R. T. Graines and J. L. Mawhin, Coincidence degree and nonlinear differential equations
(Lectures Notes in Math., 568, Springer-Verlag, Berlin, Heidelberg, New York, 1977).

[2] A. Granas, R. B. Guenther and J. W. Lee, ‘Nonlinear boundary value problems for some
class of ordinary differential equations’, Rocky Mountain J. Math. 10 (1980), 35-58.

Departamento de Matematicas
Universidad de Los Andes
Facultad de Ciencias

Merida, Edo Merida
Venezuela

https://doi.org/10.1017/51446788700030883 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700030883

